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EFFICIENT AND BENIGN ONE-POT CONVERSION
OF N-TOSYL-1,4,5,6-TETRAHYDROPYRIMIDINES
TO PYRIMIDINES VIA TANDEM b-ELIMINATION
AND AROMATIZATION

Tien Ha Trieu, Jing Dong, Xiao-Xin Shi, Xia Lu, and
Qiang Zhang
Department of Pharmaceutical Engineering, School of Pharmacy, East China
University of Science and Technology, Shanghai, China

GRAPHICAL ABSTRACT

Abstract An efficient, mild, benign, and practical method for one-pot conversion of

N-tosyl-1,4,5,6-tetrahydropyrimidines into pyrimidines is discussed in detail. In this

method, N-tosyl-1,4,5,6-tetrahydropyrimidines are first prepared via N-tosylation of tetra-

hydropyrimidines with TsCl and then treated with 1.5 equivalents of NaOH in dimethylsulf-

oxide (DMSO) under air at 60 �C to afford corresponding pyrimidines in 70–95% yields

via cascade b-elimination and aromatization.

[Supplementary materials are available for this article. Go to the publisher’s online

edition of Synthetic Communications1 for the following free supplemental resources: Full

experimental and spectral details.]

Keywords Aromatization; b-elimination; nitrogen-containg heterocycles; pyrimidines;

synthetic methods; N-tosyl-1,4,5,6-tetrahydropyrimidines

INTRODUCTION

Pyrimidines are important nitrogen-containing heterocyclic aromatic com-
pounds. This kind of compound has found wide applications in many areas. For
example, they have exhibited various pharmaceutical properties,[1] and some poten-
cies as pesticides and herbicides;[2] they have also been used as ligands in many
organic transformations[3] and as functional molecules in material chemistry.[4]

Therefore, development of efficient and practical methods for the synthesis of
pyrimidines is of great interest for synthetic chemists.
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There are two main approaches for the synthesis of various substituted
pyrimidines. The first one is direct construction of the pyrimidine ring by
two-component[5–7] or three-component[8] cyclizations. The other one is indirect for-
mation of the desired pyrimidines, in which tetrahydro or dihydro-pyrimidines are
first prepared, and then these tetrahydro or dihydro intermediates are converted into
pyrimidines by aromatization via dehydrogenation or oxidation.[9] Because most
aromatization methods suffered from the use of strong oxidants,[9b–9i] noble metal
catalyst,[9j] or harsh reaction conditions,[9k] a novel, facile, and practical conversion
of tetrahydro or dihydro-pyrimidines into the corresponding pyrimidines without the
use of strong oxidants, noble metal catalysts, or harsh conditions would be highly
desirable. Herein, we report an efficient, robust, mild, and benign one-pot synthesis
of various substituted pyrimidines from the readily available N-tosyl-1,4,5,
6-tetrahydro-pyrimidines via tandem b-elimination and aromatization.

RESULTS AND DISCUSSION

A novel synthetic route for the synthesis of various substituted pyrimidines is
depicted in Scheme 1. Oxidative condensation of 1,3-diamines with aldehydes first
produced 1,4,5,6-tetrahydro-pyrimidines 1 according to a known procedure.[10] In
this transformation, when symmetric 1,3-diamines (R1¼R3) were used, pure com-
pounds 1 were obtained, whereas if unsymmetric 1,3-diamines (R1 6¼ R3) were used,
tautomeric mixtures of compounds 1 and 10 would be obtained. Treatment of either
pure compounds 1 (R1¼R3) or the tautomeric mixtures of compounds 1 and 10

(R1 6¼ R3) with p-toluenesulfonyl chloride in the presence of pyridine in dichloro-
methane would then give N-tosyl-1,4,5,6-tetrahydro-pyrimidines 2 (R1¼R3) or iso-
meric mixtures of compounds 2 and 20 (R1 6¼ R3). The compounds 2 (R1¼R3) or the
isomeric mixtures of compounds 2 and 20 (R1 6¼ R3) were finally converted into the
desired pyrimidines 3 via a one-pot procedure via tandem b-elimination and
aromatization. Conversion of N-tosyl-1,4,5,6-tetrahydro-pyrimidines 2 (or 2þ 20)

Scheme 1. Novel synthesis of various substituted pyrimidines from 1,3-diamines and aldehydes.
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to pyrimidines 3 is the key step for the whole synthesis. However, a literature search
showed this particular conversion is unknown yet, which prompted us to investigate
it in detail.

At first, we examined the conversion of N-tosyl-2-(3-ethoxy-phenyl)-1,4,5,6-
tetrahydropyrimidine 2a into 2-(3-ethoxyphenyl)-pyrimidine 3a under various con-
ditions, and results are summarized in Table 1. Seven solvents were tested (Table 1,
entries 1–7), and it was found that dimethylsulfoxide (DMSO) was the best solvent
for the conversion (entry 7). Other solvents such as ethanol, iso-propanol, propanol,
tert-butanol, butanol, and N,N-dimethylformamide (DMF) were not appropriate
because the reactions in these five solvents were much slower and gave the desired
pyrimidine 3a only in poor or moderate yields. Strong bases such as NaOH and
KOH were necessary for the reaction (entries 7 and 8); weak bases such as sodium
carbonate and potassium carbonate only gave trace amounts of the desired product
3a (entries 9 and 10).

To explore the generality of the conversion, various substituted N-tosyl-
1,4,5,6-tetrahydro-pyrimidines 2 (or 2þ 20) were first prepared as per Scheme 1,
and then these N-tosyl-tetrahydro intermediates were treated with 1.5 equivalents
of powdered sodium hydroxide in DMSO at 60 �C for 3–7 h. A total of 24
N-tosyl-1,4,5,6-tetrahydro-pyrimidines 2 (or 2þ 20) were tested. All of these inter-
mediates could be smoothly converted into the desired pyrimidines 3a–3x in good
to excellent yields (70–95%), and the results are listed in Table 2.

As can be seen from Table 2, either N-tosyl-1,4,5,6-tetrahydro-pyrimidines 2
(R1¼R3, entries 1–18) or the isomeric mixtures of compounds 2þ 20 (R1 6¼ R3,
entries 19–24) could be successfully used as the substrate. Notablely, when substitu-
ents R1 are different from substituents R3 (R1 6¼ R3), the isomeric mixtures of inter-
mediate compounds 2 and 20 were directly used as the substrate without isolation for
the conversion (Table 2, entries 19–24). Because the subsequent one-pot reactions of
both isomeric N-tosyl-1,4,5,6-tetrahydro-pyrimidines 2 and 20 would afford the same
desired pyrimidines 3, isolation of the isomeric intermediate compounds 2 and 20 was
not necessary.

A plausible mechanism for the conversion is proposed in Scheme 2.
N-Tosyl-1,4,5,6-tetrahydro-pyrimidines 2 and 20 first underwent b-elimination[11]

Table 1. Conversion of compound 2a to compound 3a with various bases under different conditions

Entry Substrate Solvent Base (equiv.) Temp. (�C) Time (h) Product Yield (%)a

1 2a EtOH NaOH (1.5) 78b 20 3a <5

2 2a i-PrOH NaOH (1.5) 82b 20 3a 38

3 2a n-PrOH NaOH (1.5) 97b 20 3a 43

4 2a t-BuOH NaOH (1.5) 82b 20 3a 52

5 2a n-BuOH NaOH (1.5) 118b 11 3a 62

6 2a DMF NaOH (1.5) 80 27 3a <5

7 2a DMSO NaOH (1.5) 60 4 3a 80

8 2a DMSO KOH (1.5) 60 4 3a 78

9 2a DMSO Na2CO3 (3) 125 21 3a <5

10 2a DMSO K2CO3 (3) 125 21 3a <5

aIsolated yield.
bReflux.
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under basic conditions to give intermediates I-1 and I-2, respectively. The
intermediates I-1 and I-2 then rapidly tautomerized into each other via another
intermediate I-3.[9h] The subsequent in situ oxidation of all these possible dihydro
intermediates I-1, I-2, and I-3 immediately took place to afford pyrimidines 3, where
molecule oxygen (O2) in air acted as a mild, benign, and clean oxidant. Unfortu-
nately, although the possible dihydro intermediates I-1, I-2, and I-3 could be
detected by thin-layer chromatography (TLC) during the reaction, it was hard to
isolate any one of these unstable intermediates. The following experiment might sup-
port the proposed mechanism. When the reactions were performed in DMSO at
60 �C under an atmosphere of argon, b-elimination happened, and a mixture of dihy-
dro intermediates I-1, I-2, and I-3 was formed, but when air was allowed to get into
the reaction flask to replace argon, unstable dihydro intermediates I-1, I-2, and I-3

rapidly changed to pyrimidines 3.

Table 2. One-pot conversion of N-tosyl-1,4,5,6-tetrahydropyrimidines (N-Ts-THP) 2 (or 2þ 20) into the

corresponding pyrimidines 3

Entry

N-Ts-THP 2

(or 2þ 20) R1 R2 R3 R4 Time (h)

Product

3[lit.]
Yield

(%)a

1 2a H H H 3-EtO-Ph 4 3a 80

2 2b H H H 4-MeO-Ph 4 3b[12] 87

3 2c H H H 3,4-(CH2O2)-Ph 4 3c 85

4 2d H H H 2-Cl-Ph 4 3d 75

5 2e H H H 2-Furanyl 3 3e[13] 70

6 2f H H H 2-EtO-Ph 4 3f 80

7 2g H H H 3,4,5-(MeO)3-Ph 4 3g 88

8 2h H H H 3,4-(MeO)2-Ph 4 3h[12] 85

9 2i H H H Ph 5 3i[12] 81

10 2j Ph H Ph Ph 4 3j[14] 92

11 2k Ph H Ph 4-MeO-Ph 4 3k[15] 94

12 2l Ph H Ph 3,4,5-(MeO)3-Ph 4 3l 94

13 2m Ph H Ph 3,4-(CH2O2)-Ph 4 3m 95

14 2n Ph H Ph i-Pr 7 3n 83

15 2o Ph H Ph n-Pr 7 3o[16] 82

16 2p H n-Bu H 4-MeO-Ph 6 3p 75

17 2q H n-Bu H 3,4-(CH2O2)-Ph 6 3q 85

18 2r H n-Bu H 3,4,5-(MeO)3-Ph 6 3r 77

19 2sþ 2s0 Ph H 4-MeO-Ph 3,4,5-(MeO)3-Ph 4 3s 95

20 2tþ 2t0 Ph H 4-MeO-Ph 3,4-(CH2O2)-Ph 4 3t 90

21 2uþ 2u0 Ph H 2-Cl-Ph 4-MeO-Ph 4 3u 85

22 2vþ 2v0 Ph H 2-Cl-Ph 3,4-(CH2O2)-Ph 4 3v 80

23 2wþ 2w0 Ph H 2-Furanyl 4-MeO-Ph 4 3w 87

24 2xþ 2x0 Ph H 2-Furanyl 3,4-(CH2O2)-Ph 4 3x 85

aIsolated yield.
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In addition, we have also tried to replace the Ts (tosyl) groups with Ms (mesyl)
groups by using methanesulfonyl chloride instead of toluenesulfonyl chloride during
the preparation of intermediate compounds 2 (or 2þ 20). It was found that one-pot
conversion of N-mesyl-1,4,5,6-tetrahydro-pyrimidines to pyrimidines 3 also worked
well, but herein we recommend the use of Ts groups rather than Ms groups for the
described one-pot conversion because of the following two reasons: N-tosyl-1,4,5,6-
tetrahydro-pyrimidines 2 (or 2þ 20) are easier to crystallize than the corresponding
N-mesyl analogs and toluenesulfonyl chloride is a safer and cheaper reagent than
methanesulfonyl chloride.

CONCLUSION

In conclusion, an efficient, mild, benign, and practical method for the synthesis
of various substituted pyrimidines is described. As the key step of this novel synthetic
method, the one-pot conversion of N-tosyl-1,4,5,6-tetrahydro-pyrimidines into
pyrimidines has been investigated in detail. Easy preparation of intermediates
N-tosyl-1,4,5,6-tetrahydro-pyrimidines and some advantages of the key one-pot con-
version such as mild reaction conditions, good to excellent yields, ease of manipu-
lation, no need for isolation of isomeric substrates, low cost of all reagents,
avoidance of the use of strong oxidant and noble metal catalyst, use of air as a clean
oxidant, as well as the wide scope of the reaction, make the described method very
useful for the synthesis of pyrimidines.

EXPERIMENTAL

All reagents and solvents were analytically pure and were used as such as
received from the chemical suppliers. 1H and 13C NMR spectra were acquired on
a Bruker AM-500 or AM-400 instrument. Chemical shifts were given on the delta
scale as parts per million (ppm) with tetramethylsilane (TMS) as the internal stan-
dard. Infrared (IR) spectra were recorded on a Nicolet Magna IR-550 spectrometer.
Mass spectrometry (MS) spectra were recorded on HP5989A Mass Spectrum

Scheme 2. Plausible mechanism for the conversion of 2 (or 20) to 3.
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equipment. High-resolution mass spectrometry (HRMS) spectra were recorded on
LC=MSD TOF HR-MS equipment. Melting points were determined on a
Mel-TEMP II melting-point apparatus. Column chromatography was performed
on silica gel (Qingdao Ocean Chemical Factory) to purify the intermediates and final
products. 1,4,5,6-Tetrahydro-pyrimidines 1 (R1¼R3) or the tautomeric mixture of
1,4,5,6-tetrahydro-pyrimidines 1 and 10 (R1 6¼ R3) were prepared according a
literature procedure [10] prior to use.

Typical Procedure for the Preparation of N-Tosyl-1,4,5,6-
tetrahydro-pyrimidines 2 (or 2þ 2’)

Preparation of compound 2a. A solution of 2-(4-ethoxyphenyl)-1,4,5,6-
tetrahydropyrimidine (1.022 g, 5.003mmol) and pyridine (0.475 g, 6.005mmol) in
CH2Cl2 (40mL) was cooled to 0 �C with an ice bath, and then a solution of p-tolue-
nesulfonyl chloride (0.954 g, 5.004mmol) in CH2Cl2 (10mL) was added dropwise
over 5min. After the addition was finished, the ice bath was removed, and the mix-
ture was further stirred at room temperature for around 3 h. When the reaction was
complete (monitored by TLC), an aqueous solution of citric acid (10% w=v, 25mL)
was added. After the stirring was continued for 15min, the mixture was transferred
into a separatory funnel, and the organic phase was separated and washed with an
aqueous solution of potassium carbonate (10% w=v, 25mL). After the organic sol-
ution was dried over anhydrous MgSO4, the solvent was removed under vacuum
to afford compound 2a (1.756 g, 4.899mmol) as off-white solid in 98% yield, mp
89–90 �C. 1H NMR (400MHz, CDCl3): d¼ 1.39 (t, J¼ 7.0Hz, 3H), 1.73–1.81 (m,
2H), 2.43 (s, 3H), 3.50–3.55 (m, 2H), 3.77–3.82 (m, 2H), 3.96 (q, J¼ 7.0Hz, 2H),
6.88–6.96 (m, 2H), 7.04 (d, J¼ 7.6Hz, 1H), 7.19 (t, J¼ 7.6Hz, 1H), 7.25 (d,
J¼ 8.2Hz, 2H), 7.51 (d, J¼ 8.2Hz, 2H). 13C NMR (100MHz, CDCl3):
d¼ 158.34, 152.86, 144.19, 139.22, 136.77, 129.68, 128.70, 127.39, 120.72, 116.48,
113.85, 63.33, 45.88, 44.64, 22.99, 21.60, 14.85. HRMS (ESI) m=z calcd. for
C19H23N2O3S [MþH]þ: 359.1429; found: 359.1420. IR (KBr film): n¼ 2978, 2935,
1631, 1598, 1581, 1442, 1355, 1291, 1163, 1108, 1049, 985, 791, 677, 549 cm�1. Anal.
calcd. for C19H22N2O3S: C, 63.66; H, 6.19; N, 7.82. Found: C, 63.52; H, 6.21; N,
7.75.

Preparation of an isomeric mixture of compounds 2 s and 2s’. A sol-
ution of 4-(4- methoxyphenyl)-6-phenyl-2-(3,4,5-trimethoxyphenyl)-1,4,5,6-
tetrahydropyrimidine (2.163 g, 5.001mmol) and pyridine (0.475 g, 6.005mmol) in
CH2Cl2 (40mL) was cooled to 0 �C with an ice bath, and then a solution of p-tolue-
nesulfonyl chloride (0.954 g, 5.004mmol) in CH2Cl2 (10mL) was added dropwise
over 5min. After the addition was finished, the ice bath was removed, and the mix-
ture was further stirred at room temperature for around 8 h. When the reaction was
complete (minitored by TLC), an aqueous solution of citric acid (10% w=v, 25mL)
was added. After the sitirring was continued for 15min, the mixture was transferred
into a separatory funnel, and the organic phase was separated and washed with an
aqueous solution of potassium carbonate (10% w=v, 25mL). After the organic sol-
ution was dried over anhydrous MgSO4, the solvent was removed under vacuum
to afford an isomeric mixture of compounds 2s and 2s0 (2.875 g, 4.900mmol) as
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off-white solid in 98% combined yield, which was directly used as such for next step
without isolation of the two isomers. Mp 121–125 �C. 1H NMR (400MHz, CDCl3)
for one isomer: d¼ 2.08–2.18 (m, 2H), 2.36 (s, 3H), 3.70 (s, 3H), 3.82 (s, 3H), 3.85 (s,
6H), 4.59–4.64 (m, 1H), 5.73–5.77 (m, 1H), 6.67 (s, 2H), 6.89 (d, J¼ 8.2Hz, 2H),
7.13–7.19 (m, 7H), 7.30–7.37 (m, 4H) ppm; 13C NMR (100MHz, CDCl3) for one iso-
mer: d¼ 158.66, 152.51, 151.75, 144.24, 140.02, 137.13, 134.05, 132.95, 129.37,
129.27, 128.96, 127.83, 127.70, 127.41, 127.04, 113.93, 106.22, 60.89, 56.71, 55.82,
55.38, 55.29, 55.21, 36.72, 21.50. 1H NMR (400MHz, CDCl3) for the other isomer:
d¼ 2.36 (s, 3H), 2.40–2.49 (m, 2H), 3.71 (s, 3H), 3.83 (s, 3H), 3.85 (s, 6H), 4.65–4.70
(m, 1H), 5.69–5.73 (m, 1H), 6.67 (s, 2H), 6.93 (d, J¼ 8.2Hz, 2H), 7.21–7.29 (m, 7H),
7.38–7.45 (m, 4H); 13C NMR (100MHz, CDCl3) for the other isomer: d¼ 159.18,
152.50, 151.93, 142.14, 139.47, 133.03, 132.00, 129.40, 128.69, 128.53, 128.25,
127.87, 127.66, 127.02, 126.74, 114.31, 106.23, 60.89, 56.26, 55.84, 55.82, 55.73,
55.21, 36.72, 21.49. HRMS (ESI) m=z calcd. for C33H35N2O6S [MþH]þ:
587.2216; found: 587.2218. IR (KBr film): n¼ 2930, 2836, 1612, 1586, 1510, 1456,
1412, 1344, 1248, 1161, 1126, 1065, 1005, 835, 673, 546 cm�1.

Typical Procedure for the One-Pot Conversion of N-Tosyl-1,4,5,6-
tetrahydropyrimidines 2 (or 2þ 2’) to Pyrimidines 3

Preparation of compound 3a. Compound 2a (1.434 g, 4.001mmol) was dis-
solved in DMSO (10mL), and powdered sodium hydroxide (0.240 g, 6.000mmol)
was added. The mixture was warmed to around 60 �C, and then stirred at 60 �C
for 4 h. When the reaction was complete (monitored by TLC), the mixture was
allowed to cool down to room temperature and then was diluted with water
(80mL). The aqueous solution was then extracted twice with ethyl acetate
(2� 60mL). The extracts were combined and dried with anhydrous MgSO4. Evap-
oration of the solvent gave a residue, which was purified by flash chromatography
to furnish pure 2-(3-ethoxyphenyl)pyrimidine 3a (0.641 g, 3.201mmol) in 80% yield
as colorless oil. 1H NMR (400MHz, CDCl3): d¼ 1.35 (t, J¼ 7.0Hz, 3H), 4.06 (q,
J¼ 7.0Hz, 2H), 6.92–6.97 (m, 1H), 7.06 (t, J¼ 4.9Hz, 1H), 7.30 (t, J¼ 7.9Hz,
1H), 7.90–7.98 (m, 2H), 8.69 (d, J¼ 4.9Hz, 2H). 13C NMR (100MHz, CDCl3):
d¼ 164.45, 159.35, 157.11, 138.96, 129.57, 120.54, 119.12, 117.83, 113.34, 63.52,
14.85. HRMS (ESI) m=z calcd. for C12H13N2O [MþH]þ: 201.1028; found:
201.1030. IR (neat): n¼ 2981, 2936, 1603, 1550, 1452, 1415, 1325, 1220, 1053, 946,
780, 695 cm�1. Anal. calcd. for C12H12N2O: C, 71.98; H, 6.04; N, 13.99. Found:
C, 72.11; H, 6.20; N, 13.87.

Preparation of compound 3s. The isomeric mixture of compounds 2s and 2s0

(2.345 g, 3.997mmol) was dissolved in DMSO (10mL), and powdered sodium hydrox-
ide (0.240 g, 6.000mmol) was added. The mixture was warmed to around 60 �C and
then stirred at 60 �C for 4 h. After the reaction was complete (monitored by TLC),
the mixture was allowed to cool down to room temperature and then was diluted with
water (80mL). The aqueous solution was then extracted twice with ethyl acetate
(2� 60mL). The extracts were combined and dried with anhydrous MgSO4. Evapor-
ation of the solvent gave a residue, which was purified by flash chromatography to
furnish pure 4-(4-methoxyphenyl)-6-phenyl-2-(3,4,5- trimethoxyphenyl)pyrimidine
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3s (1.627 g, 3.797mmol) in 95% yield as off-white solid. Mp 169–170 �C. 1H NMR
(400MHz, CDCl3): d¼ 8.28–8.22 (m, 4H), 8.01 (s, 2H), 7.92 (s, 1H), 7.60–7.52 (m,
3H), 7.08 (d, J¼ 8.8Hz, 2H), 4.04 (s, 6H), 3.95 (s, 3H), 3.91 (s, 3H). 13C NMR
(100MHz, CDCl3): d¼ 164.27, 164.01, 163.74, 161.93, 153.19, 140.36, 137.59,
133.80, 130.71, 129.76, 128.90, 128.74, 127.22, 114.24, 109.22, 105.58, 61.00, 56.23,
55.43. HRMS (ESI) m=z calcd for C26H25N2O4 [MþH]þ: 429.1814; found:
429.1815. IR (KBr film): n¼ 3060, 3000, 2965, 1605, 1570, 1535, 1505, 1460, 1390,
1365, 1240, 1180, 1125, 1035, 1005, 840, 775 cm�1. Anal. calcd. for C26H24N2O4: C,
72.88; H, 5.65; N, 6.54. Found: C, 72.69; H, 5.60; N, 6.62.

SUPPORTING INFORMATION

Characterization data of compounds 3b–3r and 3t–3x; copies of spectra of
1H NMR of compounds 2a, 2sþ 2s0, and 3a-3x; and 13C NMR spectra of
compounds 2a, 2sþ 2s0, 3a, 3c, 3d, 3f, 3g, 3l, 3m, 3n, and 3p–3x are available online.
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