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The partial deuteration of alkynes proceeds via a flow chemistry approach under Lindlar’s heterogeneous
catalysis to provide cis-dideuterated olefins in good yields. Further, dideuterated olefin has been success-
fully utilized for Sharpless asymmetric dihydroxylation followed by Mitsunobu reaction for the synthesis
of deuterated taxol side chain.
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Scheme 1. Partial deuteration of alkynes in H-cube.
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Figure 1. Structures of taxol and dideuterated taxol side chain.
Deuterium labeled compounds possess a wide range of applica-
tions in pharmaceuticals, environmental, materials and chemical
sciences.1 Although no product containing the deuterium atom
has been found in nature, this atom constitutes important proper-
ties for the deuterated products. They are useful in studying meta-
bolic pathways of bio-active molecules, detailed mechanism of
chemical reactions etc.2 In select cases of specifically modified
molecules (by the incorporation of ‘deuterium’), can positively
impact certain drugs absorption, distribution, metabolism and
excretion (ADME) properties, creating the potential for improved
drug efficacy, safety, and tolerability. Thus, deuteration is exploited
in various sites of the rapamycin, zilascorb, atazanavir etc., mole-
cules to increase the potency of drug, reduce toxicity of the drug,
reduce the clearance of the pharmacologically active moiety and
improve the stability of the molecule.3,4 Therefore the synthesis
of deuterium labeled compounds has been receiving considerable
attention by the research groups.

Usually deuterated compounds are synthesized by H–D
exchange reaction under metal catalysis.5 Besides, D2-gas can be
used to deuterate the organic molecule analogs by hydrogenation
of olefins, acetylenes, cyanides etc. However, there is no report
on partial deuteration of alkynes in a flow chemistry approach
and further functionalization of resultant dideuterated olefins. This
prompted us to explore the partial deuteration of acetylenes (1)
using flow chemistry (H-cube) in the presence of Lindlar’s catalyst
(Scheme 1) involving a simple and inexpensive D2-gas generation.6
ll rights reserved.

x: +91 040 27160512.
ar).
Further, we successfully achieved the synthesis of deuterated taxol
side chain 3a by utilizing dideuterated (Z)-ethylcinnamate ob-
tained via flow chemistry.

A noted example of the antitumor agent, taxol (3), contains syn-
stereoisomer phenylisoserine side chain as its key pharmacophore
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Scheme 2. Synthesis of dideuterated taxol side chain.
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(Fig. 1). The approval of taxol (paclitaxel) as a therapeutic agent
against ovarian and other types of cancer has continued to elicit
interest in both the synthesis and biosynthesis of this molecule.7

As recently described by Fulop and co-workers,8 the substrates
were completely deuterated in the presence of 5% Pd/BaSO4 cata-
lyst. In our case, we have conducted the reaction using 5% Pd on
CaCO3 poisoned with lead (Lindlar’s catalyst) to obtain the partially
deuterated olefin. Ethyl 3-phenylpropiolate 1a (100 mg) was dis-
solved in 100 mL HPLC-grade hexane. 5% Pd/CaCO3 poisoned with
lead (Lindlar’s catalyst) was placed in the catalyst cartridge where
the reaction takes place. The flow of the HPLC pump was adjusted
to 1 mL/min, the temperature was set to 50 �C, and the pressure
was set to minimum (1 bar). The collected eluent was evaporated
to obtain the dideuterated olefin 2a as a Z/E (7:1) mixture (Table
1, entry 1).9

Having able to partially reduce the acetylene into dideuterated
(Z)-olefin, some other alkyne substrates were subjected to the
above described protocol. Thus, alkyne 1b was reduced to obtain
exclusively cis-dideuterated olefin 2b in 99% yield (Table 1, entry
2). Similar results were observed for 1c as well as for propargylic
alcohols 1d and 1e to furnish the corresponding dideuterated ole-
fins 2c, 2d, and 2e in good yields with Z-olefin as the major product
(Table 1, entries 3, 4 and 5). The ratio of the products was deter-
mined by 1H NMR. The Z-configuration of the major product was
confirmed by the NOE studies on the reduced product of 2b as well
as on 2e.10

The (Z)-didueterated ethylcinnamate (2a) was further con-
verted to a,b-dideuterated N-benzoyl 3-phenylisoserine 3a, which
is a deuterated analog of C-13 crucial side chain present in taxol
(Scheme 2). Accordingly, deuterated olefin 2a was treated under
Sharpless asymmetric dihydroxylation (SAD) conditions using
DHQD-IND ligand to furnish the erythro diol (2R,3R)-4 in 92%
yield.11 To the best of our knowledge, this is the first example of
SAD on a deuterated olefin which provided the diol 4 with 85:15
enantiomeric ratio (by chiral HPLC analysis).12 At this stage we
have decided to use this deuterated diol 4 for further transforma-
Table 1
partial deuteration of alkynes by flow chemistry (H-cube)

Entry Alkynea (1) Produ

1

a1

CO2Et

2

COOEt

MPMO

1b

MPMO

3

c1

OBn D

4

d1

OH D

5

e1

OH D

a All the compounds were prepared to 0.1% solutions in HPLC grade hexane.
b Structure showed for major product.
c All the Z/E ratios are characterized by NMR studies.
d Overall yield (Z and E) based on 2.
tions towards taxol side chain. Thus, diol 4 was treated with hydra-
zoic acid under Mitsunobu reaction conditions to afford azide 5 in
80% yield.13 The azido alcohol 5 was treated with benzoylchloride
to azidobenzoate 6 followed by the hydrogenation reaction, where
the benzoyl group migrated from oxygen to the reduced amine
providing the desired deuterated taxol side chain 3a, in 72% yield
(for two steps). All the deuterated compounds were fully charac-
terized14 by 1H, 2H and 13C NMR, IR and mass spectra and the con-
figurations assigned are tentative.

In summary, we have demonstrated the partial deuteration of
alkynes using flow chemistry under Lindlar’s catalysis. Impor-
tantly, further asymmetric functionalization involving dihydroxy-
lation of deuterated olefin has also been demonstrated, which
presents the indirect introduction of deuterium bearing asymmet-
ric carbon. This was further converted to deuterated taxol side
chain using Mitsunobu reaction as the key step.
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