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ABSTRACT: An iron-catalyzed borrowing hydrogen strategy has
been applied in the synthesis of β-branched carbonyl compounds.
Various secondary benzylic and aliphatic alcohols have been used as
alkylating reagents under mild reaction conditions. The ketones have
been isolated in good to excellent yield. Deuterium labeling
experiments provide evidence that the alcohol is the hydride source
in this reaction and that no reversible step or hydrogen/deuterium
scrambling takes place during the process.

The α-alkylation of ketones is one of the well-studied
carbon−carbon bond-forming reactions. Traditionally,

this reaction implies the formation of an enolate and the
addition of halide or pseudohalide derivatives under cryogenic
conditions.1 Although this method is still often used, it
presents severe drawbacks such as the generation of waste and
the use of hazardous and toxic chemicals.2 Finally, whereas the
alkylation of enolate with primary electrophiles is usually a
powerful process, the alkylation with secondary alkyl halides is
much more challenging because competitive side reactions
such as elimination can occur. In this context, new strategies
have recently been developed. The borrowing hydrogen is now
an alternative to the traditional enolate chemistry. This
hydrogen autotransfer process consists of a cascade of
dehydrogenation, condensation, and reduction steps and
allows the direct coupling of a ketone and alcohol under
basic conditions.3 The advantages of this methodology, besides
the use of alcohols as electrophiles, rely on the formation of
water as the only sole side product and the employment of
noncryogenic conditions. A plethora of metal-based complexes,
including Earth-abundant ones, have already been reported in
the literature.4,5 However, whereas the alkylation of ketones
with primary alcohols is well explored, alkylation with
secondary alcohols is still underexplored.6−8 Donohoe and
coworkers reported that an iridium catalyst could catalyze the
α-alkylation of pentamethylphenyl (Ph*) acetophenone with
primary and secondary alcohols in the presence of an excess of
base (3−5 equiv) at 85−115 °C (Scheme 1).6 The
corresponding alkylated ketones were isolated in good to
excellent yield. The introduction of the Ph* substituent was
the key for the success of the procedure for the following
reasons: (a) The ortho-disubstitution of the phenyl ring
generates a steric hindrance and consequently a twist out of the
conjugation with the carbonyl function; (b) the Ph* group
prevents the self-dimerization of the starting ketone; and (c)
the Ph* alkylated ketones can be further functionalized via a

treatment with bromine and the formation of an acyl bromide.6

Sundararaju described the first example of an Earth-abundant
metal-based complex for the alkylation of the Ph* ketone with
secondary alcohols.7 The cobalt(III)-catalyzed hydrogen
autotransfer strategy with an excess of secondary alcohols (2
equiv) and of base (2 equiv) at high temperature (150 °C) led
to the alkylated ketones in moderate to good yield (33−86%,
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Scheme 1. Previous Work in the Alkylation of Ketones with
Secondary Alcohols
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Scheme 1). Again, the Ph* group appeared to be crucial for the
favorable outcome of the strategy. Other ortho disubstituted
phenyl rings proved to be less successful, and almost no
alkylated product was isolated from the nonsubstituted aryl
ketones.7 Gunanathan explored a ruthenium-catalyzed cross-
coupling reaction of secondary alcohols, leading to β-
substituted aromatic ketones (Scheme 1).8 This methodology
allowed the synthesis of a variety of β-branched aromatic
ketones in moderate to excellent yield (30−90%) and was not
limited to the use of Ph* benzylic alcohol. Remarkably, the Ru-
Macho complex oxidized the alkyl alcohols faster than the
benzylic ones, and the aromatic enones were selectively formed
and reduced.
Even if these pioneer works open new opportunities in

sustainable chemistry, some limitations are still present. These
procedures are based on the use of platinum-based metal
complexes or of expensive phosphine ligands or required high
reaction temperatures.
We and Morrill have recently demonstrated that the

diaminocyclopentadienone iron tricarbonyl complex Fe1 was
an efficient catalyst for the alkylation of ketones, amines,
oxindoles, indoles, and alcohols with a large variety of primary
alcohols, including methanol.9,10 We have also showed that
Fe1 could catalyzed the chemoselective reduction of various
α,β-unsaturated ketones into saturated ketones under basic
conditions.11 Interestingly, trisubstituted alkenes were hydro-
genated under these hydride transfer conditions.11 These
precedents open the way to the alkylation of ketones with
secondary alcohols catalyzed by a phosphine-free cyclo-
pentadienone iron carbonyl complex (Scheme 2).

The borrowing hydrogen reaction between 1-mesitylethan-
1-one and 1-phenylethan-1-ol was initially chosen as a model
reaction to define the optimized reaction conditions (Table 1
and Table S1). Me3NO was used to activate Fe1, Fe3, and Fe4
and liberate a vacant site,12,13 and Fe2 was thermally activated
at 70 °C.10d,11 A rapid examination of the temperature, in the
presence of Fe1 as a catalyst, 1 equiv of ketone, and 2 equiv of
alcohol in toluene, showed that almost no reaction occurred
below 110 °C (entries 1−3, Table S1). Apart from the
temperature, the key parameter was the base. NaOtBu gave a
full conversion when other bases such as Cs2CO3, NaOMe,
NaOH, or K3PO4 led to the alkylated ketone in a much lower
conversion (entries 2−6, Table 1). Moreover, a stoichiometric
amount of base has to be used to maintain a high activity
(entries 1 and 2, Table 1). Reducing the amount of alcohol to
1.5 equiv did not modify the activity (entries 6 and 7, Table 1).
Various solvents, such as cyclopentyl methyl ether (CPME)

and tert-butanol, could be introduced in this alkylation, but the
conversions were somewhat lower (76 and 79% conversion,
respectively, Table 1 entries 8 and 9). Whereas complex Fe1
was the sole efficient complex in the α-alkylation of ketones
with primary alcohols, β-branched ketones have been obtained
under these reaction conditions from secondary alcohols with
other cyclopentadienone iron tricarbonyl complexes (Fe2, Fe3,
and Fe4), albeit in lower conversions (Table 1 entries 10−12).
Finally the best conditions were as follows: 0.5 mmol of 2,4,6-
trimethylphenyl ketone underwent alkylation in the presence
of 2 mol % of Fe1 and 4 mol % of N-trimethylamine oxide, 1.5
equiv of 2-phenylethanol, and 1 equiv of NaOtBu in refluxing
toluene to give the β-branched ketone in 87% isolated yield
(entry 7, Table 1).
Having established an optimized protocol, we set out the

scope of the iron-catalyzed borrowing hydrogen alkylation with
secondary alcohols. First, the aryl group of the starting ketone
was modified. As previously stated by Donohoe and
Sundararaju,6,7 a substituted aromatic ring at the ortho,
ortho′ positions was a prerequisite for good overall reactivity
(Scheme 3), as it orientates the aromatic ring and the carbonyl
function orthogonally and consequently avoids competitive
reactions, such as dimerization and reduction. The alkylation
of various aromatic ketones with 2-phenyl ethanol illustrates
this precondition (Scheme 3). A complex mixture was
obtained when acetophenone or 1-(naphthalen-2-yl)ethan-1-
one was used as the enolate precursor, whereas the β,β′-
disubstituted ketones 1a−3a were isolated in good yield from
2,4,6-trimethylphenyl, pentamethyl, and 2,4,6-tris(iso-propyl)
acetophenone (73−87%, Scheme 3).
To promote the synthetic utility of our protocol, a gram-

scale alkylation of 1-mesitylethan-1-one was carried out. The
corresponding 1-mesityl-3-phenylbutan-1-one 1a was isolated
in 83% yield.
We then examined the Fe1-catalyzed alkylation of both

2,4,6-trimethylphenyl and pentamethyl ketone with a variety of
secondary benzylic type alcohols (Scheme 3). Various
electron-donating, electron-withdrawing substituents (such as
halides and ether) within the aromatic ring and naphthyl group
were tolerated, and the corresponding β,β′-disubstituted

Scheme 2. Layout of the Iron-Catalyzed Hydrogen
Autotransfer with Secondary Alcohols

Table 1. Optimization of the Reaction Conditionsa

entry Fe base alcohol (equiv) solvent conv. (%)b

1 Fe1 Cs2CO3
c 2 toluene -

2 Fe1 Cs2CO3 2 toluene 61
3 Fe1 K3PO4 2 toluene 10
4 Fe1 NaOMe 2 toluene 32
5 Fe1 NaOH 2 toluene 48
6 Fe1 NaOtBu 2 toluene 98
7 Fe1 NaOtBu 1.5 toluene 98 (87)d

8 Fe1 NaOtBu 1.5 CPME 76
9 Fe1 NaOtBu 1.5 tBuOH 79

10 Fe2 NaOtBu 1.5 toluene 78
11 Fe3 NaOtBu 1.5 toluene 80
12 Fe4 NaOtBu 1.5 toluene 84

aGeneral conditions: ketone (0.5 mmol), Fe (2 mol %), Me3NO (4
mol %), base (1 equiv), and toluene (1 mL). bConversions were
determined by 1H NMR analysis of the crude mixture. cBase (0.1
equiv). dYield in bracket was based on isolated product.
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ketones 1a−h and 2a,b were isolated in good yield (69−87%,
Scheme 3). Heterocyclic structures, including pyridine,

thiophene, and furan, were accepted under these conditions,
and the β-branched ketones were prepared in 48−72% yield

Scheme 3. Scope of the Iron-Catalyzed Alkylation of Ketones with Secondary Alcohols
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(Scheme 3). Cyclic secondary alcohols afforded the ketones 1l,
1m, and 2c in 70−78% yield (Scheme 3). This work was also
extended to bis-benzylic derivatives, and compounds 1n, 1p,
and 2d were synthesized in 60−79% yield (Scheme 3).
Remarkably, whatever the ortho-substituted ketone (trime-
thylphenyl or pentamethyl acetophenone) engaged as a
nucleophile, the corresponding alkylated ketones were
obtained in similar yields (1h vs 2b, 1m vs 2c, 1n vs 2d,
Scheme 3).
Gratifyingly, our methodology was successfully diversified to

various more challenging secondary aliphatic alcohols (Scheme
3). Cyclic or acyclic secondary aliphatic alcohols were engaged
in the hydrogen autotransfer process. The ketones 1q−ac and
2e−g were isolated in moderate to excellent yield (28−85%,
Scheme 3). In more detail, except for the alkylation with
isopropanol, alkylation with long-chain acyclic aliphatic
alcohols provided the ketones 1w−y and 1ab in 50−72%
yield. With isopropanol, the best result was obtained when the
reaction was performed in pure isopropanol and the yield in
ketone 1v reached only 26%. The cyclic secondary alcohols
furnished the ketones 1q−u and 1z−aa in 52−85% yield. The
ring size did not modify the reactivity, and even a heterocyclic
derivative could be used. As an example, the tetrahydrothio-
pyran-substituted ketone 1aa was obtained in 83% yield
(Scheme 3). The late-stage functionalization of cholesterol
with trimethylphenyl ketone yielded the ketone 1ac in 38%
yield. As previously noticed, alkylation using pentamethyl
acetophenone could also be performed, albeit in lower yield.
2e−g were obtained in 54−78% yield. Remarkably, ketones 1z,
1ac, and 2i were obtained as a single diastereomer, whereas the
cobalt-catalyzed borrowing hydrogen methodology with
secondary alcohols delivered the ketone 1ab without any
stereocontrol.7 This observation is in agreement with our
previous work on the Fe1-catalyzed reduction of various α,β-
unsaturated ketones.11 Chiral trisubstituted enones, such as
verbenone, carvone, testosterone, (+)-4-cholesten-3-one, and
progesterone, were diastereoselectively and chemoselectively
reduced under hydride transfer conditions. Overall, the new
iron-catalyzed synthesis of β,β-disubstituted ketones also
appears quite competitive compared with the iridium
approach, as the chemical yields are comparable.
Next, the derivatization of products was evaluated.

Following the procedure developed by Donohoe, namely, a
retro-Friedel−Crafts acylation reaction followed by the
addition of a nucleophile on the acyl bromide intermediate,
ester 4a, amides 4b,c, and alcohol 4d were produced from the
trimethylphenyl ketone 1a in reasonable yield (59−66%,
Scheme 4). Finally, a retro-Friedel−Crafts/Friedel−Crafts
sequence with anisole under acidic conditions6a furnished the
substituted ketone 4e in 55% yield.
To obtain mechanistic insights into this alkylation reaction, a

deuterium labeling experiment was performed (Scheme 5).
The alkylation of 1-mesitylethan-1-one with 1-phenylethan-1-
ol-d1 under the optimized conditions led to the formation of
1a-d1 in 82% yield. This chemical yield is as good as the
nondeuterated alkylation (Scheme 3). Deuterium was fully
incorporated on the benzylic position (Scheme 5). This
experiment confirmed that the alcohol is the source of hydride
and also showed that there is no deuterium/hydrogen
exchange in the borrowing hydrogen methodology. This
observation is in sharp contrast with the cobalt-catalyzed
alkylation with a secondary alcohol.7 In this previous work, the
deuterium was incorporated in both the α- and β-positions,

highlighting either reversible steps or a deuterium/hydrogen
scrambling on the cobalt complex. Moreover, in contrast with
the work by Rueping et al. on the manganese-catalyzed α-
methylation of ketones,14 no deuteration of the benzylic
positions in trimethylphenyl ketone was noticed, demonstrat-
ing a higher chemoselectivity with Fe1.
In conclusion we have reported the first phosphine-free iron-

complex-catalyzed alkylation of hindered aromatic ketones
with various secondary alcohols via a hydrogen autotransfer
methodology, providing β-branched carbonyl compounds in
moderate to excellent yield. Both aliphatic and aromatic
alcohols could be engaged. Labeling studies demonstrate that
the secondary alcohol is the source of hydride, and in contrast
with the cobalt-catalyzed alkylation, no reversible step or
deuterium/hydrogen scrambling occurs during the process.
Consequently, the alkylation can also be diastereoselective.
These results pave the way to new developments in iron-
catalyzed alkylation.
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