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Stereoselective synthesis of β-rhamnopyranosides
via gold(I)-catalyzed glycosylation with 2-alkynyl-
4-nitro-benzoate donors†

Yugen Zhu,‡a Zhengnan Shen,‡b Wei Lia and Biao Yu*a

Stereoselective β-rhamnopyranosylation remains a challenge, due

to the unfavorable anomeric effect and steric hindrance of the C2-

substituent; herein, this challenge is addressed with a gold(I)-cata-

lyzed SN2-like glycosylation protocol employing α-rhamnopyrano-

syl 2-alkynyl-4-nitro-benzoates as donors.

The stereoselective synthesis of β-rhamnopyranosides is a rele-
vant problem compared to that of β-mannopyranosides, involv-
ing the formation of the equatorial 1,2-cis-glycopyranosidic
bond which is unfavorable due to the anomeric and steric
effects.1,2 The latter problem has been addressed brilliantly by
the Crich protocol in which an SN2-like glycosylation pathway
is exploited via an intermediacy of a mannopyranosyl α-triflate
or a relevant contact ion-pair.2 The formation of these inter-
mediates is secured via tethering the 4,6-OH groups so as to
provide the requisite torsional strain and the electron-with-
drawing effect of O6 at a fixed C5–C6 trans–gauche (tg) confor-
mation to discourage the formation of the solvent-separated
oxocarbenium species, which would lead predominantly to
α-mannopyranosides.3 Applying Crich’s β-mannosylation pro-
tocol to the synthesis of β-rhamnopyranosides requires sub-
sequent defunctionalization at C6.4 The indirect methods for
the synthesis of β-rhamnopyranosides also include intra-
molecular aglycon delivery (which requires pre-installation of
the aglycon),5 glycosylation with ulosyl donors (followed by
reduction of the ketone),6 and glycosylation with 6-thio-6-
deoxy-mannosyl donors (followed by desulfurization).7 Direct
β-selective rhamnosylation has been realized via a judicious
choice of the protecting groups and glycosylation conditions,
employing such rhamnopyranosyl donors as 2,3 or 3,4-O-
carbonates,8 2,3-O-alkylidenes,9 those in 4C1 conformation,10

2-O-sulfonates,11 and 1,2-O-stannylene acetal donors.12

However, satisfactory β-selectivity is limited only to those coup-
ling with reactive acceptors.

Recently, we disclosed that β-mannosylation could be
effected with mannopyranosyl ortho-alkynylbenzoate donors13

under the catalysis of a gold(I) complex bearing a noncoordi-
nating counter anion (i.e., Ph3PAuBAr

F
4;

−BArF4 = tetrakis[3,5-bis-
(trifluoromethyl)phenyl]borate), in that a 1-α-glycosyloxy-iso-
chromenylium-4-gold(I) intermediate was invoked.14 High
β-selectivity could be attained even employing mannosyl
donors without a tethering but instead with only electron-with-
drawing groups at O4 and O6.14,15 Inspired by these results, we
embarked on exploration of the challenging β-rhamnopyrano-
sylation with ortho-alkynylbenzoate donors (Fig. 1).

We commenced the study with the coupling of 2,3,4-tri-O-
benzyl-α-rhamnosyl o-hexynylbenzoate 1 and galactoside
alcohol 9a, wherein the highly armed donor 1 was expected to
render poor β-selectivity. Applying the previously optimized
conditions for β-mannosylation (0.1 equiv. Ph3PAuBAr

F
4, freshly

prepared by mixing Ph3AuCl and AgBArF4 in Et2O (0.45 M),
PhCl, 5 Å MS, −20 °C),14 the glycosylation led to the coupled
disaccharide 10 within 3 h in an excellent 97% yield with an

Fig. 1 α-L-Rhamnopyranosyl ortho-hexynylbenzoates 1–8 and alco-
holic acceptors 9a–9f.
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encouraging β/α-selectivity of 3.2 : 1 (Table 1, entry 1). Lowering
the reaction temperature to −42 °C increased the β/α ratio to
5.5 : 1 while the yield was maintained (entry 2). To obtain a
further lower temperature, the solvent PhCl (m.p. −45 °C) was
replaced with toluene (m.p. −95 °C), and the glycosylation at
−60 °C in toluene did give a better β-selectivity (β/α = 7.2 : 1;
entry 3) in nearly quantitative yield. The β-selectivity was
further increased at −70 °C (β/α = 10 : 1; entry 4), however, the
coupling yield decreased dramatically to 38% with the rest of
the donor 1 being fully recovered.

According to the precedent β-mannosylation/rhamno-
sylation,14–16 replacement of the electron-donating 4-O-benzyl
group with an electron-withdrawing benzoyl group in donor 1,
resulting in rhamnosyl donor 2, would lead to better β-selecti-
vity in the glycosylation. Indeed, the glycosylation of 9a with 2
gave the coupled disaccharide 11 in an excellent β/α-selectivity
of 14 : 1 (95%) in PhCl at −42 °C in 3 h (Table 1, entry 5). In
contrast, the glycosylation of 9a with donor 3, which bears one
more benzoyl group at O3, resulted in α-disaccharide 12 exclu-
sively in 99% yield (entry 6); this could be attributable to the
remote participation of the 3-O-benzoyl group.15b Additionally,
similar glycosylation with donor 5, which has its O2 and O3
being locked by isopropylidene acetal, provided a β/α ratio of
6.4 : 1 (entry 7), indicating no beneficial effect of such fixation
of conformation on the β-rhamnosylation (cf., entries 7 and 5).

The optimal donor 2 and rhamnosylation conditions (entry
5) were then applied to the coupling with rhamnoside alcohol

9e, with which as the acceptor the previous mannosylation/
rhamnosylation led to poor β-selectivity. As expected, the
present Ph3PAuBAr

F
4-catalyzed rhamnosylation of 2 and 9e in

PhCl at −42 °C afforded the coupled disaccharide 14 quantitat-
ively but without stereoselectivity (β/α = 1.1 : 1; entry 8). Repla-
cement of the 4-O-benzoyl group with a more electron-
withdrawing pentafluorobenzyl group resulted in donor 4.
Although 4 was indeed much less reactive, so that completion
of the glycosylation of 4 and 9e required 12 h, the β-selectivity
was increased marginally (β/α = 1.3 : 1; entry 9).

Now that the β-selective rhamnosylation of a secondary
sugar alcohol such as 9e was hardly achieved via modification
of the protecting groups in the rhamnosyl donors, we turned
our attention to the modification of the ortho-hexynylbenzoate
leaving group. This could also affect the population and reac-
tivity of the glycosylation intermediates and therefore possibly
to streamline the SN2-like β-rhamnosylation pathway. Thus,
4-O-benzoyl-2,3-di-O-benzyl-α-L-rhamnosyl 2-hexynyl-4-methoxy-
benzoate 6, 2-hexynyl-4-nitrobenzoate 7, and 2-hexynyl-5-nitro-
benzoate 8 were prepared (see the ESI† for preparation) and
subjected to the glycosylation with the difficult acceptor 9e
(Table 2). Compared to the non-substituted donor 2 (Table 1,
entry 8), the 4-methoxy-substituted donor 6 was found much
less reactive; the glycosylation led to the coupled disaccharide
14 in only 75% yield in 24 h, with 24% of 6 being recovered.
Moreover, the β/α-selectivity remained poor (β/α = 1 : 1.5;
Table 2, entry 1). Gratifyingly, the nitro-substituted donors 7
and 8 were more reactive than donor 2, their glycosylation with
9e completed within 0.5 and 1 h, respectively, and led to di-
saccharide 14 with a decent β/α-selectivity of ∼3.3 : 1 (entries 2
and 3). Thus, these glycosylation reactions were further
explored at lower temperatures (entries 4–8). With toluene as
the solvent at −60 °C, the glycosylation of 8 and 9e led to 14 in

Table 1 The Ph3PAuBAr
F
4-catalyzed glycosylation of rhamnosyl ortho-

hexynylbenzoates 1–5 and acceptors 9a/9e

Entry Donor Acceptor Solvent T [°C] Product (yield) β/α ratioa

1 1 9a PhCl −20 10 (97%) 3.2 : 1
2 1 9a PhCl −42 10 (99%) 5.5 : 1
3 1 9a Toluene −60 10 (99%) 7.2 : 1
4 1 9a Toluene −70 10 (38%) 10 : 1
5 2 9a PhCl −42 11 (95%) 14 : 1
6 3 9a PhCl −42 12 (99%) α only
7 5 9a PhCl −42 13 (99%) 6.4 : 1
8 2 9e PhCl −42 14 (99%) 1.1 : 1
9b 4 9e PhCl −20 15 (99%) 1.3 : 1

a The β/α ratio was determined by 1H NMR. b The reaction was
performed for 12 h.

Table 2 The Ph3PAuBAr
F
4-catalyzed glycosylation of acceptor 9e with

L-rhamnosyl ortho-hexynylbenzoates 6–8

Entry Donor Solvent T [°C] t [h] Yield β/α ratioa

1b 6 PhCl −42 24 75% 1 : 1.5
2 7 PhCl −42 0.5 95% 3.2 : 1
3 8 PhCl −42 1 87% 3.4 : 1
4 8 Toluene −60 5 66% 4.9 : 1
5 7 CH2Cl2 −60 10 90% 5.8 : 1
6 8 CH2Cl2 −60 10 80% 7.2 : 1
7 7 CH2Cl2 −72 15 71% 8.0 : 1
8 8 CH2Cl2 −72 15 16% β only

a The β/α ratio was determined by 1H NMR. b 24% 6α was recovered.
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only 66% yield in 5 h, although the β-selectivity was slightly
improved (β/α = 4.9 : 1; entry 4). CH2Cl2 was then found to be a
better solvent at −60 °C for the present rhamnosylation; the
coupling of 7/8 with 9e (in 10 h) led to 14 in satisfactory yields
and β-selectivities (90%, β/α = 5.8 : 1 and 80%, β/α = 7.2 : 1,
respectively; entries 5 and 6). Further lowering the reaction
temperature to −72 °C, the glycosylation of the 4-nitro donor 7
afforded 14 in 71% yield (15 hour) with a further improved
β/α-selectivity of 8.0 : 1 (entry 7); whereas the glycosylation of
the 5-nitro donor 8 hardly proceeded, leading to the β-product
exclusively but in only 16% yield (entry 8).

At this junction, we examined with NMR the possible for-
mation of the corresponding 1-α-glycosyloxy-isochromenylium-
4-gold(I) intermediates (A) from the α-rhamnosyl ortho-hexynyl-
benzoates 6, 7 and 2 upon activation with Ph3PAuBAr

F
4 (1.0

equiv.).14 At −42 °C in CD2Cl2, the corresponding intermedi-
ates A were detected from 2 and 6 (the poorer donors for
β-rhamnosylation) but not from 7 (the better donors) (see the
ESI†). These results imply that the covalent A is not a glycosyla-
tion intermediate, more likely a contact ion pair collapsed
from A is the species which undergoes the present β-rhamno-
sylation. Indeed, the SN1 character has already been experi-
mentally proven in the Crich type β-mannosylation.17

Considering both the β-selectivity and the glycosylation
yield, 4-nitrobenzoate 7 turned out to be the optimal donor in
coupling with 9e (Table 2); therefore, 7 was selected for glyco-
sylation with a variety of alcohols (9b–9d and 9f ) to examine
the scope of the present β-rhamnosylation protocol (Table 3).
With adamantanol 9c and cholesterol 9d as the acceptors, the

glycosylation catalyzed by 0.1 equiv. of Ph3PAuBAr
F
4 led to the

coupled glycosides 16 and 18, respectively, in excellent yields
(∼96%) and β-selectivity (β/α = ∼13 : 1) at −42 °C in PhCl
(Table 3, entries 1 and 2). The coupling with sugar-6-OH accep-
tor 9b proceeded smoothly at −60 °C in CH2Cl2 to provide the
coupled disaccharide 17 in 95% yield with a satisfactory β/α
ratio of 9.8 : 1 (entry 3). Under the same conditions, rhamno-
sylation of the hindered sugar-4-OH acceptor 9f still led to an
acceptable yield (75%) and β-selectivity (β/α = 4.2 : 1) of the
coupled product 19 (entry 4). The same glycosylation at −72 °C
proceeded much slower, leading to 19 in a similar yield (67%)
within 20 h with a slightly better β-selectivity (β/α = 5.6 : 1,
entry 5).

Similar to the mannopyranosyl o-alkynylbenzoates,14 the
rhamnopyranosyl α/β-alkynylbenzoates could undergo anomer-
ization in the presence of the gold(I) catalyst to give predomi-
nantly the α-anomers; therefore, the present β-rhamnosylation
could also be realized using the β-anomer or the α/β-mixture of
the donors (Scheme 1). Thus, the β-donor 7β in PhCl was
firstly treated with Ph3PAuBAr

F
4 (0.1 equiv.) at −32 °C, TLC

indicated that most of 7β was converted into its α-donor 7
(α/β = ∼10 : 1) after 3 h. The mixture was then cooled to −42 °C
and acceptor 9d (2 equiv.) was added; rhamnosylation proceeded
smoothly to furnish 18 in an excellent 93% yield and
β/α-selectivity of 10.5 : 1. Similar results were attained starting
from a mixture of 7/7β (1 : 1) employing the same procedure.

In summary, an effective β-rhamnopyranosylation protocol
has been developed by employing rhamnopyranosyl ortho-
hexynylbenzoates as donors under the catalysis of Ph3PAuBAr

F
4.

Both the electron-withdrawing protecting group on O4 and the
electron-withdrawing nitro group on the leaving group have
been found effective in enhancing the β-selectivity. Satisfactory
coupling yields and β-selectivity are attainable even when
coupling with hindered acceptors. The application of this pro-
tocol to the synthesis of the β-rhamnopyranosidic linkages
occurring in the bacterial capsular and lipopolysaccharides is
undergoing and the results will be reported in due course.
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Table 3 The scope of acceptors in the Ph3PAuBAr
F
4-catalyzed β-selec-

tive glycosylation of α-rhamnosyl 2-hexynyl-4-nitrobenzoate 7

Entry Acceptor Solvent T [°C] Product (yield) β/α ratioa

1 9c PhCl −42 °C 16 (95%) 13.5 : 1
2 9d PhCl −42 °C 18 (97%) 13.1 : 1
3 9b CH2Cl2 −60 °C 17 (95%) 9.8 : 1
4 9f CH2Cl2 −60 °C 19 (70%) 4.2 : 1
5b 9f CH2Cl2 −72 °C 19 (67%) 5.6 : 1

a The β/α ratio was determined by 1H NMR. b The reaction was
performed for 20 h.

Scheme 1 The one-pot anomerization and β-rhamnosylation of accep-
tor 9d with the β-donor 7β.
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