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A chiral phosphoric acid-catalyzed enantioselective synthesis of fluorinated 5,6-dihydroindolo[1,2-

c]quinazolines has been developed by condensation/amine addition cascade from 2-(1H-indolyl)anilines and 

fluorinated ketones, giving the fluorinated aminals with quaternary stereogenic centers with excellent yields 

and up to 97% ee. A series of the fluorinated aromatic, aliphatic ketones and ethyl trifluoropyruvate are 

suitable.

Chiral aminal moieties are common structural unit in myriad natural products, synthetic pharmaceutical 

molecules and chiral catalysts.1 Among them, the optically active 5,6-dihydroindolo[1,2-c]quinazolines 

could be also found in natural products and pharmaceutical molecules.2 For instance, (-)-goniomitine is a 

natural occurring alkaloid,2a and compound A is an original semi-synthetic cytotoxic bisindole alkaloid2b 

(Figure 1).
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Figure 1. The selected bioactive 5,6-dihydroindolo[1,2-c]quinazolines .

Owing to the importance of chiral aminals, continuous efforts have been devoted to synthesize these 

compounds. In 2003, Ramsden’s group reported the first enantioselective synthesis of the chiral aminal by 

asymmetric hydrogenation of dihydropyrrolobenzothiadiazine dioxide using a diphosphine ruthenium 

diamine catalyst with 87% ee.3 Since then, some efficient methods have been successfully developed for 

synthesis of chiral aminals. Enantioselective amidations of imines catalyzed by VAPOL-derived phosphoric 

acid were developed by Antilla’s group.4 Asymmetric cyclization of aldehydes or aldimines with 2-

aminobenzamides, 2-amino-benzenesulfona-mides, N-(2,6-diisopropylbenzyl)ethane-1,2-diamine and 2-(1H-

pyrrol-2-yl)aniline could be catalyzed by Brønsted acids,5 Lewis acids6 and organocatalysts,7 respectively. 

Diastereo- and enantioselective [3+2],8 [3+3],9 and [4+2]10 cycloadditions were also established. Antilla’s, 

You’s and Ma’s groups demonstrated asymmetric cascade dearomatization procedures for formation of 

pyrroloindolines.11 Chiral phosphoric acid catalyzed asymmetric tandem 1,5-hydride transfer/ring closing to 

give cyclic aminals was disclosed by Gong’s group.12 Li and co-workers described a novel approach to 

aminals via palladium-catalyzed C−N coupling with chiral bisphosphine monooxides.13 Enantioselective N–

H functionalizations of indoles catalyzed by chiral phosphoric acids or dinuclear zinc-ProPhenol were 

realized.14

Compared to chiral aminals containing tertiary stereocenters, asymmetric synthesis of chiral aminals 

bearing quaternary stereocenters have been relatively less studied owing to low activity of ketones and 

ketimines. Consequently, the reactions of highly reactive cyclic isatins were investigated by List,5a Shi9,15 

and Wang16 to give spirocyclic aminals using chiral phosphoric acids as catalysts. Another approach to chiral 

aminals containing quaternary stereocenters is enantioselective hydrazination of -aminocarbonyl 

compounds by organocatalysis.17 Recently, Zhong and co-workers demonstrated a chiral SPINOL-derived 

phosphoric acid-catalyzed asymmetric N-alkylation reaction of indoles and 3-aryl 3-hydroxyisoin-dolinones 

with excellent enantioselectivities.14d 

The chemistry of organofluorine compounds has been of great importance, since the incorporation of 

fluorine into organic molecules can modify their physical, chemical, and biological properties.18 However, 
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S3

asymmetric synthesis of fluorinated aminals has been rarely explored. Wang group developed Cu(I)-

catalyzed 1,3-dipolar cycloaddition of azomethine ylides with fluorinated imines for synthesis of fluorinated 

imidazolidines (Scheme 1a).8b Toste and co-workers demonstrated enantioselective synthesis of 

fluoro−dihydroquinazolones by fluorination-initiated asymmetric cyclization (Scheme 1b).19 Cation-directed 

highly enantioselective N-functionalization of pyrroles was developed by Smith group, which was the only 

enantioselective synthesis of chiral aminals with quaternary stereogenic centers from linear aliphatic ketones 

(Scheme 1c).7a The method acquired pre-preparation of ketimines by condensation of 2-(1H-pyrrol-2-

yl)aniline and excess trifluoromethyl ketones with moderate yields. Due to relatively lower reactivity of 

linear aromatic ketones, to the best of our knowledge, the use of linear aromatic ketones for enantioselective 

synthesis of aminals has not been documented. Herein, we reported a chiral phosphoric acid-catalyzed direct 

enantioselective synthesis of fluorinated 5,6-dihydroindolo[1,2-c]quinazolines with quaternary stereocenters 

from linear fluorinated ketones and 2-(1H-indolyl)anilines with excellent yields and up to 97% ee (Scheme 

1d).

Scheme 1. Synthesis of chiral fluorinated aminals
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Initially, we chose 5 mol% of chiral phosphoric acid (R)-4a as catalyst to test the reaction of 2-(1H-

indolyl)aniline 1a and simple trifluoromethyl phenyl ketone 2a in toluene at room temperature, but no 

reaction was observed. To our delight, the desired product 3aa could be obtained in 61% yield and 92% ee 

when the reaction was performed at 80 oC for 48 h (Table 1, entry 1). Subsequently, different solvents 

including 1,2-dichloroethane, acetonitrile and 1,4-dioxane were examined (Table 1, entries 2-4). The results 

revealed that solvents effect played a crucial role; toluene is the best in term of yield and enantioselectivity. 
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Further screening of aromatic solvents, toluene was more suitable than the others (Table 1, entries 5-7). 

Subsequently, some commercially available chiral phosphoric acids were evaluated using toluene as solvent 

(Table 1, entries 8-14). It should be noteworthy that steric hindrance of the substituted groups at the 3,3′-

positions of chiral phosphoric acids displayed a profound influence on enantioselectivity and reactivity. The 

sterically congested catalysts furnished the reaction in higher yields (Table 1, entries 10-13 vs 8-9). However, 

catalyst (R)-4h bearing a triphenylsilyl group at 3,3’-positions of the binaphthyl unit was not effective (Table 

1, entry 14). In the presence of 50 mg 5 Å MS as dehydrating agent, the reaction proceeded smoothly, giving 

3aa in 71% yield without influence of enantisoselectivity (Table 1, entry 15). Increasing the ratio of 2a to 

1.5 equiv., the yield can improved to 95% with slightly lower ee (Table 1, entry 16). When reaction 

temperature was decreased to 70 oC, 94% ee could be obtained (Table 1, entry 17) albeit with low reactivity. 

Raising the temperature to 90 oC, the ee value dropped to 85% (Table 1, entry 18). Additionally, the reaction 

concentrations had remarkable influences on reactivity (Table 1, entries 19 and 20). Prolong reaction time to 

72 h using 1.0 mL toluene, 94% yield and 92% ee could be gained (Table 1, entry 21). Finally, the optimized 

reaction condition was established: 5 mol% (R)-4a as catalyst, 1.5 equiv. of 2a to 1a in the presence of 50 

mg 5 Å MS in toluene (0.1 M) for 72 h.

Table 1. Optimization of the reaction conditions a

2a

N
H

+ 5 mol% 4

NH2

Ph CF3

O

3aa
1a

Me

NH
N

Ph
CF3

Me

solvent, 80 oC, 48 h

Ar

Ar

O
O

P
O
OH

(R)-4a Ar = 2,4,6-(i-Pr)3C6H2
(S)-4b Ar = Ph
(S)-4c Ar = Ph [H8]
(S)-4d Ar = 3,5-(CF3)2C6H3 [H8]
(R)-4e Ar = 2,4,6-Me3C6H2 [H8]
(S)-4f Ar = 9-Anthracenyl [H8]
(S)-4g Ar = 9-Phenanthryl [H8]
(R)-4h Ar = SiPh3

Entry CPA Solvent T (oC) Yield (%)b ee (%)c

1 (R)-4a toluene 80 61 92 (R)
2 (R)-4a DCE 80 80 87 (R)
3 (R)-4a MeCN 80 13 89 (R)
4 (R)-4a 1,4-dioxane 80 < 5 -
5 (R)-4a benzene 80 35 93 (R)
6 (R)-4a o-xylene 80 50 92 (R)
7 (R)-4a PhCl 80 79 87 (R)
8 (S)-4b toluene 80 36 15 (S)
9 (S)-4c toluene 80 31 10 (S)
10 (S)-4d toluene 80 70 50 (S)
11 (R)-4e toluene 80 59 40 (R)
12 (S)-4f toluene 80 92 75 (S)
13 (S)-4g toluene 80 91 73 (S)
14 (R)-4h toluene 80 < 5 -
15d (R)-4a toluene 80 71 92 (R)
16e (R)-4a toluene 80 95 90 (R)
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S5

17e (R)-4a toluene 70 81 94 (R)
18e (R)-4a toluene 90 97 85 (R)
19e,f (R)-4a toluene 70 97 90 (R)
20e,g (R)-4a toluene 70 45 94 (R)
21e,,j (R)-4a toluene 70 94 92 (R)

a Conditions: 1a (0.10 mmol) and 2a (0.10 mmol) in toluene (1.0 mL) 
using 5 mol% 4 as catalyst at 80 oC for 48 h. b Determined by 1H NMR. c 

Determined by HPLC. d 50 mg 5 Å MS was used. e 50 mg 5 Å MS and 
2a (0.15 mmol) were used. f 0.5 mL  toluene was used. g 2.0 mL toluene 
was used. j 72 h.

Under the optimal condition, a series of substrates were explored to determine the generality of this 

method, and the results are summarized in Scheme 2. Most of substrates performed well under the standard 

reaction conditions. Aromatic trifluoromethyl ketones bearing electron-withdrawing groups and weak 

electron-donating groups delivered the corresponding products in high yields with excellent 

enantioselectivities (Scheme 2, 3aa-3ad, 3af-3ag). The 4-methoxyl substituted ketone 2e afforded expected 

3ae with moderate 60% yield and 89% ee after prolonged time. In addition, 2-naphthyl trifluoromethyl 

ketone 2h gave 95% ee. Next, the reaction of various 2-(1H-indolyl)anilines and ketone 2a were investigated 

(Scheme 2, 3ba-3ga). No substituent at 3-position of indole, the N-functionalization of 1b was predominant 

in 74% yield with 88% ee and C3-alkylation side-product was isolated (see Experimental Section). 3-

Ethylindole 1c underwent smoothly and gave 3ca in 90% yield and 92% ee (Scheme 2, 3ca). The substituted 

groups at meta-position of aniline moiety increased enantioselectivities (Scheme 2, 3da and 3ea). With an 

electron-withdrawing group, aniline 1d gave product 3da with 28% yield and 96% ee (Scheme 2, 3da). 

When reaction temperature was raised to 90 oC for 120 h, a limited influence of yield and stereoselectivity 

was observed. The best enantioselectivity was given with m-methyl substituted anline 1e (Scheme 2, 3ea). 

The 5-bromo substituted indole 1f gave product with relatively higher ee than 5-methoxyl substituted indole 

1g (Scheme 2, 3fa vs 3ga). The pentafluoroethyl ketone 2i gave poor reactivity (Scheme 2, 3ai), the reason 

is not clear. The difluoromethyl ketone 2j afforded 3aj in quantitative yield but poor 25% ee. Furthermore, 

alphatic trifluoromethyl ketone 2k furnished the reaction with good yield and enantioselectivity (Scheme 2, 

3ak). The absolute configuration of product 3aa was assigned as R based on the X-ray diffraction analysis 

after recrystallization from mixed solvents methanol/ethyl acetate/hexanes to upgrade ee to > 99%.

Scheme 2. Substrate scope a
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a Conditions: 1 (0.20 mmol) and 2 (0.3 mmol) in toluene (2.0 mL) using 5 mol% (R)-4a as catalyst in the presence 

of 100 mg 5 Å MS at 70 oC for 72 h. b 70 oC for 120 h. c 90 oC for 120 h. d 70 oC for 12 h.

Acetophenone was also tested under the above standard condition. To our surprise, the corresponding 

aminal could be isolated with 94% yield but poor enantioselectivity (Scheme 2, 3al). Changing reaction 

conditions could not obviously improve the enantioselectivity. The above experimental results show the 

trifluoromethyl group plays a vital role in enantiocontrol. The experimental results show the trifluoromethyl 

group plays a vital role in enantiocontrol. In recent years, fluorine effect was observed in asymmetric 
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organocatalysis by many groups.20 For example, Lin Group observed a remarkable fluorine effect in chiral 

phosphoric acid-catalyzed asymmetric synthesis of bihydrobenzoxazinones, mechanistic studies through 

combination theory calculations with the experimental suggested the CF3 moiety serving as an attractive 

hydrogen-bond acceptor.20c Based on the previous reports, we speculated the reactivity trends may also owe 

to fluorine effect or possible H···F hydrogen bond between fluorine and N-H of indole or chiral phosphoric 

acid. 

-Diamino acids and derivatives were valuable and unusual substructures with important biological and 

pharmacological properties, such as anticonvulsant activity.21 To the best of our knowledge, catalytic 

enantioselective synthesis of chiral -diamino acids have not been reported. Then, we expanded the reaction 

of ethyl trifluoropyruvate 2m. 2-(1H-indolyl)aniline 1a reacted with 2m to afford the desired 3am with 75% 

yield and 89% ee after lowering temperature to 50 oC for 42 h (Scheme 3, 3am). Other two anilines (1e & 1f) 

were used, moderate yields, 91% and 89% ee were observed (Scheme 3, 3em and 3fm). 

Scheme 3. Substrate scope: ethyl trifluoropyruvate
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The product transformation was conducted (Scheme 4). The -diamino ester 3am could be converted to 

the corresponding -diaminoalcohol 5 with sodium borohydride in methanol without loss of optical purity. 

Scheme 4. Product transformation

3am, 88% ee

NH
N

EtO2C
CF3

Me

NaBH4, MeOH

0 oC to rt

5, 94% yield, 88% ee

NH
N

HOH2C
CF3

Me

In conclusion, we have developed a chiral phosphoric acid-catalyzed condensation/amine addition cascade 

for synthesis of chiral fluorinated aminals with quaternary stereocenters, giving the chiral dihydroindolo[1,2-

c]quinazolines with good yields and up to 97% ee. The substrate scope could be extended to aromatic, 

aliphatic trifluoromethyl ketones and ethyl trifluoropyruvate. Detailed mechanistic studies and further 
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expanding the scope of this chemistry are currently ongoing in our laboratory. 

EXPERIMENTAL SECTION

Commercially All reactions were carried out under an atmosphere of nitrogen using the standard Schlenk 

techniques, unless otherwise noted. Commercially available reagents were used without further purification. 

Solvents were treated prior to use according to the standard methods. 1H NMR, 13C NMR spectra were 

recorded at 400 MHz and 100 MHz with the Brucker spectrometer. 19F was recorded at 376 MHz with 

Brucker spectrometer. Chemical shifts are reported in ppm using tetramethylsilane as internal standard when 

using CDCl3, CD2Cl2 and CD3OD as solvent for 1H NMR spectra. The following abbreviations were used to 

symbolize the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Flash 

column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC 

analysis. Optical rotations were measured by the polarimeter. Enantiomeric excess was determined by HPLC 

analysis using chiral column described below in detail. High-resolution mass spectrometry (HRMS) was 

measured on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry.

Procedures for Synthesis of 2-(1H-Indolyl)anilines 1. 2-(1H-Indolyl)aniline derivatives 1a and 1c-1g 

could be conveniently synthesized from the indoles and 2-nitrobromobenzenes in two steps according to the 

known literature procedures with minor modification.22-23 1b was prepared by Fisher indole synthesis 

according to a reported method.24 Among them, compound 1b is the known compound.24

General Procedure A for Synthesis of 2-(1H-Indolyl)anilines 1a, 1c, 1e and 1g. 2-(2-Nitrophenyl)-1H-

indoles were prepared from indoles and 1-bromo-2-nitrobenzenes in the presence of cesium carbonate under 

reflux with acetonitrile as solvent. The corresponding 2-(1H-indolyl)anilines could be obtained after 

reduction of above nitro-compounds using Pd/C as catalyst under hydrogen gas.

In a dried round bottomed flask was added indoles (0.20 mol), 1-bromo-2-nitrobenzenes (0.10 mol), 

cesium carbonate (0.20 mol, 65.16 g) and anhydrous acetonitrile (500 mL). The resulting suspension was 

stirred for 24 h under inert atmosphere under reflux. The solvent was evaporated under vacuum and water 

was added. The mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic layers were 

washed with water and brine, dried with anhydrous sodium sulfate and concentrated under reduced pressure. 

The crude product was purified by flash column chromatography to give the crude product. 

The above crude product (28.1 mmol) was dissolved in ethanol (250 mL) and dichloromethane (5 mL), 

Pd/C (1.200 g, 10 wt. %) was added, and the mixture was stirred under hydrogen gas (balloon pressure) 

overnight. The mixture was filtered through celite, the solvent was evaporated under the reduced pressure. 
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The residue was purified by column chromatography on silica gel using hexanes and ethyl acetate as eluent 

to give the desired compouds 1.

General Procedure B for Synthesis of 2-(1H-Indolyl)anilines 1d and 1f. 2-(2-Nitrophenyl)-1H-indoles 

could be synthesized from indoles and 1-bromo-2-nitrobenzenes. Reduction of them by employing iron 

powder and concentrated hydrochloric acid gave 2-(1H-indolyl)anilines 1d and 1f.

In a dried round bottomed flask was added indoles (0.20 mol), 1-bromo-2-nitrobenzenes (0.10 mol), 

cesium carbonate (0.20 mol, 65.16 g) and anhydrous acetonitrile (500 mL). The resulting suspension was 

stirred for 24 h under inert atmosphere under reflux. The solvent was evaporated under vacuum and water 

was added. The mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic layers were 

washed with water and brine, dried with anhydrous sodium sulfate and concentrated under reduced pressure. 

The crude product was purified by flash column chromatography to give the crude product. 

To a solution of 2-(2-nitrophenyl)-1H-indoles (5.62 mmol) in ethanol (24 mL) was added iron powder 

(33.72 mmol, 1.888 g) and concentrated hydrogen chloride (6.0 mL) under nitrogen. The mixture was stirred 

under reflux for 4 h. After cooled to room temperature, excess sodium hydroxide solution was added. The 

mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed with water 

and brine, dried over anhydrous sodium sulfate. After concentrated under the reduced pressure, the residue 

was purified by flash column chromatography to afford the pure products 1.

2-(3-Methyl-1H-indol-2-yl)aniline (1a). 5.340 g, 24% yield in 2 steps, yellow solid, m.p. = 105-107 oC, 

new compound, Rf = 0.35 (hexanes/ethyl acetate 10:1); 1H NMR (400 MHz, CDCl3) δ 7.99 (brs, 1H), 7.60 (d, 

J = 7.6 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.26–7.11 (m, 4H), 6.90–6.70 (m, 2H), 3.82 (brs, 2H), 2.28 (s, 3H). 

13C{1H} NMR (100 MHz, CDCl3) δ 145.0, 136.0, 131.8, 131.2, 129.5, 129.4, 122.1, 119.4, 118.8, 118.39, 

118.36, 115.7, 110.7, 109.8, 9.4. HRMS (ESI-TOF) m/z Calculated for C15H15N2 [M+H]+ 223.1230, found 

223.1235.

2-(3-Ethyl-1H-indol-2-yl)aniline (1c). 0.831 g, 18% yield in 2 steps, yellow oil, new compound, Rf = 

0.30 (hexanes/ethyl acetate 10:1); 1H NMR (400 MHz, CD3OD) δ 7.58 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.0 

Hz, 1H), 7.22–7.14 (m, 2H), 7.13–7.07 (m, 1H), 7.06–7.00 (m, 1H), 6.85 (d, J = 7.9 Hz, 1H), 6.81–6.74 (m, 

1H), 2.72 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (100 MHz, CD3OD) δ 145.8, 136.7, 

131.7, 130.8, 128.8, 128.1, 120.9, 118.9, 118.19, 118.18 117.3, 115.3, 114.8, 110.6, 17.5, 14.5. HRMS (ESI-

TOF) m/z Calculated for C16H17N2 [M+H]+ 237.1386, found 237.1390. 

5-Bromo-2-(3-methyl-1H-indol-2-yl)aniline (1d). 1.072 g, 18% yield in 2 steps, yellow solid, m.p. = 

163-164 oC, new compound, Rf = 0.30 (hexanes/ethyl acetate 10:1); 1H NMR (400 MHz, CD3OD) δ 7.41 (d, 

J = 7.8 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.04–6.98 (m, 1H), 6.97–6.88 (m, 3H), 6.75 (dd, J = 8.1, 2.0 Hz, 
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S10

1H), 2.12 (s, 3H). 13C{1H} NMR (100 MHz, CD3OD) δ 147.5, 136.6, 132.1, 131.1, 129.1, 122.3, 121.2, 

119.5, 118.4, 117.9, 117.3, 110.5, 108.2, 8.1. HRMS (ESI-TOF) m/z Calculated for C15H14BrN2 [M+H]+ 

301.0335, found 301.0331.

5-Methyl-2-(3-methyl-1H-indol-2-yl)aniline (1e). 1.034 g, 22% yield in 2 steps, yellow oil, new 

compound, Rf = 0.35 (hexanes/ethyl acetate 10:1); 1H NMR (400 MHz, CD3OD) δ 7.51 (d, J = 7.8 Hz, 1H), 

7.33 (d, J = 8.0 Hz, 1H), 7.13–7.06 (m, 2H), 7.06–7.01 (m, 1H), 6.69 (s, 1H), 6.62 (d, J = 7.7 Hz, 1H), 2.30 

(s, 3H), 2.22 (s, 3H). 13C{1H} NMR (100 MHz, CD3OD) δ 145.3, 138.7, 136.5, 132.4, 130.6, 129.2, 120.9, 

118.5, 118.2, 117.8, 116.2, 116.0, 110.4, 107.7, 20.1, 8.1. HRMS (ESI-TOF) m/z Calculated for C16H17N2 

[M+H]+ 237.1386, found 237.1402.

2-(5-Bromo-3-methyl-1H-indol-2-yl)aniline (1f). 1.059 g, 23% yield in 2 steps, yellow oil, new 

compound, Rf = 0.20 (hexanes/ethyl acetate 10:1); 1H NMR (400 MHz, CD3OD) δ 7.54 (d, J = 1.6 Hz, 1H), 

7.18–7.03 (m, 1H), 7.11–7.04 (m, 3H), 6.79–6.73 (m, 1H), 6.70–6.64 (m, 1H), 2.09 (s, 3H). 13C{1H} NMR 

(100 MHz, CD3OD) δ 145.7, 135.1, 134.0, 131.0, 130.6, 129.0, 123.5, 120.4, 118.0, 117.3, 115.4, 112.0, 

111.4, 107.6, 7.9. HRMS (ESI-TOF) m/z Calculated for C15H14BrN2 [M+H]+ 301.0335, found 301.0334.

Procedures for Enantioselective Synthesis of Chiral 5,6-Dihydroindolo[1,2-c]quinazolines. To a 25 

ml sealed tube charged with 2-(1H-indolyl)anilines 1 (0.20 mmol), chiral phosphoric acid TRIP (R)-4a (7.5 

mg, 0.01 mmol), dry toluene (2.0 mL) and 5 Å MS (100 mg) was added ketones 2 (0.3 mmol ) under 

nitrogen. The mixture was kept stirring at 70 oC for 72 h. The solvent was evaporated under reduced pressure 

and the residue was purified by flash column chromatography on a silica gel using hexanes/ethyl acetate as 

the eluent to give the desirable products 3. 

(R)-(+)-12-Methyl-6-phenyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3aa). 71 mg, 94% 

yield, white solid, m.p. = 96-97 oC, new compound, Rf = 0.65 (hexanes/ethyl acetate 10:1), 93% ee, [α]20
D = 

+61.54 (c 1.42, EtOAc); 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.6 Hz, 2H), 

7.62 (d, J = 7.9 Hz, 1H), 7.58–7.43 (m, 3H), 7.20 (t, J = 7.2 Hz, 1H), 7.14–7.00 (m, 2H), 6.86 (t, J = 7.7 Hz, 

1H), 6.77 (d, J = 7.8 Hz, 1H), 6.25 (d, J = 8.4 Hz, 1H), 4.67 (brs, 1H), 2.74 (s, 3H); 13C{1H} NMR (100 

MHz, CDCl3) δ 138.1, 136.4, 134.7, 130.7, 130.1, 129.6, 128.9, 128.4, 127.8, 125.6 (q, J = 296.0 Hz), 125.1, 

122.1, 120.3, 120.0, 118.4, 117.1, 113.7, 112.8, 108.5, 75.4 (q, J = 30 Hz), 11.1; 19F{1H} NMR (376 MHz, 

CDCl3) δ -72.0. Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 98/2, 

detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 7.2 min (major) and 9.5 min. HRMS (ESI-

TOF) m/z Calculated for C23H18F3N2 [M+H]+ 379.1417, found 379.1421. 

(+)-6-(4-Fluorophenyl)-12-methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ab). 68 

mg, 86% yield, colorless oil, new compound, Rf = 0.70 (hexanes/ethyl acetate 10:1), 91% ee, [α]20
D = +48.23 
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S11

(c 1.36, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.75 (d, J = 7.8 Hz, 1H), 7.66–7.52 (m, 2H), 7.42 (d, J = 

7.9 Hz, 1H), 7.14–6.97 (m, 3H), 6.87 (t, J = 7.5 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 

6.66 (t, J = 7.5 Hz, 1H), 6.10 (d, J = 8.4 Hz, 1H) 2.52 (s, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 163.2 (d, 

J = 247.0 Hz), 139.4, 134.5, 133.0 (d, J = 3.0 Hz), 130.7, 130.6 (dq, J = 8.0 Hz, J = 1.0 Hz), 129.8, 127.6, 

125.8 (q, J = 296.0 Hz), 124.4, 121.4, 119.6, 118.9, 117.8, 116.2, 115.1 (d, J = 22.0 Hz), 113.3, 112.3, 107.2, 

75.0 (q, J = 30.0 Hz), 9.7; 19F{1H} NMR (376 MHz, CD3OD) δ -73.3 (s, 3F), -113.3 (s, 1F). Enantiomeric 

excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 254 nm, flow rate: 

1.0 mL/min, 30 oC), retention time 5.9 min (major) and 6.9 min. HRMS (ESI-TOF) m/z Calculated for 

C23H17F4N2 [M+H]+ 397.1322, found 397.1350.

(+)-6-(4-Chlorophenyl)-12-methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ac). 77 

mg, 93% yield, colorless oil, new compound, Rf = 0.80 (hexanes/ethyl acetate 10:1), 91% ee, [α]20
D = +64.67 

(c 1.54, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.71 (dd, J = 7.9, 0.9 Hz, 1H), 7.48 (d, J = 8.1 Hz, 2H), 

7.37 (d, J = 7.9 Hz, 1H), 7.27 (d, J = 8.8 Hz, 2H), 7.01–6.94 (m, , 1H), 6.87–6.80 (m, 1H), 6.80–6.69 (m, 

2H), 6.67–6.59 (m, 1H), 6.09 (d, J = 8.4 Hz, 1H), 2.47 (s, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 139.3, 

135.6, 135.4, 134.4, 130.7, 129.9, 129.7, 128.4, 127.6, 125.7 (q, J = 295.0 Hz), 124.4 121.4, 119.7, 118.9, 

117.9, 116.2, 113.3, 112.3, 107.3, 75.0 (q, J = 30.0 Hz), 9.7; 19F{1H} NMR (376 MHz, CD3OD) δ -73.2. 

Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 254 

nm, flow rate: 1.0 mL/min, 30 oC), retention time 6.0 min (major) and 7.4 min. HRMS (ESI-TOF) m/z 

Calculated for C23H17ClF3N2 [M+H]+ 413.1027, found 413.1041.

(+)-6-(4-Bromophenyl)-12-methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ad). 84 

mg, 91% yield, colorless oil, new compound, Rf = 0.70 (hexanes/ethyl acetate 10:1), 92% ee, [α]20
D = +58.26 

(c 1.67, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.75 (d, J = 7.7 Hz, 1H), 7.55–7.37 (m, 5H), 7.06–6.96 (m, 

1H), 6.88 (t, J = 7.3 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.9 Hz, 1H), 6.71–6.62 (m, 1H), 6.12 (d, J 

= 8.4 Hz, 1H), 2.52 (s, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 139.2, 136.1, 134.4, 131.5, 130.7, 130.1, 

129.7, 127.6, 125.7 (q, J = 295.0 Hz), 124.4, 123.6, 121.5, 119.7, 119.0, 117.9, 116.2, 113.4, 112.3, 107.4, 

75.1 (q, J = 30.0 Hz), 9.8; 19F{1H} NMR (376 MHz, CD3OD) δ -73.3 (s, 3F). Enantiomeric excess was 

determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 

30 oC), retention time 6.5 min (major) and 7.9 min. HRMS (ESI-TOF) m/z Calculated for C23H17BrF3N2 

[M+H]+ 457.0522, found 457.0517.

(+)-6-(4-Methoxyphenyl)-12-methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ae). 

49 mg, 60% yield, colorless oil, new compound, Rf = 0.25 (hexanes/ethyl acetate 20:1), 89% ee, [α]20
D = 

+45.30 (c 0.98, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.74 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 
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7.40 (d, J = 8.0 Hz, 1H), 7.00 (t, J = 7.7 Hz, 1H), 6.89–6.81 (m, 3H), 6.81–6.75 (m, 1H), 6.72 (d, J = 8.0 Hz, 

1H), 6.66–6.59 (m, 1H), 6.13 (d, J = 8.5 Hz, 1H), 3.68 (s, 3H), 2.51 (s, 3H); 13C{1H} NMR (100 MHz, 

CD3OD) δ 160.6, 139.6, 134.7, 130.6, 129.8, 129.6, 128.6, 127.5, 126.0 (q, J = 295.0 Hz), 124.3, 121.2, 

119.4, 118.7, 117.6, 116.3, 113.5, 113.3, 112.6, 107.0, 75.1 (q, J = 30.0 Hz), 54.4, 9.7; 19F{1H} NMR (376 

MHz, CD3OD) δ -73.4. Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH 

= 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 8.6 min (major) and 10.7 min. 

HRMS (ESI-TOF) m/z Calculated for C24H20F3N2O [M+H]+ 409.1522, found 409.1533.

(+)-12-Methyl-6-(p-tolyl)-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3af). 69 mg, 88% 

yield, colorless oil, new compound, Rf = 0.30 (hexanes/ethyl acetate 50:1), 92% ee, [α]20
D = +54.85 (c 1.38, 

EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.72 (d, J = 7.8, 1H), 6.47–6.33 (m, 3H), 7.10 (d, J = 8.1 Hz, 2H), 

6.97 (t, J = 7.4 Hz, 1H), 6.83 (t, J = 7.5 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 6.57 (t, J 

= 7.6 Hz, 1H) 6.09 (d, J = 8.4 Hz, 1H), 2.49 (s, 3H), 2.23 (s, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 

139.7, 139.5, 134.6, 133.9, 130.6, 129.8, 128.8, 128.1, 127.5, 126.0 (q, J = 295.0 Hz), 124.3, 121.2, 119.4, 

118.7, 117.6, 116.2, 113.3, 112.6, 107.0, 75.2 (q, J = 30.0 Hz), 19.8, 9.8; 19F{1H} NMR (376 MHz, CD3OD) 

δ -73.2. Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 98/2, detector: 

254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 7.2 min (major) and 11.0 min. HRMS (ESI-TOF) m/z 

Calculated for C24H20F3N2 [M+H]+ 393.1573, found 393.1608.

(+)-12-Methyl-6-(m-tolyl)-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ag). 67 mg, 85% 

yield, white solid, m.p. = 150-151 oC, new compound, Rf = 0.30 (hexanes/ethyl acetate 50:1), 93% ee, [α]20
D 

= +60.67 (c 1.34, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.73 (d, J = 7.8, 1H), 7.44–7.31 (m, 3H), 7.23–

7.11 (m, 2H), 6.97 (t, J = 7.5 Hz, 1H), 6.82 (t, J = 7.5 Hz, 1H), 6.75 (t, J = 7.6 Hz, 1H), 6.70 (d, J = 7.9 Hz, 

1H), 6.58 (t, J = 7.7 Hz, 1H), 6.09 (d, J = 8.4 Hz, 1H), 2.49 (s, 3H), 2.15 (s, 3H); 13C{1H} NMR (100 MHz, 

CH3OD) δ 139.5, 138.3, 136.8, 134.6, 130.6, 130.1, 129.8, 128.9, 128.0, 127.5, 126.0 (q, J = 295.0 Hz), 

125.0, 124.4, 121.2, 119.5, 118.7, 117.7, 116.2, 113.3, 112.6, 107.0, 75.3 (q, J = 29.0 Hz), 20.2, 9.8; 19F{1H} 

NMR (376 MHz, CH3OD) δ -73.1. Enantiomeric excess was determined by HPLC (IA column, elute: n-

Hexane/i-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 4.8 min (major) and 

6.2 min. HRMS (ESI-TOF) m/z Calculated for C24H20F3N2 [M+H]+ 393.1573, found 393.1608. 

(+)-12-Methyl-6-(naphthalen-2-yl)-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ah). 68 

mg, 79% yield, white solid, m.p. = 214-215 oC, new compound, Rf = 0.30 (hexanes /ethyl acetate 100:1), 95% 

ee, [α]20
D = +20.85 (c 1.18, EtOAc); 1H NMR (400 MHz, CD2Cl2) δ 8.28 (s, 1H), 7.94–7.85 (m, 2H), 7.84–

7.73 (m, 2H), 7.59–7.41 (m, 4H), 7.13–7.05 (m, 1H), 6.70–6.88 (m, 2H), 6.72–6.57 (m, 2H), 6.18 (d, J = 8.5 

Hz, 1H), 4.71 (brs, 1H), 2.63 (s, 3H); 13C{1H} NMR (100 MHz, CD2Cl2) δ 138.1, 134.7, 133.6, 133.4, 132.4, 
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130.7, 129.5, 129.1, 129.0, 127.9, 127.8, 127.6, 127.0, 126.9 (q, J = 3.0 Hz), 125.77, 125.76 (q, J = 295.0 

Hz), 125.0, 122.1, 120.2, 120.1, 118.4, 116.8, 113.8, 112.6, 108.6, 75.6 (q, J = 30.0 Hz), 10.8; 19F{1H} NMR 

(376 MHz, CD2Cl2) δ -72.1. Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-

PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 7.3 min (major) and 10.5 min. 

HRMS (ESI-TOF) m/z Calculated for C27H20F3N2 [M+H]+ 429.1573, found 429.1571.

(+)-6-Phenyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ba). 54 mg, 74% yield, 

colorless oil, new compound, Rf = 0.60 (hexanes/ethyl acetate 20:1), 88% ee, [α]20
D = +97.40 (c 1.08, 

EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.61 (d, J = 7.7 Hz, 3H), 7.44–7.28 (m, 4H), 7.05–6.96 (m, 1H), 

6.90–6.79 (m, 2H), 6.78–6.66 (m, 2H), 6.63–6.54 (m, 1H), 6.10 (d, J = 8.5 Hz, 1H); 13C{1H} NMR (100 

MHz, CD3OD) δ 138.7, 136.6, 135.7, 135.1, 129.9, 129.5, 128.43, 128.38, 128.1 (q, J = 2.0 Hz), 125.9 (q, J 

= 295.0 Hz), 123.2, 120.9, 120.1, 119.8, 118.8, 114.4, 113.3, 112.7, 96.3, 75.7 (q, J = 30.0 Hz); 19F{1H} 

NMR (376 MHz, CD3OD) δ -73.5. Enantiomeric excess was determined by HPLC (IA column, elute: n-

Hexane/i-PrOH = 90/10, detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 6.7 min (major) and 

10.2 min. HRMS (ESI-TOF) m/z Calculated for C22H16F3N2 [M+H]+ 365.1260, found 365.1258.

(+)-6-Phenyl-6-(trifluoromethyl)-6,11-dihydro-5H-indolo[3,2-c]quinoline (3ba'). 4 mg, 5% yield, pale 

yellow oil, new compound, Rf = 0.35 (hexanes/ethyl acetate 20:1), 35% ee, [α]20
D = +2.50 (c 0.08, EtOAc); 

1H NMR (400 MHz, CD2Cl2) δ 8.48 (brs, 1H), 7.73–7.59 (m, 2H), 7.34–7.21 (m, 5H), 7.07–6.95 (m, 2H), 

6.81–6.67 (m, 3H), 6.56 (d, J = 8.0 Hz, 1H), 4.56 (brs, 1H); 13C{1H} NMR (100 MHz, CD2Cl2) δ 141.2, 

140.3, 137.1, 132.7, 129.3, 128.31, 128.28, 127.9 (q, J = 2.0 Hz), 126.7 (q, J = 289.0 Hz), 125.8, 122.5, 

120.50, 119.6 (q, J = 2.0 Hz), 118.3, 113.1, 112.3, 111.1, 104.5, 66.0 (q, J = 29.0 Hz); 19F{1H} NMR (376 

MHz, CD2Cl2) δ -74.9. Enantiomeric excess was determined by HPLC (IB column, elute: n-Hexane/i-PrOH 

= 90/10, detector: 254 nm, flow rate: 0.8 mL/min, 30 oC), retention time 11.1 min (major) and 12.6 min. 

HRMS (ESI-TOF) m/z Calculated for C22H16F3N2 [M+H]+ 365.1260, found 365.1264.

(+)-12-Ethyl-6-phenyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ca). 71 mg, 90% 

yield, colorless oil, new compound, Rf = 0.50 (hexanes/ethyl acetate 20:1), 92% ee, [α]20
D = +38.73 (c 1.42, 

EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.71 (dd, J = 7.9, 0.8 Hz, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 

7.9 Hz, 1H), 7.37–7.26 (m, 3H), 6.99 (d, J = 6.8 Hz, 1H), 6.89–6.69 (m, 3H), 6.64–6.53 (m, 1H), 6.07 (d, J = 

8.5 Hz, 1H), 3.12–2.95 (m, 2H), 1.27 (t, J = 7.5 Hz, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 139.5, 136.9, 

134.7, 129.8, 129.4, 129.2, 128.3, 128.2, 127.6, 125.9 (q, J = 295.0 Hz), 124.1, 121.3, 119.5, 118.9, 117.6, 

115.9, 114.1, 113.5, 112.6, 75.3 (q, J = 30.0 Hz), 17.8, 13.5; 19F{1H} NMR (376 MHz, CD3OD) δ -73.0. 

Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 254 
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nm, flow rate: 1.0 mL/min, 30 oC), retention time 5.1 min (major) and 6.5 min. HRMS (ESI-TOF) m/z 

Calculated for C24H20F3N2 [M+H]+ 393.1573, found 393.1592.

(+)-3-Bromo-12-methyl-6-phenyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3da). 26 

mg, 28% yield, colorless oil, new compound, Rf = 0.70 (hexanes/ethyl acetate 10:1), 96% ee, [α]20
D = +8.65 

(c 0.52, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.68–7.53 (m, 3H), 7.46–7.31 (m, 4H), 6.96–6.90 (m, 2H), 

6.96–6.84 (m, 1H), 6.67–6.58 (m, 1H), 6.07 (d, J = 8.5 Hz, 1H), 2.50 (s, 3H); 13C{1H} NMR (100 MHz, 

CD3OD) δ 140.7, 136.4, 134.6, 130.5, 129.6, 128.9, 128.4, 128.1, 125.8 (q, J = 295.0 Hz), 125.7, 121.6, 

121.5, 120.7, 119.7, 117.9, 115.8, 115.3, 112.5, 107.8, 75.2 (q, J = 30.0 Hz), 9.7; 19F{1H} NMR (376 MHz, 

CD3OD) δ -73.4. Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 95/5, 

detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 6.1 min (major) and 7.2 min. HRMS (ESI-

TOF) m/z Calculated for C23H17BrF3N2 [M+H]+ 457.0522, found 457.0532.

(+)-3,12-Dimethyl-6-phenyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ea). 57 mg, 73% 

yield, pink solid, m.p. = 190-191 oC, new compound, Rf = 0.55 (hexanes/ethyl acetate 20:1), 97% ee, [α]20
D = 

+39.38 (c 1.14, EtOAc); 1H NMR (400 MHz, CD2Cl2) δ 7.70 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 

7.48–7.30 (m, 4H), 6.95–6.86 (m, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.69–6.61 (m, 1H), 6.46 (s, 1H), 6.07 (d, J = 

8.5 Hz, 1H), 4.59 (brs, 1H), 2.55 (s, 3H), 2.21 (s, 3H); 13C{1H} NMR (100 MHz, CD2Cl2) δ 138.3, 138.1, 

136.5, 134.6, 130.8, 130.1, 129.8, 128.8, 128.2 (q, J = 2.0 Hz), 125.7 (q, J = 295.0 Hz), 124.9, 121.7, 121.2, 

120.0, 118.2, 114.2, 112.5, 107.6, 75.4 (q, J = 30.0 Hz), 21.1, 10.7; 19F{1H} NMR (376 MHz, CD2Cl2) δ -

72.3. Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 

254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 5.6 min (major) and 8.1 min. HRMS (ESI-TOF) m/z 

Calculated for C24H20F3N2 [M+H]+ 393.1573, found 393.1581.

(+)-10-Bromo-12-methyl-6-phenyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3fa). 70 

mg, 77% yield, colorless oil, new compound, Rf = 0.55 (hexanes/ethyl acetate 10:1), 95% ee, [α]20
D = +66.28 

(c 1.40, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.73 (dd, J = 7.9, 0.9 Hz, 1H), 7.59–7.51 (m, 3H), 7.39–

7.26 (m, 3H), 7.06–6.99 (m, 1H), 6.82–6.72 (m, 2H), 6.67 (dd, J = 8.9, 2.0 Hz, 1H), 5.95 (d, J = 8.9 Hz, 1H), 

2.45 (s, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 139.6, 136.4, 133.2, 132.5, 131.3, 129.6, 128.4, 128.12, 

128.08, 125.9 (q, J = 295.0 Hz), 124.6, 123.8, 120.3, 118.9, 115.7, 114.0, 113.5, 112.9, 106.5, 75.4 (q, J = 

30.0 Hz), 9.7; 19F{1H} NMR (376 MHz, CD3OD) δ -73.2. Enantiomeric excess was determined by HPLC 

(IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 

6.1 min (major) and 7.7 min. HRMS (ESI-TOF) m/z Calculated for C23H17BrF3N2 [M+H]+ 457.0522, found 

457.0546.
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(+)-10-Methoxy-12-methyl-6-phenyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ga). 

69 mg, 84% yield, pink oil, new compound, Rf = 0.65 (hexanes/ethyl acetate 10:1), 90% ee, [α]20
D = +48.37 

(c 0.86, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.74 (dd, J = 7.9, 1.0 Hz, 1H), 7.62–7.54 (m, 2H), 7.41–

7.29 (m, 3H), 7.02–6.97 (m, 1H) 6.89 (d, J = 2.5 Hz, 1H), 6.82–6.76 (m, 1H), 6.73 (dd, J = 8.0, 0.8 Hz, 1H), 

6.26 (dd, J = 9.1, 2.5 Hz, 1H), 5.94 (d, J = 9.1 Hz, 1H), 3.66 (s, 3H), 2.50 (s, 3H); 13C{1H} NMR (100 MHz, 

CD3OD) δ 154.2, 139.4, 136.9, 131.2, 130.5, 129.7, 129.4, 128.3, 128.2, 127.4, 125.9 (q, J = 296.0 Hz), 

124.2, 118.7, 116.2, 113.3, 113.2, 111.0, 106.8, 99.6, 75.3 (q, J = 30.0 Hz), 54.7, 9.8; 19F{1H} NMR (376 

MHz, CD3OD) δ -73.2. Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/ i-PrOH 

= 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 7.0 min (major) and 8.2 min. HRMS 

(ESI-TOF) m/z Calculated for C24H20F3N2O [M+H]+ 409.1522, found 409.1530.

(+)-6-(Difluoromethyl)-12-methyl-6-phenyl-5,6-dihydroindolo[1,2-c]quinazoline (3aj). 72 mg, 99% 

yield, colorless oil, new compound, Rf = 0.55 (hexanes/ethyl acetate 10:1), 25% ee, [α]20
D = +15.94 (c 1.38, 

EtOAc); 1H NMR (400 MHz, CD2Cl2) δ 7.79 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.45 (d, J = 7.9 

Hz, 1H), 7.43–7.32 (m, 3H), 7.08–7.00 (m, 1H), 6.94–6.84 (m, 2H), 6.70–6.62 (m, 2H), 6.24 (t, J = 54.5 Hz, 

1H), 6.04 (d, J = 8.5 Hz, 1H), 4.63 (brs, 1H), 2.56 (s, 3H); 13C{1H} NMR (100 MHz, CD2Cl2) δ 138.6, 137.0, 

134.9, 130.7, 129.9, 129.3, 128.8, 128.6 (t, J = 2.0 Hz), 128.0, 125.1, 121.9, 120.1, 119.8, 118.4, 117.0, 

115.1 (t, J = 254.0 Hz), 114.3, 112.2, 108.3, 74.1 (t, J = 23. 0 Hz), 10.8; 19F{1H} NMR (376 MHz, CD2Cl2) δ 

-123.6 (d, J = 276.8 Hz, 1F), -128.4 (d, J = 276.8 Hz, 1F). Enantiomeric excess was determined by HPLC 

(IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 30 oC), retention time 

6.7 min (major) and 8.1 min. HRMS (ESI-TOF) m/z Calculated for C23H19F2N2 [M+H]+ 361.1511, found 

361.1543. 

(+)-6-Benzyl-12-methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline (3ak). 70 mg, 89% 

yield, white solid, m.p. = 145-146 oC, new compound, Rf = 0.75 (hexanes/ethyl acetate 10:1), 84% ee, [α]20
D 

= +94.28 (c 1.40, EtOAc); 1H NMR (400 MHz, CD2Cl2) δ 7.68 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 

7.51 (d, J = 7.8 Hz, 1H), 7.15–6.95 (m, 8H), 6.81 (t, J = 7.6 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 4.32–4.19 (m, 

2H), 3.60 (d, J = 15.4 Hz, 1H), 2.48 (s, 3H); 13C{1H} NMR (100 MHz, CD2Cl2) δ 137.6, 134.7, 132.6, 131.1, 

130.4, 129.2, 128.4, 128.0, 125.7 (q, J = 295.0 Hz), 127.6, 125.0, 122.6, 120.27, 120.26, 118.9, 116.6, 114.1, 

113.2 (q, J = 2.0 Hz), 108.9, 73.8 (q, J = 29.0 Hz), 38.5, 10.9; 19F{1H} NMR (376 MHz, CD2Cl2) δ -78.2. 

Enantiomeric excess was determined by HPLC (IA column, elute: n-Hexane/i-PrOH = 95/5, detector: 254 

nm, flow rate: 1.0 mL/min, 30 oC), retention time 6.3 min (major) and 7.1 min. HRMS (ESI-TOF) m/z 

Calculated for C24H20F3N2 [M+H]+ 393.1573, found 393.1573.
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6,12-Dimethyl-6-phenyl-5,6-dihydroindolo[1,2-c]quinazoline (3al). 61 mg, 94% yield, white solid, 

known compound,25 Rf = 0.50 (hexanes/ethyl acetate 10:1), < 1% ee; 1H NMR (400 MHz, CDCl3) δ 7.88 (dd, 

J = 7.9, 1.0 Hz, 1H), 7.66–7.59 (m, 2H), 7.56 (d, J = 7.9 Hz, 1H), 7.42–7.34 (m, 3H), 7.14–7.06 (m, 1H), 

7.05–6.98 (m, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.85–6.76 (m, 1H), 6.68 (dd, J = 7.9, 0.7 Hz, 1H), 6.22 (d, J = 

8.4 Hz, 1H), 4.24 (brs, 1H), 2.66 (, 3H), 2.02 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 143.4, 140.0, 

134.1, 130.5, 129.9, 129.0, 128.7, 127.6, 127.5, 125.2, 121.5, 119.8, 119.1, 118.4, 117.9, 115.2, 111.7, 107.3, 

73.5, 24.9, 11.1. Enantiomeric excess was determined by HPLC (IB column, elute: n-Hexane/i-PrOH = 

70/30, detector: 254 nm, flow rate: 0.7 mL/min, 30 oC), retention time 7.1 min and 7.6 min (major). 

(+)-Ethyl 12-methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline-6-carboxylate (3am). 

56 mg, 75% yield, pale yellow solid, m.p. = 156-158 oC, new compound, Rf = 0.40 (hexanes/ ethyl acetate 

10:1), 89% ee, [α]20
D = +69.10 (c 1.12, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.70 (d, J = 7.9 Hz, 1H), 

7.53–7.43 (m, 1H), 7.10–6.98 (m, 4H), 6.86–6.73 (m, 2H), 4.31–4.14 (m, 2H), 2.49 (s, 3H), 1.07 (t, J = 7.1 

Hz, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 164.9, 137.8, 134.0, 130.5, 127.8, 124.4, 124.2 (q, J = 294.0 

Hz), 122.0, 120.2, 119.2, 118.2, 115.5, 113.6, 110.1 (q, J = 3.0 Hz), 107.4, 73.7 (q, J = 30.0 Hz), 63.1, 12.7, 

9.5; 19F{1H} NMR (376 MHz, CD3OD) δ -77.3. Enantiomeric excess was determined by HPLC (IA column, 

elute: n-Hexane/i-PrOH = 80/20, detector: 254 nm, flow rate: 0.8 mL/min, 30 oC), retention time 5.4 min and 

5.9 min (major). HRMS (ESI-TOF) m/z Calculated for C20H18F3N2O2 [M+H]+ 375.1315, found 375.1319.

(+)-Ethyl 3,12-dimethyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline-6-carboxylate 

(3em). 46 mg, 59% yield, pink solid, m.p. = 137-138 oC, new compound, Rf = 0.40 (hexanes /ethyl acetate 

10:1), 91% ee, [α]20
D = +58.80 (c 0.92, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.58 (d, J = 8.5 Hz, 1H), 

7.50–7.44 (m, 1H), 7.05–6.98 (m, 3H), 6.67–6.59 (m, 2H), 4.30–4.16 (m, 2H), 2.46 (s, 3H), 2.20 (s, 3H), 

1.07 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 165.0, 138.1, 137.8, 133.9, 130.6, 128.1, 

124.4, 124.3 (q, J = 294.0 Hz), 121.7, 120.2, 120.1, 118.0, 114.0, 112.9, 110.1 (q, J = 2.0 Hz), 106.6, 73.7 (q, 

J = 30.0 Hz), 63.0, 20.1, 12.7, 9.4; 19F{1H} NMR (376 MHz, CD3OD) δ -77.2. Enantiomeric excess was 

determined by HPLC (OD-H column, elute: n-Hexane/i-PrOH = 70/30, detector: 254 nm, flow rate: 0.7 

mL/min, 30 oC), retention time 5.5 min and 5.9 min (major). HRMS (ESI-TOF) m/z Calculated for 

C21H20F3N2O2 [M+H]+ 389.1471, found 389.1475.

(+)-Ethyl 10-bromo-12-methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazoline-6-

carboxylate (3fm). 47 mg, 52% yield, pale yellow solid, m.p. = 203-204 oC, new compound, Rf = 0.45 

(hexanes/ethyl acetate 10:1), 89% ee, [α]20
D = +50.95 (c 0.94, EtOAc); 1H NMR (400 MHz, CD2Cl2) δ 7.75 

(d, J = 7.8 Hz, 1H), 7.67 (d, J = 1.9 Hz, 1H), 7.18 (dd, J = 8.8, 1.9 Hz, 1H), 7.15–7.08 (m, 1H), 6.99–6.88 (m, 

2H), 6.77 (d, J = 8.0 Hz, 1H), 4.94 (brs, 1H), 4.38–4.19 (m, 2H), 2.50 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H); 
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13C{1H} NMR (100 MHz, CD2Cl2) δ 164.3, 136.3, 132.8, 132.5, 128.8, 128.7, 125.4, 125.2, 123.7 (q, J = 

293 Hz), 121.5, 121.3, 116.0, 114.8, 114.0, 112.3 (q, J = 2.0 Hz), 108.5, 73.9 (q, J = 30.0 Hz), 64.2, 13.6, 

10.6; 19F{1H} NMR (376 MHz, CD2Cl2) δ -75.8. Enantiomeric excess was determined by HPLC (IA column, 

elute: n-Hexane/i-PrOH = 70/30, detector: 254 nm, flow rate: 0.7 mL/min, 30 oC), retention time 5.5 min 

(major) and 6.7 min. HRMS (ESI-TOF) m/z Calculated for C20H17BrF3N2O2 [M+H]+ 453.0420, found 

453.0420.

General Procedure for the Scale-up Reaction. To a 25 ml sealed tube charged with 2-(1H-

indolyl)aniline 1a (222 mg, 1.0 mmol), chiral phosphoric acid TRIP (R)-4a (37.6 mg, 0.05 mmol), dry 

toluene (10.0 mL) and 5 Å MS (500 mg) was added ketone 2a (211 µL, 1.5 mmol) under nitrogen. The 

mixture was kept stirring at 70 oC for 72 h. The solvent was evaporated under reduced pressure and the 

residue was purified by flash column chromatography on a silica gel using hexanes/ethyl acetate (30:1) as 

the eluent to give the desirable product 3aa (363 mg, 96% yield, 94% ee) as white solid. 

Determination of the Absolute Configuration. The absolute configuration of 12-methyl-6-phenyl-6-

(trifluoromethyl)-5,6-dihydroindolo[1,2-c] quinazoline (+)-(3aa) was assigned as (R) based on the X-ray 

diffraction analysis after recrystallization from mixture solvents methanol/ethyl acetate/hexanes to upgrade 

ee to > 99%. The absolute configurations of the other chiral products are assigned by analogy. The CCDC 

number is 1873205. These details can be obtained free of charge via www.ccdc.com.ac.uk/data_request/cif 

from the Cambridge Crystallographic Data Centre.

Product Elaboration. To a solution of (R)-(+)-3am (56 mg, 0.15 mmol, 88% ee) in anhydrous methanol 

(3 mL) was added sodium borohydride (114 mg, 3.0 mmol) at 0 oC under nitrogen. After stirring for 30 min, 

the suspension was warmed to room temperature and stirred overnight. TLC showed 3am was not consumed 

completely; sodium borohydride (114 mg, 3.0 mmol) was added in portions until disappearance by TLC. 

The solvent was evaporated in vacuo and the residue was dissolved by saturated ammonium solvent and 

ethyl acetate. The mixture was extracted with ethyl acetate. The combined organic layers were washed with 

brine, dried over anhydrous sodium sulfate. After concentrated under the reduced pressure, the residue was 

purified by flash column chromatography using hexanes/ethyl acetate (4:1) as the eluent to afford the pure 

product (R)-(-)-5 (47 mg, 94%) as white solid.

(-)-(R)-(12-Methyl-6-(trifluoromethyl)-5,6-dihydroindolo[1,2-c]quinazolin-6-yl)methanol (5). 47 mg, 

94% yield, white solid, m.p. = 165-167 oC, new compound, Rf = 0.30 (hexanes/ethyl acetate 2:1), 88% ee, 

[α]20
D = -10.53 (c 0.94, EtOAc); 1H NMR (400 MHz, CD3OD) δ 7.68 (d, J = 7.6 Hz, 1H), 7.47 (d, J = 7.6 Hz, 

2H), 7.11–6.95 (m, 3H), 6.88–6.74 (m, 2H), 4.67 (d, J = 12.2 Hz, 1H), 4.40 (d, J = 12.2 Hz, 1H), 2.48 (s, 

3H). 13C{1H} NMR (100 MHz, CD3OD) δ 139.2, 134.5, 130.8, 129.3, 127.6, 125.6 (q, J = 296 Hz), 124.4, 
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122.1, 119.6, 118.9, 118.0, 116.5, 113.8, 112.2 (q, J = 1.0 Hz), 107.3, 74.1 (q, J = 28.0 Hz), 61.3, 9.7. 19F{1H} 

NMR (376 MHz, CD3OD) δ -78.7. Enantio- meric excess was determined by HPLC (IA column, elute: n-

Hexane/i-PrOH = 70/30, detector: 254 nm, flow rate: 0.7 mL/min, 30 oC), retention time 6.2 min (major) and 

6.8 min. HRMS (ESI-TOF) m/z Calculated for C18H16F3N2O [M+H]+ 333.1209, found 333.1221. 
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