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Reactiv it - of primary and secondary alcohols
in nu::2ophilic addition to a triple bond:
t 1¢ vinylation of butane-1,3-diol
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Acetylene adds ‘o nutane-1,3-diol in the presence of KOH to give, along with the
corresponding divinsl sther and 2,4-dimethyl-1,3-dioxane, 4-vinyloxybutan-2-ol and its
structural isomer 3-v.n: .oxybutan-1-ol, the ratio between the latter two products, (53—8) : 1,

depending on the reuct on conditions.

Key words: buta.ie- 3-diol, vinylation, 4-vinyloxybutan-2-ol, 3-vinyloxybutan-1-of, IR

spectroscopy, 'H NMR  sectroscopy.

Base-catalyzed vinylation of prm .y alcohols with
acetylene occurs only severalfold fa or than that of
secondary alcohols, which is explaine ~ by electrophilic
assistance from the more "acidic” prim. v hydroxy group
and more favorable steric factors.! I is 1rprising, there-
fore, that monovinyl ethers involving nly primary hy-
droxy groups have been obtained sc fi upon vinylation
of primary—secondary diols,2:3 in w! :h case a much
farger difference between the corre: snding reaction
rates is implied. It seemed as if tie -zactivity of the
secondary hydroxy group with respest .y the triple bond
in nucleophilic processes is complete - blocked in the
presence of the primary one. When rez:tions are carried
out at higher temperatures or in su:erbasic media 4
complete vinylation occurs to give t-- corresponding
divinyl ethers.

To elucidate this matter relate¢ 1. a fundamental
problem of organic chemistry, namel- . to the mecha-
nism of nucleophilic addition to a riple bond, we
performed a detailed analysis of prod ::ts of the base-
catalyzed vinylation of butane-1,3-dic" with acetylene
under pressure. Based on the literature data, one could
expect the predominant formation cf -.-vinyloxybutan-
2-o0l (1), 1,3-divinyloxybutane (2), a1 : 2,4-dimethyi-
1.3-dioxane (3),! a product of cycl :cetalization of
monovinyl ether 1. The yields of these sroducts would
depend on the concentration of the cat: vst, the reagent
ratio,- the reaction temperature, and ik reaction time.
GLC analysis of the reaction mixturc -onfirmed the
formation of products 1—3. It turncd - that an iso-
meric monovinyl ether, viz., 3-vinylox .itan-1-ol (4),
was also formed in up to 10% yield.

Pure monoviny!l ethers 1 and 4 v ¢ isolated by
preparative GLC. The IR spectra o! b :h compounds
contain intense bands at 1615—164¢ ca~! (v(C=C))
and 3350 cm™! (v(OH)). The 'H N'IR spectra of

compounds 1 and 4 exhibited signals with virtually the
same chemical shifts and multiplicities.

In the two-dimensional NOE spectrum (NOESY) of
4-vinyloxybutan-2-ol (1), a signal for the C(2)H proton
(5 3.93) has cross-peaks with OH, C(1)H, and C(3)H
protons, which attests to the fact that the vinyloxy group
is in position 4. Moreover, the spectrum shows an
intense cross-peak for the frans-proton of the vinyl
group at § 4.16 with C(4)H protons, which suggests syn-
spatial orientation of the vinyl group with respect to the
alky! group, as was shown earlier.2 For viny! ether 4, a
signal for the C(3)H proton has cross-peaks with C(4)H
and C(2)H protons, while the OH proton gives a cross-
peak with C(1)H protons.

The IR spectra of viny! ethers 1 and 4 exhibit two
components of the C=C stretching vibrations. In the
case of 4-vinyloxybutan-2-ol (1), a low-frequency band
at 1616 cm™! corresponding to a planar conformation is

Scheme 1
Me
/\* + Ho=cH M.
HO OH
Me
- /\O/\/kOH + /\0/\/ko/\ +
1 2

MeYO Me Me
* o\;r N Ho/\/ko/\
4
3

Translated from Jzvestiya Akademii Nauk. >eri -a Khimicheskaya. No. 12, pp. 2372—2374, December, 1999.
1066-5285/99/4812-2347 $22.00 © 2000 Kiuwer Academic/Plenum Publishers



2348

Russ.Chem. Bull., Vol. 48, No. 12, December, 1999

Oparina et al.

Table 1. Effect of the reaction conditions in the vinylation of butane-1 $-diol on the vields of the

reaction products

Entry Reaction conditions Degree of conversion R :ction products yields (%)
Mg CkoH 7/°C t/h  of butane-1,3-diol 1 2 3 4
/mol  /mol.% (%)
1 0.2 3 139—141 2 72 52.7 5.9 1.7 6.7
2 0.26 5 138—140 3 83 50.« 7.4 6.0 9.3
3 0.3 5 136—140 3 90 56.. 10.2 3.5 10.1
4 0.5 5 140—144 3 75 47 7.3 22 8.7
5 0.2 7 150—155 1 92 31 24.5 6.0 1.5
6 0.2 10 148—1350 1 160 37. 344 6.8 0.6

more intense, while for vinyl ether 4 the pattern is
opposite, which correlates with the dependence of the
conformation on the extent of C,-branching in the alkyl
radical.2-5

The content of vinyl ether 4 in the reaction mixture
depends on the vinylation conditions and amounts to
~1—10%. Under conditions favorable for partial
vmylauon viz., at relatively low concentrations of the
catalyst (KOH, 3—5 mol.%, Table |, entries /—J3) and
deficiency of acetylene with respect to the diol (see
Table 1, eniries 3 and 4), the yields of both monoviny!
ethers 1 and 4 are increased. The main reaction product
is 4-vinyloxybutan-2-ol (1) (yield up to 60%, the degree
of conversion of the diol is 80—90%). An excess of
acetylene with respect to the diol as well as an increase
in the concentration of KOH to 7—10 mol.% and in the
reaction temperature to 150 °C (see Table 1, entries 5
and 6) favor higher yiclds of diviny} ether 2 and cyclic
acetal, thus decreasing the yields of monovinyl ethers 1
and 4. Moreover, comparison of entries 5 and 6 shows
that the more drastic the conditions and the higher the
yield of divinyl ether 2 the higher the ratio of ether 1 to
4, because the vinylation rate of compound 1 contain-
ing the secondary hydroxy group is an order of magni-
tude lower than that of ether 4.

Thus, based on a simple model and concepts of the
method of competitive reactions, one can conclude that
the primary hydroxy group is more reactive in nucleo-
philic addition to acetylene than the secondary one by a
factor of 5—15 when they are both present in a diol
molecule.

Experimental

IR spectra were recorded on a JFS-25 spectrometer (thin
film) in the range 400—4000 cm™!. 'H NMR spectra were
recorded at ~20 °C on a Bruker DPX-250 instrument (250 MHz)
in CDCl; with HMDS as the internal standard. Reaction
mixtures were analyzed and the purity of the compounds
obtained was checked by GLC on an LKhM-80 instrument
(katharometer, helium as the carrier gas (flow rate 2 L h™D),
column 3000x3 mm, polyethylene glycol (PEG) 20,000 as the
liquid phase, 1% on NaCl (0.16—0.25 mm)). Retention times
of compounds 3, 2, 1, and 4 were 1, 2, 8, and 11 min,
respectively (isothermal regime, column temperature 120 °C).

Preparative separati-‘n of the compounds was carried out on a
PAKhV-07 prepara: ve chromatograph (column 1000 mm, 1%
PEG on NaCl, col: .nn temperature 85 °C).

Vinylation of b tane-1,3-diol (see Table I, entry 2). A
mixture of butane-: 3-diol (23.4 g, 0.26 mol) and KOH (0.7 g,
0.013 mol) was fe with acetylene at an initial pressure of
10 atm and heated 1 a rotating 1-L autoclave at 138—140 °C
for 3 h, the max: wm pressure in the autoclave reaching
15 atm. Distillatic of the reaction mixture in vacuo gave
1,3-divinyloxybutar (2) (2.8 g, 7.4%), 2,4-dimethyl-1,3-diox-
ane (3) (1.8 g, 6% a fraction with b.p. 44—47 °C (2 Torr)
(18.0 g) containir 4-vinyloxybutan-2-ol (1) (84.6%) and
3-vinyloxybutan-1-- . (4) (15.6%), and the starting butane-
1,3-diol (4.0 g) {c zree of conversion 83%). The individual
monovinyl ethers 1 nd 4 were isolated by preparative chroma-
tography.

4-Vinyloxybuta: -2-0l (1): b.p. 62 °C (12 Torr), np® 1.4376
(¢f. Ref. 2: b.p. 40 * > (2 Tomr), np2? 1.4377). IR, v/em™L: 614,
701, 817, 913, 963 993, 1044, 1072, 1113, 1137, 1200, 1278,
1321, 1376, 1411, 3161, 1471, 1514, 1553, 1616, 1638, 2879,
2929, 2967, 3063, :118, 3371. !H NMR, & 6.41 (dd, 1 H
OCH=); 4.16 and 3.97 (both dd, each | H, CHy=, J; =
6.8 Hz, Jypns = 1 4 Hz, Joopy = 2.16 Hz); 3.93 (m, 1 H,
C(2)H); 3.79 (m 2 4, C(4)H7) 2.38 (br.s, | H, OH); 1.75 (m,
2 H, C(3)Hy); 1.17 !d, 3 H, CH;, Ji» = 6.2 H2).

1,3-Divinyloxy: tane (2): b.p. 42 °C (12 Torr), np2® 1.4343
(¢f. Ref. 4: b.p. 58- 39 °C (20 Torr), ap?® 1.4363). IR, v/em™L:
699, 818, 871, 91 950, 967, 1019, 1051, 1074, 1113, 1144,
1201, 1231, 1321, 348, 1380, 1451, 1474, 1616, 1635, 2881,
2932, 2975, 3046, 3073, 3118. 'H NMR, & 6.42 (dd, | H,
OCH=); 4.16 and 3.97 (both dd, each 1 H, CHy=CH—O-
C(1)H,, Jy = 6.9 Az, Jyyne = 14.4 Hz, Jg,,, = 1.90 Hz); 6.28
(dd, each 1 H, C H=); 4.26 and 3.97 (both dd, each 1 H,
CH,=CH—0~C( YH,, Jo; = 6.7 Hz, Jigp = 14.2 Hz, Jpoy =
1.28 Hz); 4.06 (tq { H, C3)H, J3 4 = 6.3 Hz, /33 = 6.2 Hz),
3.75 (m, 2 H, C(: ‘Hj); 1.86 (m, 2 H, C(2)H,); 1.22 (d, 3 H,
CH;, J43=63F).

2,4-Dimethyl- ,3-dioxane (3): b.p. 114 °C, np2® 1.4130
(cf. Ref. 6:b.p..46.. C(50 Tom), np?® 1.4115). IR, v/em™1: 650,
809, 844, 865, 8 . 952, 1045, {084, 1100, 1138, 1174, 1224,
1252, 1323, 1375 1410, 1428, 1444, 1463, 2631, 2721, 2798,

2852, 2941, 2974 'H NMR, &: 4.67 (g, | H, C(2a)H, 3J =
5.1 Hz); 4.05 (¢ d, 1 H, C(6e)H, 2J = 11.3 Hz, Jee s, =
5.0 Hz, Jge 5. = 1 ! Hz); 3.73 (m, 2 H, C(6a)H, C(4a)H): 1.62
(m, 1 H, C(5a)E . 1.41 (two m, 1 H, C(5¢)H, ¥J = 13.3 Hz);
1.29 (d, 3 H, M £(2), 37 = 5.1 Hz); 1.21 (d, 3 H, MeC(4),
37 =63 Hz).

3-Vinyloxybe:an-1-of (4): np2® 1.4379. IR, v/em™: 616,
698, 825, 917, ¢+1, 967, 990, 1020, 1056, 1096, 1139, 1180,
1196, 1254, 132.. 1349, 1379, 1450, 1477, 1526, 1620, 1634,
2887, 2935, 297, 3055, 3117, 3355. 'H NMR, §: 6.30 (dd,
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I H, OCH=); 4.31 and 4.05 (both dd, each | H, CH,=, J;; =
6.6 Hz, Jyoue = 14.1 Hz, Jo,, = 1.66 Hz); 409 (m, | H,
C(3)H); 3.72 (m, 2 H, C(1)H,); 2.6] (brs, | H, OH); 1.64—1.84
(m, 2 H, C()H,); 1.24 (d, 3 H, CH3, J; 3 = 6.2 Ha).
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Synthesis of 2-(furazanyl)indolizines
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Heating of N-{2-(4-methylfurazan-3-yl)~2-oxoethyl]-2-methylpyridinium bromides in
N, N-dimethylaniline affords indolizine derivatives, whereas in aniline a mixture of indole and

indolizine derivatives is formed.

Key words: furazans, indoles, indolizine.

Previously,! we showed that pyridinium salts ob-
tained from 3-(2-bromoacetyl)furazan? give 3-(R-indol-
2-yh)furazan derivatives upon refluxing in 4-R-anilines.
The pyridine moiety functioned as a leaving group,
while aniline served as a building block for constructing
the indole moiety of the molecule that formed.

Under similar conditions, 2-methylpyridinium salts
(1) react according to both pathway a and pathway b
(Scheme 1) leading to indolizine derivatives 3, in which
the pyridine ring is a structural fragment, and aniline
acts as a catalyst.

When the reaction is carried out in N ,N-di-
methylaniline (boiling, 2—3 h), only 2-(furazanyl)-
indolizines 3 are formed (yield 67—75%).

Experimental

Meiting points were determined on a Kofler stage. 'H and
13C NMR spectra were recorded on Bruker AM-300 (300 and

75 MHz, respectively) and Bruker AM-200 instruments (200
and 50 MHz, respectively). 13C signals were assigned with the
use of double heteronuclear resonance and selective polariza-
tion transfer from H nuclei.

Mass spectra were obtained with Varian MAT CH-6 and
Varian MAT CH-11! instruments (70 eV). IR spectra were
recorded on a Specord IR-75 spectrometer (KBr).

The course of the reaction was monitored and the purity of
reaction products was checked by TLC on Silufol UV-254
plates. Silica gel was used for preparative chromatography.

The starting pyridinium salts 1a—c were obtained according
to the known procedure.!

2-(4-Methylfurazan-3-yl)indolizine . (3a).- 4. A mixture of
N-[2-(4-methylfurazan-3-yl)-2-oxoethyl]- 2-methylpyridinium
bromide (1a) (2.84 g, 0.0l mol) and aniline (10 mL) was
refluxed in an atmosphere of argon for 3.5 h. The reaction
mixture was cooled to 20 °C, poured into 5% HCI, and stirred
for 0.5 h. Products were extracted with CH,Cl,. The extract
was dried with MgSQ4 and concentrated. The residue was
chromatographed on a column with 8i0; (pentane—CH,Cl, as
the eluent). Eluted first was compound 3a, yield 35%,
m.p. 123—124 °C (from hexane). Found (%): C, 66.43; H, 4.59;
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