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Abstract An iron-catalyzed direct O-alkylation of alcohols via -
C(sp3)–H activation of ethers and a thioether has been established that
tolerates cyclic and acyclic ethers and alcohols containing aromatic N-
heterocyclic moieties, providing an efficient and green method for the
synthesis of mixed acetals with good to excellent yields. The robustness
of this protocol is demonstrated by the late-stage oxidation of a struc-
turally complex natural product.
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The mixed acetal unit constitutes an important struc-
tural feature that is widely found in pharmaceuticals and
fragrances and is also a common synthetic intermediate.1
Among the methods developed to prepare mixed acetals,2
the direct sp3 -C–H bond activation and alkoxylation of
ethers is the most straightforward and efficient.3 Typically,
cross-dehydrogenative coupling of alcohols with -C(sp3)–
H of ethers gives access to mixed acetals. Although a num-
ber of methods have been reported for the transformation
(using, for example, THF in combination with SO2Cl2,4 CAN,5
TsCl/NaH,6 CrCl2/CCl4,7 peroxy-3-iodane/CCl4,8 VCl3/CCl4,9
Mn(0)/CCl4,10 or BrCCl3/2,4,6-collidine11), the use of stoi-
chiometric amounts of reagents makes these processes en-
vironmentally unfriendly.

In contrast, more modern and greener methodologies
based on catalysis are much less well developed. Recently,
two examples of catalytic systems based on CuBr2

12 and
Cp2TiCl/Mn(0)13 for direct tetrahydrofuranylation of alco-
hols have been reported. However, they all display limited
scope, and are only applicable to symmetrical cyclic ethers
such as tetrahydrofuran and/or tetrahydropyran.

Here, we report an efficient and selective iron-catalyzed
direct coupling of alcohols with a variety of ethers and a
thioether. The practicality of the protocol is further illus-
trated by late-stage functionalization of a structurally com-
plex molecule.

Table 1  Optimization of Reaction Conditionsa

Entry [Fe] (%) Oxidant Additive Yield of 3aa (%)b

 1 FeCl2 DTBP PMHS 78

 2 FeCl2 DTBP – 30

 3 – DTBP PMHS  0

 4 FeCl3 DTBP PMHS 77

 5 FeBr2 DTBP PMHS 85

 6 Fe(acac)2 DTBP PMHS 25

 7 Fe(acac)3 DTBP PMHS 25

 8 Fe(OAc)2 DTBP PMHS trace

 9 FeIIPc DTBP PMHS trace

10 FeBr2 TBHP PMHS 70

11 FeBr2 K2S2O8 PMHS 20

12 FeBr2 BPO PMHS 54

13 FeBr2 O2 (1 atm) PMHS 20

14 FeBr2 DTBP (EtO)3SiH 25

15 FeBr2 DTBP Et3SiH 79

16 FeBr2 DTBP PhSiH3 80
a Reaction conditions (unless otherwise stated): 1a (0.25 mmol), [Fe] (10 
mol%), [Si] (3 equiv), oxidant (2 equiv), THF (2 mL), 80 °C, and 3 h. FeIIPc: 
Iron(II) phthalocyanine; BPO: Dibenzoyl peroxide.
b Isolated yield.
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Encouraged by our recent studies on iron-catalyzed oxi-
dations14,15 for which the performance of the catalytic sys-
tems based on PMHS (polymethylhydrosiloxane) additive
was highly desirable, we initiated our investigation by ex-
amining FeCl2-catalyzed direct cross-coupling of cinnamyl
alcohol (1a) and THF with DTBP as an oxidant and poly-
methylhydrosiloxane (PMHS)16 as an additive (Table 1).

To our delight, the desired product 3aa could be ob-
tained in 78% yield (Table 1, entry 1), whereas poor results
were observed in the absence of PMHS or FeCl2 (entries 2–
3). Further optimization showed that the inclusion of FeBr2
resulted in a higher yield (85%) and FeCl3 led to a slightly
lower yield (77%), while other tested iron compounds, such
as Fe(acac)2 (25%), Fe(acac)3 (25%), Fe(OAc)2 (0), and FeIIPc
(0) had a remarkable negative influence on the reaction
(entries 4–9). Reactions with other oxidants did not give
any improvement (entries 10–13). Finally, replacing PMHS
with (EtO)3SiH, Et3SiH, or PhSiH3 as the additive gave 3aa in
25, 79, and 80% yields, respectively (entries 14–16).

Using the optimized reaction conditions (Table 1, entry
5), we then explored the substrate scope of this cross-dehy-
drogenative coupling reaction. As shown in Scheme 1, a va-
riety of alcohols reacted smoothly with various ethers un-
der the reaction conditions to provide the desired mixed ac-
etals in moderate to excellent yields. Notably, (Z)-hept-3-
en-1-ol (1f) did not isomerize into the corresponding ther-
modynamically more stable E-olefin and afforded the de-
sired product with Z-configuration in 85% yield (3fa). Other
functional groups such as methoxy, fluoro, and nitro were
also well tolerated. Remarkably, catalytic oxidative cou-
plings of alcohols containing N-heteroaryl moieties with
THF to give mixed acetals worked well under iron-based ca-
talysis; this is a transformation that remains a challenge
owing to the oxidative lability of the fragments and their li-
gating ability leading to catalyst deactivation and has not
been achieved by previous studies. Specifically, 2-(4-meth-
ylthiazol-5-yl)ethan-1-ol (3g) and 2-(pyridin-2-yl)ethan-1-
ol (3h) were reactive in the reaction, thus delivering the ex-
pected products in 60 and 50% yields, respectively. Further-

Scheme 1  Iron-catalyzed direct cross-coupling of ethers with alcohols. Reaction conditions (unless otherwise stated): 1 (0.25 mmol), FeBr2 
(10 mmol%), PMHS (3 equiv), DTBP (2 equiv), solvent (2 mL), 80 °C; a 120 °C; b 100 °C. Isolated yields are given.
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more, comparable outcomes could be achieved with use of
1,4-dioxane as the substrate by increasing the reaction tem-
perature to 100–120 °C. After testing the transformation
with symmetric ethers, THF and 1,4-dioxane, we then tried
to extend the substrate scope of the reaction to asymmetric
ethers as substrates, to investigate the reactivity and regi-
oselectivity of this system.

Acyclic methyl tert-butyl ether (MTBE), a typical unacti-
vated substrate, which has rarely been demonstrated under
CDC reactions, proceeded well via primary sp3 C–H activa-
tion under the optimized reaction conditions (3cc–dc). 1,3-
Dioxolane was then used in this transformation and under-
went coupling with cinnamyl alcohol (1a) to give 3ad in
65% yield with high regioselectivity even in the presence of
a more acidic sp3 C–H. The abnormal regioselectivity of the
reaction on the substrate 1,3-dioxolane could be ascribed to
a bridgehead radical being extremely difficult to form.17

Notably, the methodology was also suitable for tetrahydro-
thiophene (3be; 70%).

To demonstrate the synthetic utility of the methodolo-
gy, the structurally complex natural product cholesterol
was subjected to the reaction under the optimized condi-
tions. As shown in Equation 1, the reaction proceeded
smoothly, giving the desired product 3ia in 80% yield.

To get an insight into the mechanism, control experi-
ments were carried out. A radical trapping experiment was
conducted by using TEMPO as a radical scavenger (Equation
2). No desired product was observed in the reaction of 1e
with THF. This result suggests that the reaction probably in-
cludes a radical process. In addition, an intermolecular
competing kinetic isotope effect (KIE) experiment was per-
formed (Equation 3). As a result, a significant KIE was ob-

served with kH/kD = 5.26 (the KIE was determined by 1H
NMR spectroscopy by analyzing the ratio of 3ea and 3ea-D),
indicating that C(sp3)–H bond cleavage may be one of the
rate-determining steps of this transformation.

On the basis of the above results and previous stud-
ies,17b,18–21 a plausible catalytic mechanism is presented in
Scheme 2. Initially, the iron catalyst (FeCl2) reacts with the
oxidant DTBP to form the tert-butoxyl radical and tBuOFeIII-
Cl2 (I).18 Then, the tert-butoxyl radical abstracts a hydrogen
atom from the ether to produce carbon radical intermediate
II,17b,18–20 while the tBuOFeIIICl2 is attacked by the alcohol
R′′OH to give R′′OFeIIICl2 species III.18–20 Finally, the carbon
radical intermediate II is trapped by the R′′OFeIIICl2 species
III to afford the product and regenerate the iron catalyst for
the next catalytic cycle.

Scheme 2  Proposed mechanism for the transformation

In summary, we have developed a mild, efficient, FeCl2-
catalyzed direct O-alkylation of alcohols via -C(sp3)–H ac-
tivation of ethers and a thioether for the synthesis of mixed
acetals.22 This transformation is outstanding for its inherent
advantages, including nontoxic iron catalysis, high atom
economy, cheap and widely available substrates without
pre-established functional groups, and a broad substrate
scope with excellent aromatic N-heterocyclic fragment
compatibility. The synthetic utility of this transformation
was demonstrated by the late-stage O-alkylation of a natu-
ral complex molecule.
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