Ein neuer Zugang zu Silberbismutaten

C. P. M. Oberndorfer und M. Jansen*

Stuttgart, Max-Planck-Institut für Festkörperforschung

Bei der Redaktion eingegangen am 13. Februar 2002.

Inhaltsübersicht. Ag₂BiO₃, Ag₃BiO₃, Ag₅BiO₄ und Ag₂₅Bi₃O₁₈ waren bisher nur über Hochdrucksynthesen zugänglich. Hier wird über eine einfachere und schnellere Syntheseroute durch die Reaktion von Oxiden in konzentrierten KOH-Lösungen berichtet, die

A New Approach to Silverbismuthates

Abstract. So far, Ag_2BiO_3 , Ag_3BiO_3 , Ag_5BiO_4 , and $Ag_{25}Bi_3O_{18}$ were only accessible through high pressure syntheses. A much more convenient synthesis route for these phases by reacting solid oxides in highly concentrated aequeous solutions of KOH is presented here. In each case single phased powders have been obtained, which

phasenreine Pulver liefert. Die Ergebnisse der chemischen Analyse, sowie der röntgenographischen und thermoanalytischen Untersuchungen werden vorgestellt.

were characterized by chemical analysis, x-ray diffraction and thermoanalysis.

Keywords: Bismuthates; Silverbismuthate; Mixed-valent compounds

Einleitung

Bisherige Untersuchungen an Silberoxobismutaten offenbaren eine facettenreiche Strukturchemie. Die silberreichen Vertreter dieser Verbindungsklasse zeigen Ausordnungen der d¹⁰-konfigurierten Silberionen zu größeren Verbänden, die auf eine direkte Wechselwirkung hinweisen [1]. Dies führt zu Ag-Ag-Abständen, die nahe denen im metallischen Silber sind. Die Bi-O-Teilstrukturen zeigen eine große Vielfalt. Für die Koordination von Bi^{III} dominiert das Motiv der quadratischen Pyramide, die zu Dimeren (Ag₅BiO₄, [2]), Hexameren (Ag₃BiO₃, [2]) oder Ketten (Ag₄Bi₂O₅, [3]) verknüpft sein kann. In dem gemischtvalenten Ag₂₅Bi₃O₁₈ [4] liegen isolierte Polyeder vor und die entsprechenden Oxidationsstufen sind kristallchemisch unterscheidbar. Bismut(V) ist oktaederisch und Bismut(III) in einer trigonalen (3+3) Koordination von Sauerstoff umgeben. Dagegen findet man in Ag₂BiO₃ [5] Stränge aus kantenverknüpften Oktaedern, deren Zentralion nur einer Punktlage zugeordnet werden kann. AgBiO₃ [6], die einzig bekannte Verbindung in dieser Reihe, die ausschließlich Bi^V enthält, ist isostrukturell zu KBiO3 und aus regelmäßigen, über eine Kante dimerisierten BiO₆-Oktaedern aufgebaut.

Die Darstellung der Silberbismutate ist ebenso wie die anderer ternärer Silberoxide durch die thermische Instabili-

Heisenbergstr. 1 D-70569 Stuttgart

Tel: 0711/689-1500

Fax: 0711/689-1502

e-mail: jansen@fkf.mpg.de

tät der binären Silberoxide erschwert. Klassische Hochtemperatur-Festkörperreaktionen führen im allgemeinen nicht zum Ziel. Als Alternativen haben sich im wesentlichen zwei Verfahren bewährt. Hohe Sauerstoffpartialdrücke während der Synthesen wurden erfolgreich angewendet, um das Silberoxid auch bei hohen Temperaturen zu stabilisieren und auf diese Weise eine festkörperchemische Umsetzung mit anderen Metalloxiden zu ermöglichen. Ein Großteil der bekannten Silberbismutate konnte auf diesem Weg synthetisiert und strukturell aufgeklärt werden [2, 3, 4, 5]. Ein zweiter Weg eröffnet sich durch Fällungsreaktionen, die bei Raumtemperatur durchgeführt werden können und feinkristalline Pulver liefern. Beispiele hierfür sind Ag₂PbO₂ [7] und Ag₂Cu₂O₃ [8]. Eine erwähnenswerte Ausnahme von diesen Strategien zeigt sich für die Darstellung von AgBiO₃, das unter Normalbedingungen durch eine Ionenaustauschreaktion von KBiO3 dargestellt werden kann [6]. Die hier vorgestellte Methode der Umsetzung der Oxide in stark alkalischen Medien ist eine neue Variante und eröffnet einen stark vereinfachten Zugang zu Silberoxobismutaten.

Experimentelles

Verwendete Chemikalien: Ag₂O wurde durch Fällung aus einer salpetersauren Silbernitratlösung durch Zugabe einer 2 M KOH-Lösung hergestellt. Der Niederschlag wurde abgesaugt, mehrfach gewaschen und unter Lichtschutz über festem KOH getrocknet. AgBiO₃ wurde nach [6] hergestellt, röntgenographisch auf Phasenreinheit untersucht und unter Lichtschutz über P₂O₅ aufbewahrt. Als Bismutkomponente diente Bi₂O₃ der Firma Chempur (99.8 %).

Ag₃BiO₃, Ag₅BiO₄: Bi₂O₃ und Ag₂O wurden im molaren Verhältnis 3:1 bzw. 5:1 eingewogen, innig verrieben und in einen bedeckten Teflontiegel (5 ml Volumen) gefüllt. Typische Einwaagen betrugen ca. 800 mg für Bi₂O₃. Die Mischung wurde mit 2 ml 60 %iger KOH

^{*} Prof. Dr. M. Jansen

Max-Planck-Institut für Festkörperforschung

Abb. 1 Rasterelektronenmikroskopische Aufnahme von Ag₂₅Bi₃O₁₈

versetzt und auf einem Sandbad 6 h bei 90 °C unter Lichtschutz gerührt. Das Produkt wurde über eine Glasfritte abgesaugt und nacheinander mit heißer 50 %iger KOH, destilliertem Wasser und Aceton gewaschen und anschließend an Luft getrocknet. Beide Substanzen entstehen als mikrokristalline Pulver, wobei Ag₃BiO₃ orange-braun und Ag₅BiO₄ dunkelrot anfällt. Die Verbindungen sind an Luft und gegen Wasser stabil und können unter Lichtschutz aufbewahrt werden.

Ag₂BiO₃. Ag₃BiO₃ (nach der oberen Vorschrift dargestellt) und AgBiO₃ wurden im Verhältnis 1:1 eingewogen (typischer Ansatz: AgBiO₃ ca. 700 mg), verrieben und in einem bedeckten Becherglas mit 10 ml 50 %iger KOH drei Stunden lang bei 100 °C unter Lichtschutz gerührt. Das Produkt wurde über eine Glasfritte abgesaugt und mit Wasser gewaschen. Das braunschwarze, mikrokristalline Produkt wurde an Luft getrocknet.

 $Ag_{25}Bi_3O_{18}$: AgBiO₃, Bi₂O₃ und Ag₂O wurden im molaren Verhältnis 1:1:12 (typischer Ansatz: 400 mg Bi₂O₃) verrieben und in einen 50 ml Rundkolben überführt. Nach Zugabe einer Lösung aus 30 g KOH in 30 ml H₂O wurde der Ansatz auf einem Sandbad 24 h unter Rückfluß gerührt. Die überstehende Lauge wurde noch heiß abdekantiert und das Produkt über eine Fritte abgesaugt. Es wurde mehrmals mit kleinen Portionen heißer 50 %iger KOH, dann mit Wasser gewaschen und an Luft getrocknet. Man erhält ein silbrig graues Pulver mit metallisch glänzenden, gut ausgebildeten Kristalliten (Abb. 1).

Die erhaltenen Pulver wurden röntgenographisch untersucht (STADI P-Diffraktometer mit Imaging Plate Position Sensitive Detector, CuK_{α 1}-Strahlung). Die Gitterkonstantenbestimmung erfolgte unter Verwendung der korrigierten Daten (externer Standard Si) durch Indizierung (Tab. 1). Das Kationenverhältnis wurde durch chemische Analyse nach Auflösen der Produkte in halbkonzentrierter HNO₃ mit ICP OES (Inductive coupled plasma optical emission spectrometer/TJA, Offenbach) bestimmt. Darüberhinaus wurden die Proben durch Mikroanalyse (DSM 940, EDAX, Fa. Zeiss) charakterisiert. Das thermische Verhalten wurde mittels simultaner Thermoanalyse DTA/TG (STA 429, Netzsch, Selb) untersucht. Die hier angegebenen Daten der Thermogravimetrie sind auftriebskorrigiert.

 Tabelle 1
 Gitterkonstanten der Produkte im Vergleich zu denen der Hochdruckversuche (Pulverdaten)

Verbindung	Fällungsroute	Raumgruppe Literatur	Hochdruckroute
Ag ₃ BiO ₃	a = 14.199(2) Å	I4 ₁	a = 14.1924(1) Å
	c = 8.808(2) Å	[2]	c = 8.7997(1) Å
Ag ₅ BiO ₄	a = 5.849(2) Å	$P2_{1}/c$	a = 5.855(1) Å
	b = 8.992(4) Å	[2]	b = 8.984(1) Å
Ag ₂ BiO ₃	$\beta = 91.31(3)^{\circ}$ $\beta = 5.990(1) \text{ Å}$	Pnna	c = 12.457(1) A $\beta = 91.49(1)^{\circ}$ a = 5.975(1) Å
	b = 6.330(1) Å c = 9.575(3) Å	[5]	b = 6.311(1) Å c = 9.563(2) Å
$Ag_{25}Bi_3O_{18}$	a = 11.5927(9) Å	P3	a = 11.589(1) Å
	c = 6.2418(8) Å	[4]	c = 6.239(1) Å

Abb. 2 Pulverdiffraktogramm von Ag₃BiO₃ (senkrechte Linien: JCPDS [81-1713])

Ergebnisse und Diskussion

Bei den vorgestellten Synthesen geht keine der eingesetzten Ausgangskomponenten vollständig in Lösung. Alle Reaktionen verlaufen in Suspension und unterscheiden sich somit von herkömmlichen Fällungsreaktionen. Es ist anzunehmen, daß zwar nur eine geringe Löslichkeit der Edukte besteht, die Produkte jedoch ein noch geringeres Löslichkeitsprodukt in alkalischem Medium besitzen, so daß das Gleichgewicht zugunsten der jeweiligen Reaktionsprodukte verschoben wird.

Die Kristallinität aller Verbindungen kann prinzipiell durch längere Reaktionszeiten und höhere Temperaturen gesteigert werden, allerdings zeigt sich gleichzeitig eine Tendenz zur Abscheidung von elementaren Silber. Gleiches Verhalten zeigte sich auch beim Ersatz von Silberoxid durch Silbernitrat als Edukt.

Die Diffraktogramme der Produkte entsprechen den jeweiligen JCPDS-Daten (Abb. 2–4). Da für Ag_2BiO_3 keine Daten vorlagen, wurde zum Vergleich ein Pulverdiagramm aus den Einkristalldaten [5] berechnet (Abb. 5). Die Untersuchungen geben in keinem Fall Hinweise auf Fremdpha-

Abb. 3 Pulverdiffraktogramm von Ag₅BiO₄ (senkrechte Linien: JCPDS [81-1714])

Abb. 4 Pulverdiffraktogramm von Ag₂₅Bi₃O₁₈ (senkrechte Linien: JCPDS [80-2246])

Abb. 5 Pulverdiffraktogramm von Ag_2BiO_3 (unten: gemessen, oben: berechnetes Diffraktogramm aus Daten nach [5])

Abb. 6 Ergebnis der thermogravimetrischen Untersuchungen für Ag_3BiO_3 , Ag_5BiO_4 , $Ag_{25}Bi_3O_{18}$ (10 K/min, 100 ml Ar/min, Korundtiegel. Gestrichelte Linien zeigen den gemäß Gleichung (1) erwarteten Massenverlust)

Abb. 7 Ergebnis der thermogravimetrischen Untersuchungen für Ag_2BiO_3 (5 K/min, 100 ml Ar/min, Korundtiegel. Gestrichelte Linien zeigen den gemäß Gleichung (1) erwarteten Massenverlust)

sen. Zusätzlich wurden die Gitterkonstanten durch ein least squares Verfahren ermittelt (Tab. 1).

Die Thermoanalysen bestätigen innerhalb der Fehlergrenzen die Zersetzung gemäß

$$Ag_aBi_bO_c \rightarrow a Ag + b/2 Bi_2O_3 + (c/2-3b/4) O_2$$
 (1)

Die Sauerstoffabgabe beträgt 4.08 % (berechnet 4.13 %) für Ag_3BiO_3 , 4.86 % (4.92 %) für Ag_5BiO_4 und 5.98 % (5.98 %) für $Ag_2Bi_3O_{18}$ und verläuft ohne isolierbare Zwischenprodukte (Abb. 6). Es ergaben sich keine Anzeichen für den Einbau von Wasser.

Dagegen verläuft die thermische Zersetzung von Ag_2BiO_3 (gesamter Massenverlust berechnet: 5.08 %, gefunden: 4.91 %) zweistufig (Abb. 7). Der erste Massenverlust von 1.57 % entspricht einer Sauerstoffabgabe von 0.46 Formeleinheiten. Ein isothermer Abbau (5 h bei 350 °C,

Abb. 8 Diffraktogramme der Produkte für unterschiedliche Reaktionszeiten von Ansätzen für $Ag_{25}Bi_3O_{18}$ (senkrechte Linien zeigen JCPDS-Daten für Ag_2O [41-1104] (unten) und $Ag_{25}Bi_3O_{18}$ [80-2246] (oben))

Ar) führt zu einem Zerfall in Ag, O_2 und eine noch unbekannte Phase aus dem System Ag-Bi-O.

Durch qualitative Analysen mittels EDAX wurden in allen Proben die Elemente Ag, Bi und O nachgewiesen. Verunreinigungen, insbesondere durch Kalium oder Silicium, das für gewöhnlich durch stark alkalische Lösungen aus Glasgeräten herausgelöst wird, konnten als Produktbestandteil ausgeschlossen werden. Quantitative chemische Analysen der erhaltenen Pulver ergaben die Ag:Bi-Massenprozentverhältnisse für Ag₂BiO₃: 47.1:44.5 (ber. 45.6:44.2), Ag₃BiO₃: 56.6:36.2 (55.7:36.0), Ag₅BiO₄: 67.7:25.9 (66.4:25.7) und Ag₂₅Bi₃O₁₈: 75.4:17.7 (74.7:17.4) und bestätigen die Zusammensetzungen innerhalb der Meßgenauigkeit. Die größte Abweichung von den erwarteten Werten zeigte sich bei Ag_2BiO_3 und könnte auf einen geringfügigen Sauerstoffverlust während der Reaktion hindeuten.

Die längere Reaktionsdauer bei Ag25Bi3O18 wird offenbar durch das Auftreten eines Zwischenprodukts bedingt. Seine Existenz konnte durch die röntgenographische Untersuchung der Produkte aus gleichartigen Umsetzungen nach unterschiedlichen Reaktionszeiten belegt werden (Abb. 8). Nach einer Stunde Reaktionszeit zeigen sich im wesentlichen die Reflexe von nicht umgesetztem Ag₂O. Mit längerer Reaktionsdauer wird als Hauptphase eine noch ungenügend charakterisierte Verbindung der ungefähren Bruttoformel Ag_{7+x}BiO₆ gebildet, die bereits in Hochdruckversuchen gefunden wurde [9,10]. Bei langen Reaktionszeiten bilden sich reinphasige Pulver von Ag₂₅Bi₃O₁₈ mit relativ großen, hexagonalen Kristallen (Abb. 1). Gemenge beider Phasen lassen sich durch Dekantieren in Aceton gut trennen, da das Nebenprodukt sehr feinkristallin anfällt und Ag25Bi3O18 sich aufgrund der wesentlich größeren Kristallite schneller absetzt.

Im Gegensatz zu den bisher bekannten zeichnet sich die hier vorgestellte Methode zur Darstellung von Silberoxobismutaten durch einen geringeren apparativen und zeitlichen Aufwand aus. Lediglich $Ag_4Bi_2O_5$ konnte mit diesem Synthesetyp bisher noch nicht hergestellt werden, obwohl diese Verbindung in Relation zu den anderen im Autoklaven bei den mildesten Bedingungen entsteht. Eine entsprechende Umsetzung von Ag_2O mit Bi_2O_3 unter den hier verwendeten Bedingungen führte zu inhomogenen Pulvern mit Ag_3BiO_3 als Hauptbestandteil.

Literatur

- M. Jansen, Angew. Chem. 1987, 99, 1136–1149; Angew. Chem. Int. Ed. 1987, 26, 1098–1110.
- [2] M. Bortz, M. Jansen, Z. Anorg. Allg. Chem. 1993, 619, 1446-1454.
- [3] M. Jansen, S. Deibele, J. Solid State Chem. 1996, 622, 539-542.
- [4] M. Bortz, M. Jansen, Z. Anorg. Allg. Chem. 1992, 612, 113–117.
- [5] S. Deibele, M.Jansen, J. Solid State Chem. 1999, 147, 117–121.
- [6] R. Scholder, H. Stobbe, Z. Anorg. Allg. Chem. 1941, 247, 392-414.
- [7] M. Jansen, M. Bortz, Z. Anorg. Allg. Chem. 1989, 579, 123–128.
- [8] P. Gómez-Romero, E. M. Tejada-Rosales, M. Rosa Palacín, Angew. Chem. 1999, 111, 544–546; Angew. Chem. Int. Ed. 1999, 38, 524–525.
- [9] M. Bortz, Dissertation, Univ. Bonn 1993.
- [10] S. Deibele, Disserrtation, Univ. Bonn 1998.