ISSN 1070-4280, Russian Journal of Organic Chemistry, 2010, Vol. 46, No. 4, pp. 485–490. © Pleiades Publishing, Ltd., 2010. Original Russian Text © M.Yu. Dvorko, T.E. Glotova, I.A. Ushakov, N.K. Gusarova, 2010, published in Zhurnal Organicheskoi Khimii, 2010, Vol. 46, No. 4, pp. 495–500.

Reaction of Secondary Phosphine Oxides with Acylacetylenes

M. Yu. Dvorko, T. E. Glotova, I. A. Ushakov, and N. K. Gusarova

Favorskii Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: glotova@irioch.irk.ru

Received May 15, 2009

Abstract—Secondary phosphine oxides reacted with 1-alkanoyl-2-phenylacetylenes in chemoselective fashion under mild conditions (20°C, THF) in the absence of a catalyst (diphenylphosphine oxide) or in the presence of potassium hydroxide [bis(2-phenylethyl)phosphine oxide] to give 1-alkyl-1-diphenyl(or 2-phenylethyl)phosphoryl-3-phenylprop-2-yn-1-ols in up to 96% yield. The reaction of diphenylphosphine oxide with 1-alkanoyl-2-phenylacetylenes in the system KOH–THF (20°C) afforded not only adducts at the carbonyl group but also products of double α , β -addition at the triple bond, 2,3-bis(diphenylphosphoryl)-3-phenylpropan-1-ones.

DOI: 10.1134/S1070428010040056

Tertiary phosphine oxides are key targets in the chemistry of organophosphorus compounds. They are widely used as ligands for metal complex catalysts [1–3], special solvents for stabilization of nanosystems in the synthesis of semiconductors [4], extractants for noble, rare-earth, and transuranium elements [5–7], fire-retardants [8], and photochromic [9] and luminescent materials [10]. Phosphine oxides are successfully used as building blocks, e.g., in the Wittig-Horner reaction [11–14], specifically, for the synthesis of substituted vitamin D₃ analogs [14]. Of particular interest are polyfunctionalized tertiary phosphine oxides; however, their synthesis involves some difficulties. A convenient synthetic approach to such compounds is based on the addition of secondary phosphine oxides to functionally substituted alkenes [15-18], alkynes [15, 17] (including α,β -acetylenic ketones [19]), aldehydes [20–24], and ketones [20, 21]. In the recent publication [25] we briefly reported on reactions of secondary phosphine oxides with 1-acetyl- and 1-butanoyl-2phenylacetylenes in the system KOH-THF, which occurred in chemoselective fashion at the C=O group and led to the formation of functionalized tertiary phosphine oxides having a hydroxy group and an acetylenic fragment.

In the present work we performed a detailed study on nucleophilic addition of secondary phosphine oxides to bielectrophilic 1-alkanoyl-2-phenylacetylenes with a view to elucidate its chemo- and regioselectivity and efficiency, depending on the reactant structure and experimental conditions, as well as to develop a procedure for the synthesis of new polyfunctionalized tertiary phosphine oxides.

We have found that diphenylphosphine oxide (I) reacts with 1-alkanoyl-2-phenylacetylenes **Ha–Hc** under mild conditions in the absence of a catalyst (20°C, THF); the reaction is chemoselective, and the products are the corresponding adducts at the carbonyl group, (diphenylphosphoryl)phenylalkynols **HIa–Hic** (Scheme 1, Table 1). At an equimolar reactant ratio, the yield of **HIa–Hic** did not exceed 41% (Table 1; run nos. 1, 4, 6). The use of 2 equiv of diphenylphosphine oxide (I) allowed us to raise the yield of **HIa–Hic Hic** to 65–96% (Table 1, run nos. 3, 5, 7). Increase in the yield of **HIa–Hic** in the presence of excess phos-

485

Run no.	R	Reactant ratio I:II	Reaction time, h	Yield of III, ^b %
1	Me	1:1	9	40 (a)
2^{c}	Me	1:1	4	71 (a)
3	Me	2:1	9	96 (a)
4	Pr	1:1	35	41 (b)
5	Pr	2:1	35	77 (b)
6	<i>i</i> -Pr	1:1	35	13 (c)
7	<i>i</i> -Pr	2:1	35	65 (c)

Table 1. Reaction of diphenylphosphine oxide (I) with acetylenic ketones $IIa-IIc^{a}$

^a All reactions were carried out in THF at room temperature under argon.

^b Calculated on the initial amount of **II**.

 $^{\rm c}$ The reaction was carried out with 10 mol % of KOH (with respect to I).

phine oxide I may be related to equilibrium character of the process [26] (see below).

As follows from the data in Table 1, the rate and efficiency of this reaction depend on the structure of the alkyl radical R in acetylenes **Ha–Hc**; their reactivity decreases in the series **Ha** > **Hb** > **Hc**, i.e., in parallel with increase in the degree of branching of the R radical. The yield of adduct **HHa** increased almost twofold (simultaneously, the reaction time shortened

Table 2. Reaction of diphenylphosphine oxide (I) with acetylenic ketones IIa–IIc in the presence of 20 mol % of KOH (with respect to phosphine oxide I)^a

Run no.	R	Reactant ratio I:II	Reaction time, h	Yield, ^b %	
				III	IV
1	Me	1:1	4	69 (a)	4 (a)
2	Pr	1:1	4	16 (b)	75 (b)
3	<i>i</i> -Pr	1:1	9	8 (c)	33 (c)
4	Me	2:1	4	36 (a)	37 (a)
5	Pr	2:1	4	Traces ^d	82 (b)
6	<i>i</i> -Pr	2:1	9	Not	52 (c)
7 ^c	Me	1:1	4	71 (a)	Not detected ^d

^a All reactions were carried out in THF at room temperature under argon.

^b Calculated on the initial amount of II.

^c The reaction was carried out with 10 mol % of KOH (with respect to **I**).

^d ³¹P NMR monitoring.

more than twofold) when the reaction of diphenylphosphine oxide (I) with 1-acetyl-2-phenylacetylene (IIa) was carried out with equimolar amounts of the reactants in the presence of 10 mol % of KOH (Table 1; cf. run nos. 1 and 2). However, further increase in the amount of KOH resulted in reduced chemoselectivity of the process. The reactions of diphenylphosphine oxide (I) with equimolar amounts of acetylenes IIa-IIc in the presence of 20 mol % of KOH (20°C, THF) gave mixtures of adducts IIIa-IIIc and products of double α,β -addition at the triple bond, 2.3-bis(diphenylphosphoryl)-3-phenylpropan-1-ones IVa-IVc (Scheme 2; Table 2, run nos. 1-3) whose fraction increased in going from 1-acetyl-2-phenylacetylene IIa to acylacetylenes IIb and IIc having bulkier substituents (propyl and isopropyl groups, respectively) at the carbonyl carbon atom (Table 2, run nos. 1-3). We succeeded in obtaining compounds IVa-IVc as the major products using 2 equiv of phosphine oxide I with respect to acetylenic ketone IIa-IIc (Table 2, run nos. 4-6).

Unlike diphenylphosphine oxide (I), bis(2-phenylethyl)phosphine oxide (V) failed to react with 4-phenvlbut-3-vn-2-one (IIa) in the absence of KOH (equimolar reactant ratio, 20°C, 9 h, THF; Table 3, run no. 1). The use of 2 equiv of phosphine oxide \mathbf{V} with respect to acetylenic ketone IIa and prolonged contact of the reactants (20°C, 240 h, THF) led to formation of an insignificant amount of the adduct at the carbonyl group (compound VIa; Scheme 3; Table 3, run no. 2). On the other hand, in the presence of KOH (20°C, 35 h, THF) phosphine oxide V chemoselectively added to acetylenic ketones IIa-IIc to give acetylenic alcohols VIa-VIc in 67, 63, and 19% yield, respectively (Scheme 3; Table 3, run nos. 3–5). As in the reaction with diphenylphosphine oxide (I), acylacetylene IIc having an isopropyl group at the carbonyl carbon atom turned out to be least reactive toward bis(2-phenylethyl)phosphine oxide (V). Our results indicated

 $R = Me(\mathbf{a}), Pr(\mathbf{b}), i-Pr(\mathbf{c}).$

higher reactivity of diphenylphosphine oxide (I) compared to bis(2-phenylethyl)phosphine oxide (V); a probable reason is higher acidity of phosphine oxide I and hence higher concentration of diphenylphosphinite ions.

Tertiary phosphine oxides IIIa–IIIc, IVa–IVc, and VIa–VIc are crystalline substances that are stable at room temperature. However, adducts IIIa and VIa at the carbonyl group were shown (¹H, ¹³C, and ³¹P NMR monitoring) to undergo decomposition into initial acetylacetylene IIa and the corresponding phosphine oxide I or V on heating in CDCl₃ (50–55°C, 7–33 h; Scheme 4). The conversion of phosphine oxide IIIa was ~90% in 13 h, while the conversion of VIa was only ~15% over the same period of time. The observed decomposition of adducts IIIa–IIIc on heating in CDCl₃ and increase in their yield upon raising the concentration of one of the reactants (Table 1, run nos. 3, 5, 7) suggest equilibrium character of the process.

Thus, we have developed a convenient, effective, chemoselective, and atom-economic synthesis of phosphorus-containing acetylenic alcohols via addition of secondary phosphine oxides at the carbonyl group of 1-acyl-2-phenylacetylenes. Under certain conditions the reaction with diphenylphosphine oxide may be directed toward predominant (or even exclusive) formation of 2,3-bis(diphenylphosphoryl)-3-phenylpropan-1-ones as a result of double α , β -addition at the triple bond. The newly synthesized polyfunctionalized tertiary phosphine oxides are promising as reactive

Table 3. Reaction of bis(2-phenylethyl)phosphine oxide (V)with acetylenic ketones $IIa-IIc^{a}$

Run no.	R	Amount of KOH, mol %	Reaction time, h	Reactant ratio V:II	Yield of VI , ^b %
1	Me	0	9	1:1	_ ^c
2	Me	0	240	2:1	$6^{c}(\mathbf{a})$
3	Me	20	35	1:1	67 (a)
4	Pr	20	35	1:1	63 (b)
5	<i>i</i> -Pr	20	35	1:1	19 (c)

^a All reactions were carried out in THF at room temperature under argon.

^b Calculated on the initial amount of II.

^{c 31}P NMR monitoring.

building blocks for organic and organometallic synthesis and intermediate products for the design of specialty substances and materials.

EXPERIMENTAL

The IR spectra were recorded in KBr on a Bruker IFS-25 spectrometer. The ¹H, ¹³C, and ³¹P NMR spectra were measured from solutions in CDCl₃ on a Bruker DPX-400 instrument (400.13, 101.61, and 161.98 MHz, respectively); the chemical shifts were determined relative to hexamethyldisiloxane (¹H, ¹³C) or 85% phosphoric acid (³¹P). Signals in the NMR spectra were assigned using two-dimensional homoand heteronuclear correlation techniques (HSQC, HMBC, NOESY).

Diphenylphosphine oxide (I) and bis(2-phenylethyl)phosphine oxide (V) were synthesized as reported in [27] and [28], respectively. Initial α , β -acetylenic ketones **IIa–IIc** were prepared from phenylacetylene and the corresponding aldehyde according to the procedure described in [29].

Tertiary phosphine oxides IIIa–IIIc (general procedure) (Table 1, run nos. 3, 5, 7). A solution of 1 mmol of diphenylphosphine oxide (I) and 0.5 mmol of acetylenic ketone **IIa–IIc** in 4 ml of THF was stirred under argon at room temperature. When the reaction was complete, the solvent was removed under reduced pressure, the residue was ground with 8 ml of diethyl ether, and the precipitate was filtered off and dried under reduced pressure. The mother liquor contained only unreacted acetylene **IIa–IIc** (identified by TLC) and phosphine oxide I (identified by ¹H and ³¹P NMR spectroscopy).

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 46 No. 4 2010

2-(Diphenylphosphoryl)-4-phenylbut-3-yn-2-ol (IIIa) (Table 1, run no. 3). Yield 0.166 g (96%), white powder, mp 140–142°C (decomp.). IR spectrum, v, cm⁻¹: 3141 (OH), 2234 w (C=C), 1175 (P=O). ¹H NMR spectrum, δ , ppm: 1.80 d (3H, Me, ³J_{PH} = 13.2 Hz), 4.00 br.s (1H, OH), 7.21–7.40 m (5H, PhC), 7.45–7.65 m (6H, *p*-H, *m*-H in PhP), 8.00–8.20 m (4H, *o*-H in PhP). ¹³C NMR spectrum, δ_{C} , ppm: 25.85 d (Me, ²J_{PC} = 3.7 Hz), 69.86 d (C², ¹J_{PC} = 87.0 Hz), 89.09 d (PhC=C, ³J_{PC} = 7.7 Hz), 88.90 d (PhC=C, ²J_{PC} = 2.2 Hz), 122.83 (C^{*i*} in PhC=), 129.1–129.6, 130.7–132.2 (Ph). ³¹P NMR spectrum: δ_{P} 34.32 ppm. Found, %: C 76.56; H 5.87; P 9.09. C₂₂H₁₉O₂P. Calculated, %: C 76.29; H 5.53; P 8.94.

3-(Diphenylphosphoryl)-1-phenylhex-1-yn-3-ol (IIIb) (Table 1, run no. 5). Yield 0.144 g (77%), white powder, mp 112–114°C (decomp.). IR spectrum, v, cm⁻¹: 3050 (OH), 2218 w (C=C), 1170 (P=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 0.94 t (3H, Me, ³J_{HH} = 7.1 Hz), 1.7–1.9 m (4H, CH₂CH₂), 3.18 br.s (1H, OH), 7.3–8.1 m (15H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 13.57 s (Me), 16.34 d (MeCH₂, ³J_{PC} = 8.4 Hz), 37.89 d (EtCH₂, ²J_{PC} = 3.6 Hz), 72.02 d (COH, ¹J_{PC} = 86.3 Hz), 87.04 d (C², ²J_{PC} = 2.0 Hz), 89.65 d (C¹, ³J_{PC} = 8.0 Hz), 121.62 (Cⁱ in PhC=), 127.68– 128.28, 131.15–132.37 (Ph). ³¹P NMR spectrum: δ_{P} 33.39 ppm. Found, %: C 77.29; H 5.99; P 8.26. C₂₄H₂₃O₂P. Calculated, %: C 76.99; H 6.19; P 8.27.

3-(Diphenylphosphoryl)-4-methyl-1-phenylpent-1-yn-3-ol (IIIc) (Table 1, run no. 7). Yield 0.122 g (65%), white powder, mp 112–113°C (decomp.). IR spectrum, v, cm⁻¹: 3081 (OH), 2215 w (C=C), 1167 (P=O). ¹H NMR spectrum, δ , ppm: 1.08 d (3H, Me, ²J_{HH} = 6.9 Hz), 1.18 d (3H, Me, ²J_{HH} = 6.6 Hz), 2.19 m (1H, Me₂CH), 3.02 br.s (1H, OH), 7.26–8.12 m (15H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 17.48 d (Me, ³J_{PC} = 5.8 Hz), 18.67 d (Me, ³J_{PC} = 3.0 Hz), 35.33 d (Me₂CH, ²J_{PC} = 5.0 Hz), 75.89 d (COH, ¹J_{PC} = 82.8 Hz), 86.89 d (C², ²J_{PC} = 2.0 Hz), 91.16 d (C¹, ³J_{PC} = 8.0 Hz), 122.10 (C^{*i*} in PhC=), 128.39–132.87 (Ph). ³¹P NMR spectrum: δ_{P} 32.74 ppm. Found, %: C 77.26; H 5.97; P 8.11. C₂₄H₂₃O₂P. Calculated, %: C 76.99; H 6.19; P 8.27.

Tertiary bis-phosphine oxides IVa–IVc (general procedure) (Table 2, run nos. 4–6). Diphenylphosphine oxide (I), 1 mmol, was added to a suspension of 0.5 mmol of acetylenic ketone **Ha–Hc** and 0.2 mmol of KOH \cdot 0.5H₂O (water content 15%) in 6 ml of THF. The mixture was stirred under argon at room temperature, and the precipitate was filtered off, washed with diethyl ether and water, and dried under reduced pres-

sure over $CaCl_2$. In run no. 4 (Table 2), the solvent was removed from the mother liquor to isolate 0.062 g (36%) of phosphine oxide **IIIa**.

3,4-Bis(diphenylphosphoryl)-4-phenylbutan-2one (IVa) (Table 2, run no. 4). Yield 0.101 g (37%), white powder, mp 240–242°C. IR spectrum, v, cm⁻¹: 1709 (C=O); 1193, 1179 (P=O). ¹H NMR spectrum, δ , ppm: 1.66 s (3H, Me), 4.74–4.89 m (2H, 3-H, 4-H), 6.40–6.87 m (3H, *o*-H, *p*-H in PhC), 7.11–7.91 m (22H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 32.16 (Me), 46.25 d.d (C⁴, ¹J_{PC} = 63.1, ²J_{PC} = 2.8 Hz), 56.60 d (C³, ¹J_{PC} = 53.9 Hz), 126.64–127.94, 130.31–132.68 (Ph), 203.93 d.d (C=O, ²J_{PC} = 1.4, ³J_{PC} = 2.5 Hz). ³¹P NMR spectrum (CDCl₃), δ_{P} , ppm: 23.42 d (³J_{PP} = 40.2 Hz), 32.93 d (³J_{PP} = 40.2 Hz). Found, %: C 74.16; H 5.51; P 11.51. C₃₄H₃₀O₃P₂. Calculated, %: C 74.44; H 5.51; P 11.29.

1,2-Bis(diphenylphosphoryl)-1-phenylhexan-3one (IVb) (Table 2, run no. 5). Yield 0.236 g (82%), white powder, mp 252–254°C. IR spectrum, v, cm^{-1} : 1707 (C=O); 1190, 1174 (P=O). ¹H NMR spectrum, δ, ppm: 0.34 t (3H, Me), 0.51 m and 0.63 m (1H each, MeCH₂), 1.71 m and 2.57 m (1H each, EtCH₂), 4.73-4.84 m (2H, 1-H, 2-H), 6.45-6.96 m (3H, o-H, p-H in PhCH), 7.0-8.0 m (22H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 12.95 (Me), 15.51 (MeCH₂), 48.64 (CH₂C=O), 46.15 d.d (C¹, ${}^{1}J_{PC} = 62.5$, ${}^{2}J_{PC} = 2.4$ Hz), 56.15 d (C^2 , ${}^1J_{PC}$ = 54.5 Hz), 127.16–128.45, 130.77– 133.24 (Ph), 209.35 d.d (C=O, ${}^{2}J_{PC} = 1.0$, ${}^{3}J_{PC} =$ 1.5 Hz). ³¹P NMR spectrum, δ_P , ppm: 23.46 d (³ J_{PP} = 41.50 Hz), 32.42 d (${}^{3}J_{PP}$ = 41.50 Hz). Found, %: C 74.67; H 6.14; P 11.01. C₃₆H₃₄O₃P₂. Calculated, %: C 74.99; H 5.94; P 10.74.

1,2-Bis(diphenylphosphoryl)-4-methyl-1-phenylpentan-3-one (IVc) (Table 2, run no. 6). Yield 0.150 g (52%), white powder, mp 226–228°C. IR spectrum, v, cm⁻¹: 1706 (C=O); 1192, 1185 (P=O). ¹H NMR spectrum, δ , ppm: 0.28 d and 0.52 d (3H each, Me, ${}^{3}J_{\text{HH}} =$ 6.9 Hz), 2.35 m (Me₂CH), 4.83 d.d.d (1H, 1-H, ${}^{3}J_{HH} =$ 11.3, ${}^{2}J_{PH} = 5.1$, ${}^{3}J_{PH} = 6.0$ Hz), 5.00 d.d.d (1H, 2-H, ${}^{3}J_{\rm HH} = 11.3$, ${}^{2}J_{\rm PH} = 8.6$, ${}^{3}J_{\rm PH} = 9.0$ Hz), 6.60–6.70 m (3H, o-H, p-H in PhCH), 6.9-8.0 m (22H, H_{arom}). 13 C NMR spectrum, δ_{C} , ppm: 17.25 and 17.29 (Me), 44.02 (Me₂CH), 45.68 d.d (C¹, ${}^{1}J_{PC} = 62.5$, ${}^{2}J_{PC} =$ 3.0 Hz), 54.46 d (C^2 , ${}^1J_{PC} = 54.7$ Hz), 127.04–128.33, 130.48–132.87 (Ph), 209.35 d.d (C=O, ${}^{2}J_{PC} = 1.5$, ${}^{3}J_{PC} = 3.0$ Hz). ${}^{31}P$ NMR spectrum, δ_{P} , ppm: 24.59 d $({}^{3}J_{PP} = 41.5 \text{ Hz}), 32.79 \text{ d} ({}^{3}J_{PP} = 41.5 \text{ Hz}).$ Found, %: C 74.75; H 6.11; P 10.53. C₃₆H₃₄O₃P₂. Calculated, %: C 74.99; H 5.94; P 10.74.

Tertiary phosphine oxides VIa–VIc (general procedure) (Table. 3, run nos. 3–5). A mixture of 0.5 mmol of bis(2-phenylethyl)phosphine oxide (V), 0.5 mmol of acetylenic ketone IIa–IIc, and 0.1 mmol of KOH \cdot 0.5H₂O (water content 15%) in 4 ml of THF was stirred for 35 h under argon at room temperature. The suspension was passed through a thin layer of aluminum oxide, the solvent was removed under reduced pressure, the residue was ground with 5 ml of diethyl ether, and the precipitate was filtered off and dried under reduced pressure.

2-[Bis(2-phenylethyl)phosphoryl]-4-phenylbut-3yn-2-ol (VIa) (Table 3, run no. 3). Yield 0.135 g (67%), white powder, mp 103-105°C (decomp.). IR spectrum, v, cm⁻¹: 3131 (OH), 2225 w (C≡C), 1158 (P=O). ¹H NMR spectrum, δ , ppm: 1.90 d (3H, Me, ${}^{3}J_{\rm PH} = 12.4$ Hz), 2.1-2.6 m (4H, CH₂P), 2.9-3.2 m (4H, CH₂Ph), 5.63 br.s (1H, OH), 7.2–7.4 m (15H, H_{arom}). ¹³C NMR spectrum, δ_c , ppm: 24.69 d (Me, ${}^{2}J_{PC} = 3.6$ Hz), 26.90 d (CH₂P, ${}^{1}J_{PC} = 60.8$ Hz), 27.65 d $(CH_2P, {}^{1}J_{PC} = 57.2 \text{ Hz}), 28.19 \text{ d} (CH_2Ph, {}^{2}J_{PC} =$ 3.6 Hz), 28.26 d (CH₂Ph, ${}^{2}J_{PC} = 2.8$ Hz), 67.96 d $(C^2, {}^1J_{PC} = 80.0 \text{ Hz}), 87.75 \text{ d} (PhC \equiv, {}^3J_{PC} = 7.2 \text{ Hz}),$ 88.33 d (PhC=C, ${}^{2}J_{PC} = 2.0$ Hz), 121.97 (C^{*i*} in PhC=), 126.46 m (C^o in CH₂Ph), 128.15–128.95 (C^m, C^p in CH₂Ph, PhC≡), 131.70 (C^o in PhC≡), 141.15–141.28 (C^{*i*} in CH₂Ph). ³¹P NMR spectrum: δ_P 51.49 ppm. Found, %: C 77.86; H 6.89; P 7.99. C₂₆H₂₇O₂P. Calculated, %: C 77.59; H 6.76; P 7.70.

3-[Bis(2-phenylethyl)phosphoryl]-1-phenylhex-1-yn-3-ol (VIb) (Table 3, run no. 4). Yield 0.136 g (63%), white powder, mp 117-119°C (decomp.). IR spectrum, v, cm⁻¹: 3083 (OH), 2221 w (C≡C), 1145 (P=O). ¹H NMR spectrum, δ , ppm: 1.05 t (3H, Me, ${}^{3}J_{\text{HH}} = 7.0 \text{ Hz}$, 1.87 m (2H, MeCH₂), 2.1–2.6 m (6H, CH₂P, EtCH₂), 2.9–3.2 m (4H, CH₂Ph), 4.32 br.s (1H, OH), 7.2–7.4 m (15H, H_{arom}). ¹³C NMR spectrum, δ_C , ppm: 14.30 s (Me), 16.91 d (MeCH₂, ${}^{3}J_{PC} = 7.9$ Hz), 27.11 d (PCH₂, ${}^{1}J_{PC} = 60.0$ Hz), 27.60 d (PCH₂, ${}^{1}J_{PC} =$ 58.0 Hz), 28.23 s (PhCH₂), 38.33 d (EtCH₂, ${}^{2}J_{PC}$ = 2.4 Hz), 71.40 d (C³, ${}^{1}J_{PC} = 79.5$ Hz), 87.15 d (C², ${}^{2}J_{PC} = 1.9$ Hz), 88.72 d (C¹, ${}^{3}J_{PC} = 7.6$ Hz), 122.01 (Cⁱ) in PhC≡), 126.39 m (C^o in CH₂Ph), 128.14–128.88 $(C^m, C^p \text{ in } CH_2Ph, PhC \equiv)$, 131.73 $(C^o \text{ in } PhC \equiv)$, 141.21–141.65 (C^{i} in CH₂Ph). ³¹P NMR spectrum: δ_P 51.45 ppm. Found, %: C 78.38; H 7.49; P 7.31. C₂₈H₃₁O₂P. Calculated, %: C 78.12; H 7.26; P 7.19.

3-[Bis(2-phenylethyl)phosphoryl]-4-methyl-1phenylpent-1-yn-3-ol (VIc) (Table 3, run no. 5). Yield 0.041 g (19%), white powder, mp 117–118°C (decomp.). IR spectrum, v, cm⁻¹: 3132 (OH), 2225 w (C=C), 1144 (P=O). ¹H NMR spectrum, δ, ppm: 1.23 d (3H, Me, ³*J*_{HH} = 6.3 Hz), 1.25 d (3H, Me, ³*J*_{HH} = 6.0 Hz), 2.11–2.40 m (4H, PCH₂), 2.88–3.20 m (5H, CH₂Ph, OH), 7.2–7.4 m (15H, H_{aron}). ¹³C NMR spectrum, δ_C, ppm: 17.04 d (Me, ³*J*_{PC} = 4.8 Hz), 18.37 d (Me, ³*J*_{PC} = 1.8 Hz), 27.79 s (PhCH₂), 28.01 d (PCH₂, ¹*J*_{PC} = 61.9 Hz), 34.74 d (CH, ²*J*_{PC} = 2.6 Hz), 74.38 d (C³, ¹*J*_{PC} = 77.0 Hz), 85.71 d (C², ²*J*_{PC} = 1.0 Hz), 89.27 d (C¹, ³*J*_{PC} = 7.4 Hz), 121.47 (C^{*i*} in PhC=), 125.92, 126.03 (C^{*o*} in CH₂Ph), 127.66–128.54 (C^{*m*}, C^{*p*} in CH₂Ph, PhC=), 131.32 (C^{*o*} in PhC=), 140.80, 141.11 (C^{*i*} in CH₂Ph). ³¹P NMR spectrum (CDCl₃): δ_P 52.91 ppm. Found, %: C 78.30; H 7.32; P 7.61. C₂₈H₃₁O₂P. Calculated, %: C 78.12; H 7.26; P 7.19.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 07-03-00562).

REFERENCES

- Noyori, R., Ohkuma, T., Kitamura, M., Takaya, H., Sayo, N., Kumobayashi, H., and Akutagawa, S., J. Am. Chem. Soc., 1987, vol. 109, p. 5856.
- Hayashi, M., Takezaki, H., Hashimoto, Y., Takaoki, K., and Saigo, K., *Tetrahedron Lett.*, 1998, vol. 39, p. 7529.
- Tolis, E.I., Vallianatou, K.A., Andreadaki, F.J., and Kostas, I.D., *Appl. Organomet. Chem.*, 2006, vol. 20, p. 335.
- Snee, P.T., Somers, R.C., Nair, G., Zimmer, J.P., Bawendi, M.G., and Nocera, D.G., *J. Am. Chem. Soc.*, 2006, vol. 128, p. 13320.
- Paine, R.T., Bond, E.M., Parveen, S., Donhart, N., Duesler, E.N., Smith, K.A., and Nöth, H., *Inorg. Chem.*, 2002, vol. 41, p. 444.
- Alguacil, F.J. and Alonso, M., *Hydrometallurgy*, 2004, vol. 74, p. 157.
- Chan, Z., Yan-Zhao, Y., Tao Z., Jian, H., and Chang-Hong, L., *J. Radioanal. Nucl. Chem.*, 2005, vol. 265, p. 419.
- Plotnikova, G.V., Malysheva, S.F., Gusarova, N.K., Khaliullin, A.K., Udilov, V.P., and Kuznetsov, K.L., *Zh. Prikl. Khim.*, 2008, vol. 81, p. 314.
- Yin, J., Lin, Y., Cao, X., Yu, G.-A., Tu, H., and Liu, S.H., *Dyes Pigm.*, 2009, vol. 81, p. 152.
- Subhan, M.A., Hasegawa, Y., Suzuki, T., Kaizaki, S., and Shozo, Y., *Inorg. Chim. Acta*, 2009, vol. 362, p. 136.
- Gusarova, N.K., Arbuzova, S.N., Shaikhudinova, S.I., Kazantseva, T.I., Reutskaya, A.M., Ivanova, N.I., Papernaya, L.K., and Trofimov, B.A., *Phosphorus, Sulfur, Silicon Relat. Elem.*, 2001, vol. 175, p. 163.
- Gusarova, N.K., Ivanova, N.I., Reutskaya, A.M., Arbuzova, S.N., Baikalova, L.V., Deryagina, E.N., Russav-

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 46 No. 4 2010

skaya, N.V., and Trofimov, B.A., Russ. J. Org. Chem., 2001, vol. 37, p. 1726.

- Ivanova, N.I., Gusarova, N.K., Reutskaya, A.M., Shaikhudinova, S.I., Arbuzova, S.N., and Trofimov, B.A., *Russ. J. Gen. Chem.*, 2003, vol. 73, p. 877.
- Takaku, H., Miyamoto, Y., Asami, S., Shimazaki, M., Yamada, S., Yamamoto, K., Udagawa, N., DeLuca, H.F., and Shimizu, M., *Bioorg. Med. Chem.*, 2008, vol. 16, p. 1796.
- 15. Stockland, R.A., Taylor, R.I., Thompson, L.E., and Patel, P.B., *Org. Lett.*, 2005, vol. 7, p. 851.
- Trofimov, B.A., Sukhov, B.G., Malysheva, S.F., and Gusarova, N.K., *Katal. Promst.*, 2006, p. 18.
- 17. Arbuzova, S.N., Gusarova, N.K., and Trofimov, B.A., *Arkivoc*, 2006, part (v). p. 12.
- Kawaguchi, S., Nomoto, A., Sonoda, M., and Ogawa, A., *Tetrahedron Lett.*, 2009, vol. 50, p. 624.
- Glotova, T.E., Dvorko, M.Yu., Arbuzova, S.N., Ushakov, I.A., Verkhoturova, S.I., Gusarova, N.K., and Trofimov, B.A., *Lett. Org. Chem.*, 2007, vol. 4, p. 109.
- 20. Kleiner, H.-J., Justus Liebigs Ann. Chem., 1974, p. 751.
- Well, M. and Schmutzler, R., *Phosphorus, Sulfur Silicon Relat. Elem.*, 1992, vol. 72, p. 171.
- 22. Gusarova, N.K., Reutskaya, A.M., Ivanova, N.I., Medvedeva, A.S., Demina, M.M., Novopashin, P.S., Afo-

nin, A.V., Albanov, A.I., and Trofimov B.A., J. Organomet. Chem., 2002, vol. 659, p. 172.

- Ivanova, N.I., Reutskaya, A.M., Gusarova, N.K., Medvedeva, S.A., Afonin, A.V., Ushakov, I.A., Tatarinova, A.A., and Trofimov, B.A., *Russ. J. Gen. Chem.*, 2003, vol. 73, p. 1354.
- Ivanova, N.I., Gusarova, N.K., Nikitina, E.A., Albanov, A.I., Sinegovskaya, L.M., Nikitin, M.V., Konovalova, N.A., and Trofimov, B.A., *Phosphorus, Sulfur Silicon Relat. Elem.*, 2004, vol. 179, p. 7.
- Dvorko, M.Yu., Glotova, T.E., Ushakov, I.A., Gusarova, N.K., and Trofimov, B.A., *Russ. J. Org. Chem.*, 2008, vol. 44, p. 1245.
- Nifant'ev, E.E., *Khimiya gidrofosforil'nykh soedinenii* (Chemistry of Hydrophosphoryl Compounds), Moscow: Nauka, 1983.
- Kormachev, V.V. and Fedoseev, M.S., *Preparativnaya khimiya fosfora* (Preparative Phosphorus Chemistry), Perm: Ural. Otd. Ross. Akad. Nauk, 1992.
- Trofimov, B.A., Gusarova, N.K., Malysheva, S.F., Arbuzova, S.N., Shaikhudinova, S.I., and Sukhov, B.G., *Nauka Proizv.*, 2003, no. 6, p. 10.
- Shostakovskii, M.F., Nakhmanovich, A.S., Knutov, V.N., and Klochkova, L.G., *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim.*, 1968, issue 12, no. 5, p. 104.