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The thermal conversion of [4-13C,4-D]- (1) and [4-13C]-1- than those proceeding via cinnamylidene carbenes were
arithmetically eliminated and the reaction events proceedingphenyl-1-buten-3-yne (7) has been studied in a quartz

tubular reactor at 650 °C (1, in the presence of N2 and N2/ via carbene intermediates were mechanistically analyzed.
The result of this analysis undoubtedly suggests a complextoluene, respectively) and at 600 and 620 °C (mixture of 1

and 7, in N2 only) at a reaction time of approximately 0.3 s. reaction in which the rates of the partial reactions may be
placed in the following order: 1,2-D(H) .. 1,2-styryl . 1,6-The liquid pyrolyzates were analyzed spectroscopically. By

means of a special calculation method reported recently, the C,H.
naphthalene isotopomers formed by reaction pathways other

1,3-Hexadien-5-ynes, in which one or both of the C2C Although the mechanistic details of the formation of 6π-
ring systems by electrocyclic ring closure and the sub-double bonds of the dienyl skeleton are integral parts of 6π-

systems, have turned out to be useful precursors in high- sequent 1,5(1,3)-H shift [6] are now known, this route is in
fact almost negligible if the terminal C2C double bond oftemperature syntheses of planar[2] and bowl-shaped[3] poly-

cyclic aromatics. At first glance, cycloisomerizations of this the 1,3-hexadien-5-yne is part of a phenyl group. This is
because in the cyclization step the resonance stabilizationtype seem to follow a simple mechanistic pattern, as de-

picted in Scheme 1. However, sophisticated experiments energy of the phenyl group has to be overcome.[4] Sub-
sequently, the thermal conversion in question is mainly sup-aimed at proving other pathways, which are envisaged as

occurring competitively in the thermal conversion of 1-phe- ported by the vinyl radical and, at higher temperatures, by
reversibly formed carbenes. Both routes represent intrin-nyl-1-buten-3-ynes, clearly show that this is indeed the case

at temperatures between 550 and 750°C.[1,2c,4,5] There is no sically complex reactions. Their details, however, are as yet
only well-known for the radical cycloisomerizations. [1] Alonger any doubt that electrocyclic ring closures[6] and

cyclization steps proceeding via alkylidenecarbenes (cf. for coherent analysis of the complex reaction controlled by the
corresponding cinnamylidene carbenes is not yet available,example, refs. [2] [3]) as well as via vinyl-type radicals[1,2c,4]

compete not only with each other, but also with carbene- though some important features are already known.[2c,3c,4,5]

Against this background, we became interested in deline-mediated 1,2-C switches within the enyne fragment of the
employed phenylbutenynes, [5] which are themselves inde- ating a more complete picture by carrying out further stud-

ies in this field. We report herein on repeatedly performedpendently operative in the preliminary stages of the naph-
thalene formation. thermal conversions of [4-13C,4-D]-1-phenyl-1-buten-3-yne

1 (cf. ref. [1]) at 650°C in the presence of nitrogen and nitro-
gen/toluene, respectively, as well as on the co-pyrolysis of a
mixture of 1 and [4-13C]-1-phenyl-1-buten-3-yne 7 at 600
and 620°C, in this case exclusively in the presence of nitro-
gen. The results are discussed in relation to already pub-
lished mechanistic assumptions and proposals.Scheme 1. Naphthalene formation by electrocyclic ring closure

[°] Part 6: Ref. [1]

Results[a] Abteilung Hochtemperaturreaktionen am Institut für
Technische Chemie der Universität Leipzig,

Thermal Conversion ofPermoserstraße 15, D-04303 Leipzig, Germany
Fax: (internat.) 149(0)341/23522701 [1-13C,4-D]-1-Phenyl-1-buten-3-yne (1)
E-mail: zimmerma@sonne.tachemie.uni-leipzig.de

[b] Present address: Institut für Nichtklassische Chemie an der Labelled 1-phenyl-1-buten-3-yne (1) was available fromUniversität Leipzig,
Permoserstraße 15, D-04303 Leipzig, Germany our earlier research[1] and was used as a 1:99 cis/trans mix-
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Table 1. Dependence of the products formed from 1 in the presenceture (GC purity: 98.6%, D and 13C content: 99 atom-%
of N2 and N2/tol at 650°Ceach). It was used directly as the starting compound for

the pyrolysis experiments in the form of a 10% solution
in benzene.

In each run, between 0.7 and 0.9 mL of this solution was
slowly evaporated into a stream of nitrogen (N2) gas or a
nitrogen/toluene vapour mixture (N2/tol), respectively. Prin-
cipally, the gas streams served as diluents (d) carrying 1 in
low concentrations (nd/n1 ø 50:1) through a quartz flow
system (cf. for example, ref. [2c]). The reaction temperature
was 650°C, and the reaction time was calculated to be ap-
proximately 0.3 s. Under the applied conditions, however,
the nitrogen/toluene mixture served not only as a diluent
but also as an auxiliary agent lowering the stationary con-
centrations of the unavoidably formed chain carrier rad-
icals. [4] The effluents were cooled, collected, and analyzed
by GC/FID, GC/FT-IR, GC/MS, 1H, 2H, and 13C NMR as
detailed previously. [1] [5] The yields of the liquid pyrolyzates
(essentially isotopomers of naphthalene, benzofulvene, azu-
lene, and phenylbutenyne) boiling at temperatures higher
than benzene amounted to $ 95% of the solution employed
in each case. With strictly comparable parameters, each of
the experiments was repeated to guarantee the reproduc-
ibility of the composition of the formed isotopomers in the
liquid pyrolyzates. The results, representing averaged values
for each compound, are listed in Table 1. The product com-
positions of the fractions (upper part) were analyzed by GC
and GC/MS. The proportions of the remaining 1 and its
isotopomers (2, 7, 8) were calculated from the correspond-
ing 1H- and 13C-NMR as well as GC/FT-IR spectra of the
liquid pyrolyzates according to ref. [5], while the proportions

[a] 5 mol-% toluene in nitrogen. 2 [b] In% of the liquid pyrolyzateof the naphthalene isotopomers 5, 6, 11, and 12 as well
[minus benzene (solvent)]. 2 [c] At 750°C in the presence of hydro-

as those of [1-13C,1-D]- and [2-13C,1-D]naphthalene were gen, the proportion of 7 1 8 amounts only to # 3%.
determined solely from the 13C-NMR data (see, for ex-
ample, ref. [1] and the Experimental Section). The percentage
of each component in the liquid pyrolyzates of the repeated
experiments varied only marginally. The deviations were es-
timated to be ± 2% absolute at most, referred to the average
values listed in Table 1.

Thermal Conversion of a Mixture of
[1-13C,4-D]-1-Phenyl-1-buten-3-yne (1) and
[1-13C]-1-Phenyl-1-buten-3-yne (7)

To check the role that primary kinetic H/D isotope effects
may play in the reaction cascade according to Scheme 2, a
10% benzene solution of a 46:54 mixture of 1 and 7 was
thermally converted in nitrogen. Experiments were carried
out at 600 and 620°C (0.3 s) only to guarantee that the
found composition of the phenylbutenyne isotopomer frac-
tion is still far below the equilibration point, which is
known to be reached at approximately 750°C.[5] The experi-
ments were carried out in the same way as described pre-
viously for the thermal conversion of 1, with the same par-
ameter ranges. The obtained results are compiled in Tables

Scheme 2. Main reaction cascades in the conversion of 1 (7)2.1 and 2.2.
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Table 3. Molar percentages [x] with x 5 5 and 6 available in theTable 2.1. Degrees of conversion and selectivities of the formed

products (S[a]) in the thermal conversion of a mixture of 1 and 7[b] pyrolyzates from 1 and formed by radical ([x]rad) and carbene-like
processes ([x]carb) in the presence of both N2 and N2/tol at 650°Cat 600 and 620°C in the presence of nitrogen

Temperature [°C] 600 620

Degree of conversion (%)[c] 6 9
Product selectivities (S):
Naphthalenes 96 91
1-Methylene-1H-indenes 3 8
Azulenes 1 1
Others trace trace [x]carb 5 [x] 2 [x]rad (1)

[a] S 5 mol of product formed from 100 mol of the fed sum of 1
1 7 converted. 2 [b] Percentage composition of the 1-phenyl-1- Discussionbuten-3-ynes 1/7 5 46:54. 2 [c] Referred to the sum of 1 1 7 intro-
duced.

The product balance of the liquid pyrolyzates from the
conversion of 1 at 650°C (Table 1) clearly reveals that the
sum of the formed compounds having a structure funda-
mentally different from that of 1 amounts to just 18 andTable 2.2. Composition of the remaining phenylbutenyne and the

formed naphthalene fraction ( 5 100% each) in the pyrolyzates of 10%, with naphthalene as the main product. Of the remain-
the copyrolysis of 1 1 7 according to the summarized data given der, the 1-phenyl-1-buten-3-yne fraction consists of a mix-
in Table 2.1

ture of four (1, 2, 7, and 8) and the naphthalene fraction a
mixture of six isotopomers (5, 6, 11, 12, [1-13C,1-D]- andTemperature [°C] 600 620
[2-13C,1-D]naphthalene).

Taking the composition of the 1-phenyl-1-buten-3-yne1-Phenyl-1-buten-3-ynes[a]:
[4-13C,4-D]- (1) 39 34.5 fraction into account, it immediately becomes clear that the
[3-13C,4-D]- (2) 7.5 11

observed automerization 1 v 2 cannot be a radical-assisted[4-13C]- (7) 45 41
[3-13C]- (8) 8.5 13.5 process like that for which the mechanism is outlined in
Naphthalenes[a]: Scheme 3. If such a process were to be operative, a signifi-
[1-13C,2-D]- (5) ca. 17 ca. 16

cant dedeuteration of 1 and 2 ought to be expected. The[2-13C,2-D]- (6) ca. 12 ca. 13
[1-13C]- (11) ca. 39 ca. 37 non-deuterated 13C-phenylbutenynes 7 and 8 are, however,
[2-13C]- (12) ca. 25 ca. 26.5 formed only in trace amounts. This supports our previously[1-13C,1-D]- ca. 6 ca. 6

drawn conclusion, according to which the automerization 1[2-13C,1-D]- < 1 ca. 1.5
v 2 runs as a cyclic quadrangular process as outlined in

[a] The composition was calculated on the basis of characteristic the core of Scheme 2. The formation of 2 from 1 constitutes
spectroscopic data of the corresponding pyrolyzate components (cf. the main reaction event at 650°C. Consequently, the 1,2-DExperimental Section and ref. [1])

and even the 1,2-styryl migration are undoubtedly much
more favored compared to the 1,6-C,H insertion of the
carbenes 3, 4 and 9, 10 into the naphthalenes 5, 6 and 11,
12, respectively.Calculation of the Amounts of the Naphthalenes 5

and 6 Formed via Cinnamylidenecarbenes

Of the six naphthalene isotopomers listed in Table 1, only
two of them can in fact be straightforwardly formed via
cinnamylidenecarbenes, i.e. 5 and 6 (cf. Scheme 2), but, un-
fortunately, the matter is more complicated as they can also
be formed by radical-controlled ring closures. [1]

Therefore, the percentages of 5 and 6 immediately formed
from the cinnamylidene carbenes 3 and 4, respectively, have

Scheme 3. Considered radical mechanism of the automerizationto be calculated as the difference between the molar per- 1 o 2
centages of 5 ([5]) and 6 ([6]), respectively, in the corre-
sponding liquid pyrolyzate, and the amounts formed This observation is somewhat surprising because it seems

to be tacitly accepted that the activation parameters of thethrough vinyl-type radicals. [1]

For this, we used the computational method detailed in unimolecularly occurring 1,5- and 1,6-C,H insertion (but
not the 1,4-C,H insertion[7]) of the corresponding alkenylid-ref. [4], starting from the experimental results obtained in the

thermal conversion of 1-phenyl-1-buten-3-ynes in the pres- ene carbenes are considered to be almost negligible in com-
parison to those for the 1,2-R migration.[7] [8] This assump-ence of diluent gases of different nature, and using Equa-

tion 1 with x 5 5 and 6, respectively. The results obtained tion is, however, speculative since experiment-based acti-
vation parameters of unimolecularly proceeding 1,5- andin this way are compiled in Table 3.
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Table 4. Molar proportions of 5 and 6 formed in the pyrolysis of 1 from 1 and 2 by 1,2-D and 1,2-styryl migrations in the presence of
nitrogen and nitrogen/toluene, respectively, at 650°C (0.3 s)

Product Parent compound Formed according to mol-% formed via carbene species Calculated by Equation

5 1 r19(1,2-D) 1 r199(1,6-C,H) 3.57 4
6 2 r49(1,2-D) 1 r499(1,6-C,H) 1.08 9
6 2 r39(1,2-styryl) 1 r399(1,6-C,H) 0.20 5
5 1 r29(1,2-styryl) 1 r299(1,6-C,H) 0.06 8

1,6-C,H insertions of alkenylidenecarbenes have still to be the solutions of which are described by Equations 8 and
9.[10]reported. The preceding reflections clearly show that the

mechanism of the naphthalene formation from 1-phenyl-1-
buten-3-ynes can only be adequately discussed when it is
known how the preceding automerization process works.
Therefore, the proportions of 5 and 6 formed from the car-
bene intermediates 3 and 4 should be considered first.

In accordance with the data listed in Table 3, approxi-
mately 4.9 mol-% of the combined total amount of 5 and 6
is generated from 3 and 4. This corresponds to about 30% The molar proportions of 5 and 6 formed from 1 accord-
in the presence of nitrogen and 60% in the presence of nitro- ing the reaction steps r19 1 r199 (5 r1) and from 2 according
gen/toluene. In this process (cf. Scheme 2), 5 is formed from to r29 1 r299 (5 r2) were calculated from the experimentally
1 by the partial reaction r19 1 r199 (5 r1) and from 2 by r29 determined proportions of 5 and 6 in the liquid pyrolyzates.
1 r299 (5 r2). Therefore, The results obtained in this way are summarized in Table 4.

From the above data, it can be concluded unequivocally
that the formation of 5 and 6 from 1 and 2 is predetermined
to approximately 95% by 1,2-D (r1 1 r4) and to only about
5% by 1,2-styryl migrations (r2 1 r3).and, by analogy,

This statement seems to be largely in line with Dreiding9s
observation, [11] according to which the thermal cyclization
of [3-13C]-1-(1-methylcyclopentyl)-2-propynone at 530°C
occurs almost exclusively by 1,2-H shift and 1,5-C,H inser-

holds for the formation of 6, where the index ri in de- tion reactions of the initially formed carbene species, while
notes the reaction steps from 1 and 2 to x 5 5 and x 5 the alternative 1,2-acyl migration becomes important only
6, respectively. at higher temperatures.

Taking into account that the average percentages in To round off this picture, it is worthwhile to gain some
which 1 and 2 are available in the reactor volume depend insight into the relative rates at which the reversed 1,2-D
on the residence time effective at every differential reactor and the 1,2-styryl migration as well as the 1,6-C,H insertion
segment, [1] and assuming that 12C/13C isotope effects are compete with each other when starting from the corre-

sponding carbene intermediates 3 and 4. To this end, theconsistently very small, the molar portions and
results of the copyrolysis of 1 and 7 (Tables 2.1 and 2.2)have to be larger than those of and by the factor
were analyzed.Reff

[9] defined as the ratio of the steady-state concentrations
Taking the different portions of 1 and 7 in the feedstockat which 1 and 2 become effective in the whole reactor. [1]

mixture into account, the data in Table 2.2 clearly revealTherefore, it holds that
that the automerizations 1 v 2 and 7 v 8 proceed at almost
the same rate under intrinsic conditions. A kinetic H/D iso-
tope effect is not measurable. The formed cinnamylidene-
carbenes 3, 4 and 9, 10 (from 7, 8) evidently undergo a backand
reaction at a rate much faster than the 1,2-styryl migrations.
Consequently, the 1,2-styryl and not the 1,2-D(H) mi-
grations must be the rate-determining step of the 1,2-C

which finally gives the following system of Equations: switches.
From the same experiment, the molar proportion of 2

has been determined to be significantly higher (31%) than
the sum of the molar proportions of the naphthalenes 5 and
6 in the liquid pyrolyzate formed from 1 via cinnamylidene
carbenes at 650°C, which amounts only to just less than 5%
(Table 3, column 6). Despite the lack of kinetic data for the
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Figure 1. Energy profile diagram

1,2-styryl migrations and 1,6-C,H insertions, the pro- ance with previous results, [4] one can conclude that the im-
portance of the 1,6-C,H insertion increases with increasingportions of 5 and 2 in the liquid pyrolyzate from 1 make it

possible to roughly assess the ratio of the rate constants at temperature, while the opposite holds true for the other par-
tial reactions.which 5 and 2 are formed from the common precursor 3,

provided that the consecutive reaction of 2 to 4 and its sub- Finally, it seems to be very plausible that the 1,2-styryl
migration, first discussed as an alternative reaction bysequent reactions are ignored. Under this assumption, the

1,2-styryl migration of 3 to 2 is estimated to be faster than Wentrup, Zeller and co-workers [2c] and experimentally pro-
ven by ourselves, [5] has to be considered as the first examplethe 1,6-C,H insertion of 3 to 5 by a factor of about 8. Al-

though this deduction is rather limited with reference to any of a family of hitherto undiscovered 1,2-vinyl-type mi-
grations, which are purported to take place commonly, notquantitative conclusions, it is sufficiently reliable to realize

semi-quantitatively the important role 1,2-styryl migrations only in high-temperature chemistry of compounds with en-
yne structure fragments, but also in hydrocarbon flamesplay in the thermal conversion of 1-phenyl-1-buten-3-ynes

at temperatures above 600°C or even 550°C[5] in the gas
phase. Apparently, the activation energy for the 1,6-C,H in-
sertion of the cinnamylidene carbenes (here 3, 4, 9, 10) to Experimental Section
the naphthalenes (here 5, 6, 11, 12) has to be significantly

General: NMR: Varian Unity 400, 1H NMR (400 MHz,
higher than that for the 1,2-styryl migration of the corre- CD3COCD3, int. CH3COCH3, δ 5 2.08), 2H NMR (61 MHz,
sponding carbenes to the phenylbutenynes (here 1, 2, 7, 8). CH3COCH3, int. CD3COCD3, δ 5 2.08), 13C NMR (100 MHz,
These facts are qualitatively summarized in the energy pro- CD3COCD3, int., δ 5 29.8 (CD3), δ 5 206.0 (C5O); inversed gated
file diagram (Figure 1). decoupling). 2 Analytical GC: HP 5890 Series II (FID, H2, col-

umn: PS 255 2 quartz, 25 m 3 0.32 mm 3 1.2 µm, 50°C 2 5 min,
10°C/min, 200°C 2 10 min). 2 GC/MS: HP 5890 Series II (MSD
HP 5971A 2 70 eV, He; column: SE 54, 15 m 3 0.20 mm 3 0.25Conclusions and Prospects
µm, 50°C 2 5 min, 10°C/min, 200°C 2 10 min). 2 GC/FT-IR: HP

The reaction course depicted in Scheme 2 that qualitat- 5890 Series II (IRD: HP 5965 B, ν̃ 5 75024000 cm21, N2, column:
SE 30: 25 m 3 0.32 mm 3 1.2 µm, 50°C 2 5 min, 10°C/min, 200°Cively describes naphthalene formation from phenylbut-
2 10 min).enynes proceeding via cinnamylidene carbenes proved to be

correct. Moreover, at 650°C, the relative rates of partial re- cis/trans-[4-13C]-1-Phenyl-1-buten-3-yne (7): The synthesis of 7 by
actions such as 1,2-D(H) and 1,2-styryl migrations as well reaction of [13C]dichloromethane (Promochem, 13C content: 99

atom-%) with a mixture of n-butyllithium, cinnamyl bromide, andas 1,6-C,H insertions decrease in the following order:
HMPT in diethyl ether solution at 278°C, followed by a double

1,2-D(H) >> 1,2-styryl > 1,6-C,H
dehydrohalogenation with potassium tert-butoxide, has already

Consequently, their energies of activation inevitably have been described in detail. [1] 2 trans-[4-13C]-1-Phenyl-1-buten-3-yne:
MS: m/z (%): 130 (10), 129 (100) [M1], 128 (26), 127 (9), 103 (12),to increase in the reversed order. From this and in accord-
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102 (6), 78 (6), 63 (4). 2 FT-IR: ν̃ 5 3312 cm21 (13C42H4 valence Pyrolysis: The pyrolyses were carried out as already described else-

where[2c] by passing the starting materials together with nitrogenvibration), 3092, 3039, 2076, 1951, 1880, 1786, 1492, 1198, 953. 2

NMR: For NMR data (1H-, 2H-, 13C NMR), see under “Analysis or a nitrogen/toluene mixture as diluent gas at a given temperature
through a quartz tube, which was placed in an electrical heatingof the Pyrolyzates”.
system. The tube was connected to a cold trap (2195.8°C), incis/trans-[4-13C,4-D]-1-Phenyl-1-buten-3-yne (1): Compound 1 was
which the liquid pyrolyzates were collected. After warming to am-synthesized by deuteration of 7 according to the procedure that we
bient temperature, the pyrolyzates were analyzed by analytical gashave described previously. [1] The residue obtained following distil-
chromatography, GC/MS analysis, and NMR spectroscopy as de-lation was used directly for the pyrolysis experiments. The spectro-
scribed previously. [1] The phenylbutenynes were introduced into thescopic data were in complete agreement with those from the pre-
reactor as 0.720.9-mL samples of a 10% solution in benzene.viously carried out synthesis. 2 trans-1: MS; m/z (%): 131 (10), 130

(100) [M1], 129 (26), 128 (10), 104 (11), 78 (7), 65 (4), 51 (8). 2

FT-IR: ν̃ 5 3083 cm21, 3039, 2559 (13C42D4 valence vibration),
1951, 1880, 1786, 1591, 1492, 1264, 1016, 952. 2 NMR: See under Acknowledgments
“Analysis of the Pyrolyzates”.

The authors are grateful to the Deutsche Forschungsgemeinschaft
Analysis of the Pyrolyzates: The compositions of the 1-phenyl-1- and the Fonds der Chemischen Industrie for the financial support
buten-3-yne and naphthalene isotopomer fractions were deter- of the presented investigations.
mined from the NMR spectra, which were recorded directly from
the relevant liquid pyrolyzates and the molar masses of the deuter-
ated (m/z 5 130) and the non-deuterated (m/z 5 129) [13C]phenyl- [1] K. Schulz, J. Hofmann, M. Findeisen, G. Zimmermann, Eur. J.

Org. Chem. 1998, 219522142.butenynes and naphthalenes. The analyses were carried out on the
[2] Cf. for example: [2a] R. F. C. Brown, F. W. Eastwood, K. J.basis of well-known 13C-, 1H- and 2H-NMR data [chemical shifts Harrington, G. L. McMullen, Aust. J. Chem. 1974, 27,

δ (ppm), coupling constants J (Hz)] already detailed in ref. [1] (see 239322402. 2 [2b] J. Becker, C. Wentrup, E. Katz, K.-P. Zeller,
ref. [9] therein), taking the intensities of the signals in the recorded J. Am. Chem. Soc. 1980, 102, 511025112. 2 [2c] K. Schulz, J.

Hofmann, G. Zimmermann, Liebigs Ann. 1997, 253522539.spectra into account. In this way, it is possible to distinguish the
[3] Cf. for example: [3a] L. T. Scott, M. M. Hashemi, D. T. Meyer,trans as well as the cis configurations of 1, 7 and 2, 8 on the basis H. W. Warren, J. Am. Chem. Soc. 1991, 113, 708227084. 2

of the different coupling constants of the olefinic H and D atoms [3b] P. W. Rabideau, A. H. Abdourazak, H. E. Folson, Z. Marzi-
(H1, H2, D1, D2), respectively, with the 13C atoms in the C-3 and now, A. Sygula, R. Sygula, J. Am. Chem. Soc. 1994, 116,

789127892. 2 [3c] G. Zimmermann, U. Nüchter, S. Hagen, M.C-4 positions.
Nüchter, Tetrahedron Lett. 1994, 35, 474724750.

Representative relevant NMR data are listed below for the trans- [4] J. Hofmann, K. Schulz, A. Altmann, M. Findeisen, G. Zimmer-
mann, Liebigs Ann. 1997, 254122548.1-phenyl-1-buten-3-ynes: 1H NMR: trans-1(7): H1: 7.1 (d,

[5] K. Schulz, J. Hofmann, G. Zimmermann, M. Findeisen, Tetra-3JH1,H2 5 16.4), H2: 6.4 (dd, 3JH2,H1 5 16.4, 3JH2,C4 5 4.4); trans-
hedron Lett. 1995, 36, 382923830.

2(8): H1: 7.1 (dd, 3JH1,H2 5 16.4, 3JH1,C3 5 8.4), H2: 6.4 (dd, [6] [6a] W. R. Roth, H. Hopf, C. Horn, Chem. Ber. 1994, 127,
3JH2,H1 5 16.4, 3JH2,C3 5 0.4). 2 2H NMR: trans-1: D4: 3.4 (d, 176521779. 2 [6b] U. Nüchter, G. Zimmermann, V. Franke, H.

Hopf, Liebigs Ann. 1997, 150521515. 2 [6c] H. Hopf, H. Berger,1JD4,C4 5 38.6); trans-2: D4: 3.4 (d, 2JD4,C3 5 7.6). 2 13C NMR:
G. Zimmermann, U. Nüchter, P. G. Jones, J. Dix, Angew. Chem.trans-1: C4: 80.8 (t, 1JC4,D4 5 38.6); trans-2: C3: 83.0 (t, 2JC3,D4 5
1997, 109, 123621238; Angew. Chem. Int. Ed. Engl. 1997, 34,

7.6); trans-7: C4: 81.1 (s); trans-8: C3: 83.5 (s). [12]
118721190.

[7] J. Hofmann, G. Zimmermann, M. Findeisen, Tetrahedron Lett.The proportions of the naphthalene isotopomers were determined
1995, 36, 383123832.from the intensities of the signals of the 13C-labelled atoms in the [8] B. Ondruschka, M. Remmler, G. Zimmermann, Ch. Krüger, J.

1H-decoupled 13C-NMR spectra and of the D atoms in the 2H- Prakt. Chem. 1987, 329, 49254.
[9] Approximately 3.3 (cf. ref. [1]).NMR spectra (see below), taking into account the relevant mass-
[10] Derivation: cf. Equation 225 in ref. [1]

spectrometrically determined data. [11] J. Kaneti, M. Karpf, A. S. Dreiding, Helv. Chim. Acta 1982,
65, 251722525.13C NMR: [1-13C,1-D]naphthalene: C1: 128.7 (t, 1JC1,D1 5 24.4);

[12] The different chemical shifts of the isotope-labelled C atoms in[2-13C,1-D]naphthalene: C2: 126.9 (s); 5: C1: 128.9 (s); 6: C2: 126.7
the 1H-decoupled 13C-NMR spectra make it possible to differ-(t, 1JC2,D2 5 24.4); 11: C1: 127.0 (s); 12: C2: 129.0(s). 2 2H NMR: entiate between the [13C]phenylbutenynes 1, 2, 7 and 8.

[1-13C,1-D]naphthalene: D1: 7.9 (d, 1JD1,C1 5 24.4); [2-13C,1- Received April 13, 1999
[O99209]D]naphthalene: D1: 7.9 (s); 5: D2: 7.5 (s); 6: 7.5 (d, 1JD2,C2 5 24.4).
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