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Silicon Effects. V.
B-Silicon Effect in the Solvolysis of 2-Phenylethyl Compounds”
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The rates of the solvolysis of 2-aryl-2-(trimethylsilyl)ethyl compounds, ArCH(SiMe3)CH:X (4: X=Cl and
OCOCF3; Ar=CgHs and p-MeOCgH,), have been measured in various solvents at 25°C. The solvolysis of the
chloride, 4 (X=Cl; Ar=CgHs), exhibited an m value of 0.90 in aqueous dioxane consistent with rate-determining
ionization; it gave (2-ethoxy-2-phenylethyl) trimethylsilane together with styrene in ethanol indicating a 1, 2-
SiMes migration during the solvolysis. The p-MeO-substitution effect, k2 ~M®C /! was measured with the
trifluoroacetates to be 2.1, in contrast to a factor of 269 observed in solvolysis of 1-aryl-2-(trimethylsilyl)ethyl
compounds (1), indicating that distinct intermediates are involved in ionization of the two regioisomeric systems,

1 and 4.

The effect of organosilicon groups in carbocation-
forming processes has received wide attention from the-
oretical and mechanistic interests in recent years.?—%
Theoretical calculations reported by Jorgensen and co-
workers® indicated that the SiHs-bridged form for the
primary cation, SiHsCH,CH, ™, is slightly more stable
than an open, bisected form by 2.4 kcal mol=! (1 kcal=
4.18 kJ), while the bridged form is ca. 4 kcalmol™?
higher in energy than the open form for the secondary
cation, SiH;CH,CtHCHs;.

We previously reported the kinetic (3-silicon effect
in solvolysis of the 1-aryl-2-(trimethylsilyl)ethyl sys-
tem 1.} In 30% aqueous dioxane at 25°C, 1-phen-
yl-2-(trimethylsilyl)ethyl trifluoroacetate (1a-OTFA)
solvolyzed 2.99x10% and 1.05x10° times more rapidly
than did corresponding 3, 3-dimethyl-1-phenylbutyl and
1-phenylethyl compounds, respectively, indicating an
acceleration of ca. 10° by a (-SiMes group relative to
a (-hydrogen or a 3-t-Bu group in ionization of the 1-
phenylethyl system. The results of the various mecha-
nistic criteria including solvent effect, substituent effect,
deuterium kinetic isotope effect, and activation energies
for the system 1 were consistent with the simple ion-
ization mechanism (k) via the open benzylic cation 2
rather than the o-participation mechanism (k) via the
bridged siliconium ion intermediate 3. Further evidence
to confirm the mechanism of ionization of 1 may be
provided from the comparison with solvolysis of the re-
gioisomeric system, i. e., 2-phenyl-2-(trimethylsilyl)eth-
yl compounds (4), which may undergo either ka ioniza-
tion forming 3, or k. ionization leading to the primary
cation 5 (Chart 1).

This paper describes both kinetic and product studies
concerning the solvolysis of 2-phenyl- and 2-(p-methoxy-
phenyl)- 2- (trimethylsilyl)ethyl trifluoroacetates (4a-
OTFA and 4b-OTFA) and 2-phenyl-2-(trimethylsi-
lyl)ethyl chloride (4a-Cl), and discusses the (-silicon
effect in the solvolysis of 1-phenyl- and 2-phenylethyl
compounds.
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Results and Discussion

The compounds, 4a-Cl, 4a-OTFA, and 4b-OTFA,
were prepared by the treatment of the correspond-
ing alcohols, 6, with thionyl chloride or trifluoroace-
tic anhydride;>” the alcohols were obtained by the
reaction of 2-(trimethylsilyl)oxirane with lithium di-
phenylcuprate or lithium bis(p-methoxyphenyl)cuprate
(Chart 2).

The rates of solvolysis were measured spectropho-
tometrically at 25.0°C by the method described
previously.'? Table 1 summarizes the results of the
solvolysis for 4a-Cl, 4a-OTFA, and 4b-OTFA in var-
ious solvents. Table 1 includes the rates of solvolysis for
1-phenyl-2-(trimethylsilyl)ethyl acetate (la-OAc) and
a 2-p-methoxyphenyl derivative, 1b-OAc, for compar-
ison.

We previously showed that the solvolytic reactivities
of 1a-OTFA and p-Me, m-Cl, p-Br, 3, 4-dichloro, and 3,
5-dichloro derivatives were correlated with o, yielding
a p* value of —3.07 (correlation coefficient R=0.997).1®
The substituent effect of a p-methoxyl group observed
for the acetates, i.e., kP~MO0/kH =269 for 1-OAc, is
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Table 1. Rates of Solvolysis for 4-Cl, 4-OTFA, and ArCHCHCl gy ArCH=C ArCHCH,SiMe;
1-OAc at 25.040.05°C SiMes ” =CHy + Om
Substrate Solvent *) 10° k/s™1 da-Cl Ar=Celly) 7; B4% 8 16%
4a-Cl 97T (1.80£0.05)x 102 ® Chart 3.
60A (2.9440.03)x107* ®
50A (8.3740.09)x10~* ®) s @ EOH s
40A (2.24:£0.007)x 103 Me;Si Eﬂz — X Me;SiCHCH,
60D (1.6540.002)x 10~* 1 Me;Si Et
50D (6.3440.002) x10~* 9 10
40D (2.12+0.001)x 102 Chart 4.
8OE (3.1840.0009)x 10™*
60E (1.0240.0004) x10~3
50E (2.0240.0008) x10~3 ot 1
40E (4.5440.14)x1073 ® —
4a-OTFA 97T (5.7340.003) x10™*
30D (1.35£0.01)x 1072 »
4b-OTFA 97T (1.21:|:0.0005)><10_3
30D (2.88+0.06)x 1073 »
1a-OAc 40D (5.8440.007)x10~5 1r 1
1b-OAc 40D (1.5740.01)x 102 -
a) 97T: 97/3 (w/w) trifluoroethanol/water; 60A—40A: %0 t
60/40—40/60 (v/v) acetone/water; 60D—40D: 60/40— —
40/60 (v/v) dioxane/water; and 80E—40E: 80/20—40/60
(v/v) ethanol/water mixtures. b) Average of duplicate of ]
determinations.
in good agreement with a predicted value of 248 calcu-
lated from the above correlation. The Yukawa-Tsuno
treatment (Eq. 1)V for the eight m- and p-substituents
including the p-MeO group gave a good linear correla- 6 1' ; 3
tion expressed as Eq. 2 (R=0.998), yielding a p value Y
of —3.05 and a resonance parameter r value of 0.98, Fig. 1. Plot of log k vs. Y for solvolysis of 2-phenyl-2-

indicating essentially the same resonance demand for
1-phenyl-2-(trimethylsilyl)ethyl cation (2) as that for
the reference standard, 1-methyl-1-phenylethyl cation
(r=1.0).

log K% /k? = p(c° + rAGT) (1)

log k¥ /K" = —3.05(c° + 0.98A5% (2)

The products in the solvolysis of the chloride, 4a-Cl,
were determined in buffered ethanol at 50°C. The GLC
and NMR analyses of a crude mixture obtained after
solvolysis indicated the formation of styrene 7 and (2-
ethoxy-2-phenylethyl)trimethylsilane (8) at a ratio of
84:16; the latter compound arose from a 1, 2-silyl re-
arrangement. The result is interestingly compared with
the previous finding that the buffered methanolysis of
1-OTFA (Ar=m-CICsHy4) gave m-chlorostyrene and [2-
methoxy-2-(m-chlorophenyl)ethyl] trimethylsilane at a
ratio of 78:22.1® The striking resemblance in the prod-
ucts in the two solvolyses suggests a common product-
forming step for the two regioisomeric systems, 1 and
4. The 2-phenylethyl compound, 4a-Cl, may undergo
phenyl-assisted solvolysis via a phenonium ion, 9; how-
ever, the formation of any phenyl-rearranged products,
such as 10, could not be detected. No direct substitu-
tion product was formed, either (Charts 3 and 4).

Figure 1 illustrates the dependence of the logarith-

(trimethylsilyl)ethyl chloride (4a-Cl) at 25°C in: aq
acetone, O; aq dioxane, A; aq ethanol, [J; and aq 2,
2, 2-trifluoroethanol, A.

mic rates for 4a-Cl on solvent ionizing power Y.'? Ap-
parently, 4a-Cl shows not a single linear response to
Y but a dispersion for different sets of binary solvent
mixtures; m values for aqueous dioxane, aqueous ace-
tone, and aqueous ethanol were 0.90 (R=0.999), 0.74
(R=0.999), and 0.52 (R=0.995), respectively. The m
value of 0.9 for the aqueous dioxane is consistent with
ionization in a rate-determining step. A plot against
Yo'® in place of Y showed a similar dispersion pat-
tern.

The dispersion does not result from inclusion of nucle-
ophilic solvent assistance (ks, 11). First, direct substi-
tution did not occur even in a strongly nucleophilic sol-
vent, ethanol. Second, 97% aqueous 2, 2, 2-trifluoroeth-
anol (TFE), which is much less nucleophilic than aque-
ous ethanol, deviates not below but substantially above
the aqueous ethanol line, clearly against nucleophilic
solvent assistance either at C; or at the silicon atom
(12) in the rate-determining step. Although the disper-
sion in the solvent effect in the 2-arylethyl systems is
often attributable to aryl participation,4*® this is not
the case, either. The present system does not involve
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Table 2. Comparison of Reactivities for 1a-OTFA
and 4a-OTFA
Substrate Solvent k/s7t Ere1
1a-OTFA 30D 36.8 ®) 2.7x10%
4a-OTFA 30D 1.35x107% 1.0

a) Reported previously (Ref. 10).
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3
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13 14
Chart 6.

aryl participation in view of a very small p-MeO-substi-
tution effect, i. e., k(4b—OTFA)/k(4a—OTFA)=2.1,
as well as the absence of the 1, 2-phenyl rearrangement.
Thus, the dispersed solvent effect for 4a-Cl should be
interpreted as its intrinsic response to solvent ioniz-
ing power. Marked deviation of aqueous TFE above a
correlation line for aqueous ethanol has been observed
in k. solvolyses of a-(trialkylsilyl)benzyl tosylates (=p-
toluenesulfonates) and a-(pentamethyldisilanyl)benzyl
halides (Chart 5).%

Table 2 compares the reactivity of 4a- OTFA
with that of its regioisomer, 1a-OTFA; the former
solvolyzed 2.7x10* times less rapidly than did the latter
in 30% aqueous dioxane at 25°C. Since the two regio
isomers probably have similar ground state energies, the
result suggests that the transition state for the primary
system 4 is about 6 kcalmol™! higher in energy than
that for the benzylic system 1.

Table 3 compares the rate for 2-phenyl-2-(trimeth-
ylsilyl)ethyl tosylate (4a-OTs) with the phenyl-as-
sisted (ka) and solvent-assisted (k) rates of solvoly-
sis for 2-phenylpropyl tosylate (13) in 97% TFE re-
ported by Raber et al.'® The reactivity of the tosyl-
ate, 4a-OTs, was estimated from the rate for the chlo-
ride, k=1.8x1072 s7!, and a tosylate/chloride rate ra-
tio of 3.7x10%.1® As Table 3 shows, 4a-OTs solvolyzes
1.3x10° times faster than does 13 via aryl partici-
pation, indicating that a (3-SiMez group is about 12
kcalmol~! more effective in ionizing the ethyl system
than is a B-phenyl group. Since the rate of unassisted
ionization (k.) must be significantly lower than the ks in
the primary system 13, a k(4a-OTs)/ks(13) ratio of ca.
10! provides a minimum estimate for the kinetic 3-sili-
con effect of a SiMes group relative to Me on ionization
of the 2-phenylethyl system (Chart 6).

Table 3 includes the [(-silicon effect in the 1-phen-
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Table 3. S-Silicon Effects in Solvolysis of the 2-Phen-
ylethyl- and 1-Phenylethyl Systems

Substrate Solventk/s™* 2 krel

4a-C1 97T 1.80x107?

4a-OTs 97T 6.7x10° ®  9.9x10*° 1.3x10°

13 (k4) 97T 5.2x1077 © 1.0
(ks) 97T 6.8x107°% 1.0

1a-OTFA 30D 36.8 ¥ 2.99x10° 1.05x10°

PhCH(OTFA)CHs 30D 3.52x107* ¥ 1.0

PhCHCH,C(CHs)s 30D 1.24x1074 9 1.0
OTFA

a) At 25°C. b) Estimated from the rate for the chloride
and a tosylate/chloride rate ratio of 3.7x10% (Ref. 16).
¢) Data taken from Ref. 15; the rates, ka and ks, were
calculated from the observed rate at 25°C and a ka /ks
ratio of 76 at 125°C. d) Reported previously (Ref. 10).

Table 4. Substitution Effect of p-Methoxyl Group

kp-MeO/kH a)

Solvent 4-OTFA 1-OTFA
97T 211
30D 2.13
40D 269
a) At 25°C.

ylethyl system for comparison. Accelerations by a (-
SiMes group relative to a (-hydrogen and a (-tBu
group were previously quantified to be 1.05x10% and
2.99x 105, respectively;'? the result suggests the effect
of the 8-SiMes-group relative to methyl to be a factor of
ca. 10%. Thus, the combined results indicate that the 3-
silicon effect on ionization of the 2-phenylethyl system
is more than six-orders of magnitude greater than that
of the 1-phenylethyl system. This is attributable to a
much greater electronic demand of the primary cationic
center involved in the former system than that of the
benzylic cationic center involved in the latter system.
Like kinetic a-methyl and a-phenyl substitution effects
in k. solvolysis,'” the 3-silicon effect must increase with
increasing the electronic demands of the relevant carbo-
cationic centers.>'®

As Table 4 shows, the substituent effect of a p-meth-
oxyl group, k»~MeO /kH in solvolysis of 4 is quite differ-
ent from that in solvolysis of 1, i. e., a k»~MeO /kH ratio
of 269 for 1-OAc, but only 2.1 for 4-OTFA. The strik-
ing difference in the substituent effect clearly indicates
that at least two distinct intermediates are involved in
ionization of the regioisomeric systems, 1 and 4. Pro-
nounced acceleration by the p-methoxyl group in the
former system is consistent with the previous conclu-
sion that solvolysis occurs by the k. mechanism via the
open benzylic cation 2.1%

The small k?~MeO/FH ratio of 2.1 in solvolysis of
4-OTFA eliminates aryl-assisted ionization, since it
should exhibit more pronounced k7~MeO/kH ratios, i.
e., a factor of ca. 102.1¥ The inhibition of aryl partici-
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pation in the 2-arylethyl system, 4, undoubtedly results
from the presence of a $-SiMes group, which is supe-
rior in its cation-stabilizing ability to a (3-aryl group,
as indicated by the k(4a-OTs)/ka (13) ratio of 10°
(Table 3).

It is instructive to note that the p-MeO-substitu-
tion effect in the system 4 is essentially the same as
that observed in k. solvolysis of 2-aryl-1, 1-dimethyl-
ethyl chlorides (14) reported by Brown and Kim, i. e.,
kP~MeO /kH—1 51 in 80% aqueous ethanol at 50°C.!%:20)
This means that the positive charge on the benzylic car-
bon is marginal in the transition state of ionization of
4-OTFA. The results are consistent either with o (CSi)-
assisted ionization (ka) forming the SiMes-bridged
species, 3, or with unassisted (k) ionization forming the
open primary cation 5. In the latter cation, the C*~C-
Si bond angle must be significantly narrow compared to
a normal angle (109°) as the result of strong o(CSi)-m
interaction.® In view of low stabilities of primary alkyl
cations, o(CSi)-assisted ionization seems more likely to
occur; however, the energy difference between the two
species, 3 and 5, may be quite small. Recent theoretical
calculations indicate that the SiHs-bridged form for the
primary cation, SiHsCH,CH,*, is slightly more stable
than the open, bisected form by only 2.4 kcalmol™?
(even in the gas-phase), and that for the secondary
cation, SiH3CtHCH3, the open form is lower in energy
than the bridged form.®

Whichever mechanism is really operative in solvolysis
of the system, 4, it can be concluded that ionization of
the two regioisomeric systems, 1 and 4, leads to the dis-
tinct intermediates in their rate-determining steps, as
illustrated in Scheme 1; the structure of the transition
state for 1 resembles the open benzylic cation 2, which
is estimated on the basis of the difference in the reac-
tivities between 1 and 4 to be about 6 kcal mol~! lower
in energy than the intermediate formed from 4, either
3 or 5. The striking resemblance in the products in the
solvolyses of the two regioisomeric systems suggests a
common product-forming step from 2.
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Experimental

Proton NMR were recorded in CCly at 60 MHz (Hitachi
R-60) and referenced to tetramethylsilane. IR spectra were
recorded on a Hitachi R-215 spectrophotometer. Absolute
ethanol was distilled twice over sufficient amounts of mag-
nesium ethoxide. Acetone was refluxed with potassium per-
manganate and distilled; the distillate was dried over potas-
sium carbonate and fractionated. Dioxane was refluxed for 3
d with sodium hydroxide and distilled; the distillate was re-
fluxed for 3 d with metallic sodium, and fractionated. Com-
mercial 2,2,2-trifluoroethanol (Kishida Chemicals) was dried
over Molecular Sieves 4A for one week, and distilled over
sodium carbonate.

1- Phenyl- 2- (trimethylsilyl)ethyl Acetate (la-
OAc). Into a stirred solution of 1-phenyl-2-(trimeth-
ylsilyl)ethanol'® (948 mg) and pyridine (655 mg) in ether
(10 cm®) was added an ethereal solution of acetyl chloride
(652 mg) over a period of 10 min and the mixture was stirred
at ambient temperature for 3 h. A crude oil obtained after
a usual workup was purified by column chromatography on
silica gel to give 921 mg (82% yield) of the acetate, 1a-OAc:
IR (neat) 1740, 1250, 1220, 1050, and 840 cm™!; 'HNMR
§=-0.10 (9H, s), 1.17—1.34 (2H, m), 1.94 (3H, s), 5.77 (1H,
t, J=7.8 Hz), and 7.25 (5H, almost s). Found: C, 66.10; H,
8.35%. Calcd for C13H20028Si: C, 66.05; H, 8.53%.

1- (p-Methoxyphenyl)-2- (trimethylsilyl)ethyl Ac-
etate (1b-OAc). Into a solution of (trimethylsilyl)-
methyllithium, prepared from (trimethylsilyl)methyl chlo-
ride (6.10 g) and lithium (701 mg) in ether (20 cm®) at
—50°C, was added p-methoxybenzaldehyde (6.45 g) in ether
(10 cm®) over a period of 30 min at —50°C, and the mix-
ture was stirred for 1.5 h at that temperature. A solution of
acetyl chloride (3.69 g) in ether (10 cm®) was added and the
mixture was allowed to warm to room temperature. A crude
oil obtained after a usual workup was purified by a bulb-to-
bulb distillation (120—130°C at 67 Pa) to give the acetate,
1b-OAc (860 mg): 'HNMR, 6=-0.11 (9H, s), 1.16—1.31
(2H, m), 1.90 (3H, s), 2.52 (3H, s), 5.72 (1H, t, J=7.8 Hz),
and 6.97 (4H, aromatic). Found: C, 63.35; H, 8.21%. Calcd
for Cl4H22038i: C, 63.12; H, 8.33%.

2-Phenyl-2-(trimethylsilyl)ethyl Chloride (4a-Cl)
and Trifluoroacetate (4a-OTFA). Into a stirred so-
lution of lithium diphenylcuprate prepared from phenyl-
lithium (0.090 mol) and copper(I) iodide (8.19 g) in ether
(200 cm®) was added dropwise 2- (trimethylsilyl)oxirane
(2.99 g) at —40°C under argon. The mixture was stirred for
2 h at —40°C and overnight at —15°C. A crude oil obtained
after a usual workup was purified by column chromatogra-
phy on silica gel to give 2-phenyl-2-(trimethylsilyl)ethanol
(6a, 5.19 g): Mp 65—65.9°C; IR (Nujol) 3200, 1250, 1040,
840, and 690 cm™'; "HNMR, 6§=-0.06 (9H, s), 2.27 (1H, dd,
J=9.6 and 5.4 Hz), 3.68—4.13 (2H, m), and 6.9—7.46 (5H,
m). Found: C, 67.75; H, 9.18%. Calcd for C11H1308i: C,
67.99; H, 9.34%. The alcohol was converted into the chloride
4a-Cl and the trifluoroacetate 4a-OTFA by the methods
described in the literature.5"

4a-Cl: 'HNMR §=-0.02 (9H, s), 2.41 (1H, dd, J=9.0
and 5.4 Hz), 3.96—4.40 (2H, m), and 6.85—7.44 (5H, m).
Found: C, 62.15; H, 8.09%. Calcd for C;;H17C1Si: C, 62.09;
H, 8.05%.

4a-OTFA: IR (neat) 1790, 1360, 1250, 1220, 1150, 840,
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and 700 cm~}; 'THNMR 6§=0.03 (9H, s), 2.59 (1H, dd, J=
10.2 and 5.4 Hz), 4.56—5.05 (2H, m), and 6.90—7.46 (5H,
m). Found: C, 53.83; H, 5.98%. Calcd for Ci13H17F30,8Si:
C, 53.78; H, 5.90%.

2-(p-Methoxyphenyl)-2- (trimethylsilyl)ethyl Tri-
fluoroacetate (4b-OTFA).  The alcohol, 2-(p-meth-
oxyphenyl)-2- (trimethylsilyl)ethanol (6b) was prepared in
a similar procedure to that described for the preparation
of 6a using lithium bis(p-methoxyphenyl)cuprate in 77%
yield: Mp 52.8—53.9 °C; IR (Nujol) 3350, 1250, 1200, and
840 cm~!; 'THNMR 6=0.0 (9H, s), 2.28 (1H, dd, J=9.0
and 5.4 Hz), 3.78 (3H, s), 3.8—4.0 (2H, m), and 6.65—
7.12 (4H, aromatic). Found: C, 64.18; H, 8.90%. Calcd for
C12H16028Si: C, 64.24; H, 8.98%. The alcohol was converted
into the ester 4b-OTFA by the method described in the
literature:>® 'HNMR, §=0.02 (9H, s), 2.50 (1H, dd, J=9.6
and 6.0 Hz), 3.73 (3H, s), 4.52—4.98 (2H, m), and 6.64—
6.99 (4H, aromatic). Found. C; 52.75; H, 6.21%. Calcd for
C14H19F3038i: C, 52.49; H, 5.98%.

Kinetics. Rates were determined UV spectrophotomet-
rically using (4—8)x10~° moldm ™2 solutions for the sub-
strates by the same method described previously.*® All the
solvolysis reactions reported followed excellent first-order ki-
netics; the rates listed in Table 1 were normally determined
from the data points (>100) measured during the first three
half-lives (R>0.99998).

Ethanolysis of 4a-Cl. Compound 4a-Cl1 (0.100 g)
was solvolyzed in ethanol (10 cm®) in the presence of 2,6-
lutidine (53 mg, 1.05 equiv) at 50°C for 33 h. A crude oil
(83 mg) obtained after a usual workup was a mixture of
two compounds in a ration of 84.1:15.9. Each compound
was isolated by GLC. The major compound was identified
as styrene, and the minor one, as (2-ethoxy-2-phenylethyl)-
trimethylsilane (8): IR (neat) 1250, 1080, and 850 cm™*;
'HNMR 6=-0.03 (9H, s), 0.96—1.17 (2H, m), 1.12 (3H, t,
J=7.2 Hz), 3.22 (2H, q, J=7.2 Hz), 4.24 (1H, dd, J=8.4
and 6.6 Hz), and 7.20 (5H, almost s). Found: C, 70.29; H,
10.03%. Calcd for C13H2208i: C, 70.21; H, 9.97%.
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