Short Reports

- 5. Chakrabarti, P. (1967) J. Indian Chem. Soc. 44, 242.
- Chakrabarti, P., Basak, A. and Barua, A. K. (1972-1974) Annu. Report, Bose Institute, p. 15.
- 7. Basak, A. (1974) Part of the Ph.D. (Sc.) thesis submitted to the Calcutta University.
- 8. Kitagawa, I., Suzuki, H. and Yosioka, I. (1974) Tetrahedron Letters 1173.
- Kitagawa, I., Suzuki, H., Kitazawa, K., Yamo, N. and Yosioka, I. (1975) Chem. Pharm. Bull. 23, 355.
- 10. Chakrabarti, P., Basak, A. and Barua, A. K. (1977) Trans. Bose Res. Inst. 40, 117.
- Barua, A. K., Basak, A., Banerjee, S. K., Chatterjee, T., Basu, K. and Chakrabarti, P. (1978) Trans Bose Res.

Inst. 41, 83.

- Barua, A. K., Banerjee, S. K., Das Gupta, C., Basak, A. and Chakrabarti, P. (1977) 64th Session of the Indian Sci. Congr. Abstracts. Bhubaneswar, January 1977, Org. 18.
- Kitagawa, I., Yamanaka, H., Nakanishi, T. and Yosioka, I. (1976) Tetrahedron Letters 2327.
- 14. Chakrabarti, P. (1969) J. Indian Chem. Soc. 46, 98.
- 15. Chakrabarti, P. (1969) Tetrahedron 25, 3301.
- Yosioka, I. and Nakanishi, T. (1963) Chem. Pharm. Bull. 11, 1468.
- 17. Corbett, R. E. and Smith, R. A. J. (1967) J. Chem. Soc. 1622.

Phytochemistry, 1980, Vol. 19, pp. 1553-1554. @ Pergamon Press Ltd. Printed in England.

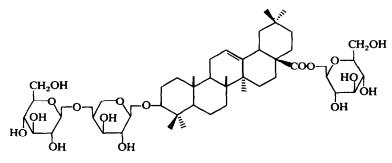
0031-9422/80/0701-1553 \$02.00/0

1553

A NEW TRITERPENOID GLYCOSIDE FROM THE SEEDS OF GLINUS LOTOIDES

BERHANU ABEGAZ and BERHANE TECLE

Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia


(Received 15 October 1979)

Key Word Index—Glinus lotoides; Aizoaceae; triterpene glycoside; oleanolic acid; anthelmintic.

It was reported recently that the anthelmintic property of the seeds of *Glinus lotoides* is due to saponins [1, 2]. The isolation of several sapogenins and a saponin from *Mollugo hirta* (which is synonymous with *G. lotoides*) has also been reported [3]. In this communication we report on the structure of a new triterpene glycoside isolated from the seeds.

The powdered seeds (100 g) were defatted and extracted with 80% aqueous ethanol. Addition of diethylether gave a precipitate (6 g) which was acctylated with acetic anhydride and pyridine. The crude acetylated product (5 g) was chromatographed using 300 g Si gel 60 and eluted with chloroform containing increasing amounts of ethyl acetate (300 ml fractions). Fractions 32-46 (eluted with 30% ethyl acetate) gave 2.0 g of a compound which was homogeneous on TLC. Repeated recrystallization from methanol gave a crystalline substance $C_{67}H_{96}O_{27}$, mp. 186-189°, $[\alpha]_{2}^{D1}$ + 37° (MeOH; c 1.5). Deacetylation with methanolic ammonia [4] gave a biologically active saponin (1) which could be reacetylated to the same compound obtained from the column.

Deacetylation gave a saponin, which upon recrystallization from methanol gave plates $C_{47}H_{76}O_{17}$, mp 255° (dec.), $[\alpha]_{21}^{21} + 20°$ (MeOH; c 0.8). Acid hydrolysis of the saponin with 8% methanolic HCl yielded oleanolic acid, D-glucose and L-arabinose. The glucose-arabinose ratio was found to be 2:1 by GLC

analysis of their permethylated derivatives [5]. Exhaustive methylation of the saponin by Hakomori's method [6] gave the deca-O-methylate which showed ¹H NMR signals for ten O-methyls ($\delta 3.23-3.94$), three anomeric protons (4.20, 1H, J = 5 Hz; 4.40, 1H, J = 6 Hz; 4.47, 1H, J = 6 Hz) and an olefinic proton (5.43, 1H). Hydrolysis of the permethylated saponin gave oleanolic acid, as the aglycone portion, and not the methyl ester suggesting an attachment of a sugar unit at the carboxyl end in the original saponin. GLC analysis of the sugar portion indicated the presence of two sugars in the ratio of 2:1 which were identified as 2,3,4,6-tetra-O-methyl-D-glucose and 2,3-di-Omethyl-L-arabinose (PC and co-PC in three solvent systems and comparison of R_s values) [7, 8]. Partial hydrolysis of the saponin with 5 N NH₄OH for 1 hr [9] and examination of the sugar portion showed the presence of glucose only.

From the above results it was concluded that a disaccharide, 4-(D-glucopyranosyl)-L-arabinose, was attached via the anomeric hydroxyl of arabinose to the C-3 of the aglycone and also that a molecule of glucose was involved in an ester linkage with the -COOH of oleanolic acid. The observation that the saponin was non-reducing and that hydrolysis of the permethylated saponin gave 2 mol of identically methylated glucose molecules confirmed the involvement of the anomeric hydroxyl of glucose in the ester link with the -COOH group.

Information concerning the pyranose form of the sugars and the configuration of the glycosidic linkages was obtained from the coupling constants of the anomeric protons [10] in the ¹H NMR spectrum of the permethylated saponin. This was further supported by

molecular rotation measurements [9, 11, 12]. The molecular rotation of the saponin $[M]_D$ was observed to be 182.4° showing a difference of 37° from the calculated value of 219.3°. The structure of the saponin was, thus determined to be 3-O-[β -D-gluco-pyranosyl-(1 \rightarrow 4]- α -L-arabinopyranosyl]-oleanolic acid-(28 \rightarrow 1)- β -D-glucopyranosyl ester 1.

Acknowledgement—Financial assistance from the International Foundation for Science, Sweden, is gratefully acknowledged.

REFERENCES

- 1. Abegaz, B. and Dagne, E. (1978) Sinet: Ethiop. J. Sci. 1, 117.
- 2. Djote, M. (1978) J. Ethiop. Pharm. Assoc. 3, 9.
- 3. Barua, A. K., Chakravarti, S., Basak, A. and Chakrabarti, P. (1976) Phytochemistry 15, 831.
- 4. Parkhurst, R. M., Thomas, D. W., Skinner, W. A. and Cary, L. W. (1974) Can. J. Chem. 52, 702.
- Sweeley, C. C., Bentley, R., Nakita, M. and Wells, W. W. (1963) J. Am. Chem. Soc. 85, 2497.
- 6. Hakomori, S. (1964) J. Biochem. 55, 205.
- 7. Heftmann, E., (ed.) (1964) Chromatography, p. 592. Reinhold, New York.
- Shrivastawa, H. C. and Smith, F. (1957) J. Am. Chem. Soc. 79, 982.
- 9. Hariharan, V. and Rangaswami, S. (1970) Phytochemistry 9, 409.
- 10. Capon, B. and Thacker, D. (1964) Proc. Chem. Soc. 369.
- 11. Aoki, T., Tanyo, Y. and Sugar, T. (1976) *Phytochemistry* 15, 781.
- 12. Klyne, W. (1950) Biochem. J. 47, xli.

Phytochemistry, 1980, Vol. 19, pp. 1554-1555. © Pergamon Press Ltd. Printed in England.

0031-9422/80/0701-1554 \$02.00/0

ERIOSIDE, A NEW COUMARIN GLUCOSIDE FROM LASIOSIPHON ERIOCEPHALUS*

PRABHA BHANDARI, SHEELA TANDON and R. P. RASTOGI

Central Drug Research Institute, Lucknow-226001, India

(Received 4 October 1979)

Key Word Index-Lasiosiphon eriocephalus; Thymelaeaceae; 6,8-dihydroxy-7-O-β-D-glucosyloxycoumarin.

Lasiosiphon eriocephalus Decen. (Thymelaeaceae) is a small tree or branched bush commonly distributed throughout the Western Ghats and Niligiri [1, 2]. The genus comprises of ca 25 species, all endemic to tropical Africa; L. eriocephalus is the only species found in India. The genus is reputed for its medicinal and toxic properties [3]. The glycosidic extract of L.

kraussianus is useful as an antileprosy medicament [4, 5]. Mezerein, a phorbol diterpene ester isolated from L. bruchelli [6], has been shown to possess antileukemic activity. The Thymelaeaceae has been found to be rich in bicoumarins and two members of this group, lasiocephalin [7] and lasioerin [8], have been isolated from L. eriocephalus. The present studies did not reveal any constituent belonging to the phorbol diterpene ester group in this plant but yielded a

^{*} CDRI Communication No. 2652.