1,4-Bisamides of 1,2,3,4-Tetrahydroquinoxaline.—To a solution of 0.05 mole of tetrahydroquinoxaline in 100 ml of anhydrous chloroform at 0° was added dropwise with constant stirring a solution of 0.11 mole of the acyl chloride in 50 ml of anhydrous $CHCl_3$. When the addition was complete, the mixture was refluxed until evolution of HCl had ceased. Filtration, followed by concentration *in vacuo*, and when necessary trituration with ether, gave solids that were purified by recrystallization from ethanol. The compounds prepared by this method are listed in Tables I and II (method A).

1-Ethyl-4-(3-chloropropionyl)-1,2,3,4-tetrahydroquinoxaline (IV).—Reaction of 0.031 mole of 1-ethyl-1,2,3,4-tetrahydroquinoxaline¹⁴ in 75 ml of chloroform with 0.031 mole of 3-chloropropionyl chloride in 25 ml of CHCl₃ by the general procedure described above gave an 84% yield of a thick oil. Treatment of this oil in ether with HCl gave the hydrochloride, mp 140–142° (from tetrahydrofuran).

Anal. Caled for $C_{13}H_{17}ClN_2O \cdot HCl: C, 54.05; H, 6.27; N, 9.69; Cl, 24.52. Found: C, 54.16; H, 6.51; N, 9.91; Cl, 24.25.$

Amides of Tetrahydroquinoline and Tetrahydroisoquinoline.— Using the same general procedure as described above for the bisamides, 0.05 mole of amine and 0.06 mole of acyl chloride were allowed to react to give after recrystallization from ethanol the materials listed in Table III.

1,4-(Diacrylyl)-1,2,3,4-tetrahydroquinoxalines.—The 1,4-bis-(3-chloropropionyl)-1,2,3,4-tetrahydroquinoxalines in benzene were chromatographed over Merck reagent grade aluminum oxide and eluted with benzene-ethanol (9:1) to give, as previously reported,⁵ the compounds listed in Table II (method B).

(14) R. F. Smith, W. J. Rebel, and T. N. Beach, J. Org. Chem., 24, 205 (1959).

1,4-Diformyl-1,2,3,4-Tetrahydroquinoxaline (V, R = H).—A solution of 0.036 mole of quinoxaline in 30 ml of formic acid and 100 ml of dimethylformamide was refluxed for 16 hr. The resulting solution was poured onto ice and the aqueous solution was extracted continuously with ether for 48 hr. The ethereal solution was dried and concentrated *in vacuo* to give an oil which crystallized on trituration with ethanol. Recrystallization from ethanol gave 3.0 g (44%), mp 125–126°, lit.⁷ mp 119–122°.

Anal. Calcd for $C_{10}H_{10}N_2O_2;\ C,\ 63.14;\ H,\ 5.29;\ N,\ 14.72.$ Found: C, 63.12; H, 5.14; N, 14.69.

1,4-Bis(chlorocarbonyl)-1,2,3,4-tetrahydroquinoxaline (V, R = Cl).—A solution of 0.03 mole of 1,2,3,4-tetrahydroquinoxaline in 30 ml of benzene was added dropwise with stirring and cooling to a solution of 0.06 mole of phosgene in 50 ml of benzene. After addition the mixture was refluxed for several hours and concentrated *in vacuo* to give 5.9 g (76%) of a solid, mp 92–93° (from isopropyl ether).

Anal. Calcd for $C_{10}H_3Cl_2N_2O_2$: C, 46.35; H, 3.11; N, 10.81; Cl, 27.37. Found: C, 46.50; H, 3.22; N, 10.66; Cl, 27.16.

1,4-Bis(2-chloroethyl)-1,2,3,4-tetrahydroquinoxaline (VI).—A solution of 0.015 mole of 1,4-bis(chloroacetyl)-1,2,3,4-tetrahydroquinoxaline in 200 ml of tetrahydrofuran (THF) was added dropwise with stirring to 50 ml of a 1 N solution of borane under nitrogen at -10° . After the resulting mixture was refluxed for 1 hr, 8 ml of 6 N HCl was added followed by 75 ml of water. The THF was distilled and excess solid NaOH was added. The resulting mixture was concentrated to give 3.55 g (80%) of a yellow oil. The hydrochloride was prepared and recrystallized from THF, mp 149–152°.

Anal. Caled for $C_{12}H_{16}Cl_2N_2 \cdot HCl$: C, 48.76; H, 5.80; N, 9.48; Cl, 35.98. Found: C, 49.00; H, 5.71; N, 9.47; Cl, 35.92.

Hypoglycemic Activity and Pharmacological Picture of 4-(1-Naphthyl)butylamine Derivatives

SILVANO CASADIO, TIBERIO BRUZZESE, GIANFRANCO PALA, GERMANO COPPI, AND CARLA TURBA

Research Laboratories of Istituto De Angeli S.p.A., Milan, Italy

Received March 1, 1966

Forty-nine 4-(1-naphthyl)butylamine derivatives were prepared for hypoglycemic tests. They were also submitted to comprehensive screening, in order to obtain as complete as possible a pharmacological picture. The majority of the compounds examined revealed marked hypoglycemic activity, and of these the α -isopropyl- α -(3-dimethylaminopropyl)- (XXIII) and α, α -di(3-dimethylaminopropyl)-1-naphthylacetic acids (XXIV) were found to be the most active and comparable with chlorpropamide. None of the other actions investigated revealed anything of particular interest.

Our finding¹ that some α -aminoethyl-1-naphthylacetic acids possess hypoglycemic activity has led us to extend this investigation to compounds with related structures. Preliminary studies showed that substitution with an aminopropyl chain in the α position of 1-naphthylacetic acid was the most promising for reaching the highest activity, and an extensive series of 4-(1-naphthyl)butylamines of the following general structure was prepared. The methods used in obtaining the new compounds were quite similar to those reported in previous papers^{1,2} and, in any case, are well illustrated in the Experimental Section.

R = H, alkyl, or aminopropyl

- $R' = CN, CONH_2, CO_2H, CO_2R'', CONHR'', CONPr_2,$
- CONHCONHPr, CNHR'', or COEt (R'' = alkyl, cyclohexyl, allyl, or phenyl)

NAA = tertiary amino group

The title compounds were submitted to a pharmacological investigation which included not only examination of the hypoglycemic action, but also studies of acute toxicity, behavioral effects, and antiinflammatory, analgesic, local anesthetic, antitussive, diuretic, antispasmodic, antipyretic. choleretic, and hypoten-

⁽¹⁾ G. Pala, T. Bruzzese, E. Marazzi-Uberti, and G. Coppi, J. Med. Chem., 9, 603 (1966).

^{(2) (}a) S. Casadio, G. Pala, E. Crescenzi, T. Bruzzese, E. Marazzi-Uberti, and G. Coppi, *ibid.*, 8, 589 (1965); (b) S. Casadio, G. Pala, T. Bruzzese, E. Crescenzi, E. Marazzi-Uberti, and G. Coppi, *ibid.*, 8, 594 (1965); (c) G. Pala, T. Bruzzese, E. Marazzi-Uberti, and G. Coppi, *Farmaco* (Pavia), *Ed. Sci.*, 19, 731 (1964); (d) G. Pala, T. Bruzzese, E. Marazzi-Uberti, and G. Coppi, *ibid.*, 19, 933 (1964).

						TABLE I							
				4-(I-NAF	HTHYL) R R	suprime Denv	ATIVES						
					-RC	CH_CH_CH_N<							
				<u> </u>									
Connd	2	,×	N <a)< th=""><th>Method</th><th>Yield,$\frac{\%}{2}$</th><th>Bp (mm) or mp, ^o()</th><th>Formula</th><th>0</th><th>`ale 1, % – H</th><th>Z</th><th></th><th>ound, % H</th><th>z</th></a)<>	Method	Yield, $\frac{\%}{2}$	Bp (mm) or mp, ^o ()	Formula	0	`ale 1, % – H	Z		ound, % H	z
	Н	CN	$N(CH_3)_2$	V	25%	$163-165\ (0.6)$	$\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{N}_2$	80.91	7.99	11.40	81.27	8. I4	10.93
11	C_2H_5	CN	$N(CH_3)_2$	B	23	$154 - 156 \left(0.3 \right)$	$C_{1_9}H_{24}N_2$	81.38	8.63	6676	81.85	8.65	10.19
III	i-C ₃ H ₇	CN	$N(CH_3)_2$	æ	»()6	$144-146(0.2), 84-85^{b}$	$\mathrm{C}_{20}\mathrm{H}_{26}\mathrm{N}_2$	81.58	8,90	9.52	82.25	x, xi	6 ⁻ 6
IV	$(CII_3)_2N(CII_2)_3$	CN	$N(CH_3)_2$	Я	80 ⁴	172 - 173(0.3)	$C_{22}H_{31}N_3$	78.29	9.26	12.45	12.81	9.30	12.38
Λ	Н	CN	$N(C_2H_5)_2$	V	74^{a}	$156 \cdot 158 (0.2)$	$\mathrm{C_{19}H_{24}N_2}$	81.38	8.63	66.6	81.05	8.49	9.87
IV	i -C ₃ Π_7	CN	$N(C_2H_5)_2$	£	×07	167 - 168 (0.3)	$\mathrm{C}_{22}\mathrm{H}_{30}\mathrm{N}_2$	81.93	9.38	8.69	81.57	9.27	8.69
VII	$(C_{3}H_{3})_{2}N(CH_{2})_{3}$	CN	$N(C_2H_5)_2$	В	85^{a}	$178 \ 180 \ (0.2)$	$C_{26}H_{39}N_{3}$	70.34	60.60	10.68	78.74	16.6	10.55
VIII	Ш	CN	Pyrrolidino	V	61°	$85-86^{d}$	$C_{19}H_{22}N_2$	81.97	7.97	10.06	81.52	7,86	10.19
IX	i-C ₃ H ₇	CN	Pyrrolidino	В	74^{a}	165 - 168 (0, 1)	$C_{22}H_{28}N_2$	82.45	8.81	8.74	82.25	8.68	8 83 8
x	Н	CN	Piperidino	V	Ś	10()-101 <i>q</i>	C ₂₀ H ₂₄ N ₂	82.14	8.27	9.58	68° 18	8.17	9.73
XI	<i>i</i> -C ₃ H ₇	CN	Piperidino	£	73^{a}	175 178(0.1)	$C_{23}H_{30}N_2$	82.58	9.04	8.38	82.51	9.04	X.47
ХН	Н	CN	Morpholino	V	92c	$105 \ 106^d$	C ₁₉ H ₂₂ N ₂ O	77.52	7.53	9.52	77.67	7.58	9.60
XIII	i-C ₃ H ₇	CN	Morpholino	Α	$5S^a$	188 - 191 (0.3)	$C_{22}H_{28}N_2()$	78.53	8.39	8. <u>8</u>	77.85	8.32	8.28
XIV	C_2H_3	CONH ₂	$N(CH_3)_2$	Ð	85%	210-212(0.6)	$C_{19}H_{26}N_2O$	76.47	x.7s	9.30	75.63	8.68	9.49
XV	i-C ₃ H ₇	CONI1 ₂	$N(CH_3)_2$	<u> </u>	77	194 - 196(0.2)	$C_{20}H_{28}N_2O$	76. 88	9.03	8.97	77.23	9.10	00.6
IVI	$(CH_3)_2N(CH_2)_3$	CONH ₂	$N(CH_3)_2$	U	-76 15	$133-134^{d}$	$C_{22}H_{33}N_3O$	74.32	9.36	11.82	74.46	9.33	11.65
IIVX	$i-C_3H_7$	CONH ₂	$N(C_2H_5)_2$	<u> </u>	7.3^{a}	201 - 203 (0.4)	$(\Sigma_{22}H_{32}N_{2}O$	77.60	9.47	x 53	76.99	9.40	X.1.X
IIIVX	$(C_{2}H_{5})_{2}N(CH_{2})_{3}$	CONH ₂	$N(C_2H_5)_2$	J	70	406-86	$\mathrm{C}_{26}\mathrm{H}_{41}\mathrm{N}_{3}\mathrm{O}$	75.86	10.01	10.21	76.31	10.09	10.24
XIX	$i-C_3H_7$	CONH ₂	Pyrrolidino	-	72	$134 \ 135^d$	$C_{22}H_{30}N_2O$	78.06	8.93	8.28	78°08	8.97	8.32
XX	<i>i</i> -C ₃ H ₇	CONH ₂	Piperidino	2	707	$112 - 113^d$	C ₂₃ H ₃₂ N ₂ O	78.36	9.15	7.95	78.68	0.07	S. 03
IXX	$i-C_{3}H_{7}$	CONH ₂	Morpholino	-	704	222 - 225(0, 2)	C22H30N2O2	74.54	X, 53	2.90	74,53	8.60	N 02
XXII	C_2H_5	C00II	$N(CH_3)_2$	a i	940	251 252	Cl ₉ H ₂₅ NO ₂ -HCl	67.93	7.80	4.17	67.67	1.81	4.15
XXIII	i-C ₃ II ₇	C00H	$N(CH_3)_2$	× ;	26	228-229*.0	$C_{20}H_{27}NO_2 \cdot HOI$	68.65 1	20°2	1.00	67.9S	66.2	4.06
VIXX	(CH ₃) ₂ N(CH ₂) ₃	0011	N(CH ₃) ₂	¥ 2	946	241-242*4 dec oor ooes4	(721132N2(02-2HC)	01.93 60.01	26.7	0.0 10	61.04 60.13	1.94	6.47 9.61
			N(C2H5)2 N(C2H5)2	2 P			Cananos nuci	16.60			21.00 20 00	2 8 6 3	10 · 0
	(1,2115)21N(1,112)3 · 74 11		D	4 6	60 Å	707-107	C2611401/2/C2+211/21		47.0		60.00 F2.02	8 I 6 I	
	<i>и</i> -СаН7 - Са Ш	COUL	ryrronanno ******	4 2	2	1.7671-7711 2021 - 2000 - 2	Contraction Contra	67 °07	60.0 10	71.0	FC 07		0.10
	7-C3H7	COUH	J'iperidino	ц 2		221-2280 100-2022	CallarNO ₂ ·HU	61 24	77.X	R0.6	10.01 00 E3	х. 51 1972 г	6 2 2
VIV	1-C3H7	COOLI	MOTPHOLIHO NCCTL).	- 0	90. GGa	128 18070 11	C2211291103-1101	14. 00 77 00		70.0 20 F	00.10 76 82	6 5 - 2	50.9 60.9
777 777		COOCH	N(CH.).	: :	00	179-174 (0.0)	CHIEROS C.H. NO.	77 - 27	0. 0 12 0	4 4 7	FT 32	00.0 1-1 0	
1777 1777	1-Call		N(CH _a)	: :	9 S 20 20 20 20 20 20 20 20 20 20 20 20 20	167-170(0/3)	C.2211311102	77 70	97 FO	21-7 7-7	10. 11 10- 17	95.0	1.1.
XXXII VVVII	7-V3H7 7-C2H2	CONCENT? CONCENTED.	NCH32	; ::	2 3 2 3	107-179(0.4)	C2411331V02 CH.a.NO.	77 70	06.4 98.0	r S o x	11 - 121 77 - 95	06.8 06.9	60.4 10.4
MAXA	LC.IL.	COCCIII.	N(CH _a),	: C		901-203(0,5)	C."H."NO.	16 NL	67 55 57 55	5 75	51 P	5 55 0	99 F 8
1777 1777	л-Озит 7.С.Н.	COOCH.CII=CII,	N(CH ₂)	: ::	ž	175-177(0,4)	Castration Castra Castr) ,	96 : *	27 - 12 12 - 12	24 24	11 T
1000	たまたくし	オートング ・・・・ ノジスト・シングン インノン	コンロトローン ノトイ	:			5 A M A 19 A 4 800 A		• • • •	22.11		••••	

			-4-		Yield.	Bn (mm) or			Caled, %-	ſ	1	Found, %	
Compd	Ч	R′	N<	Method	1/0	mp, °C	Formula	C	H	z	С	Н	Z
IVXXX	$i-\mathrm{C}_3\mathrm{H}_7$	COOC,H5	N(CH ₃) ₂	Н	81°	$111 - 112^{d}$	$C_{26}H_{31}NO_2$	80.17	8.02	3.60	80.78	8.09	3.62
ΙΙΛΧΧΧ	$(CH_3)_2N(CH_2)_3$	COOC ₃ H ₅	N(CH ₃) ₂	IJ	62^{a}	179 - 180(0.2)	$C_{24}H_{36}N_2O_2$	74.95	9.44	7.29	75.69	9.53	7.36
ΠΙΛΧΧΧ	$i-C_3H_7$	COOC ₂ H ₅	$N(C_2H_5)_2$	Ŭ	42a	172 - 174(0.2)	$C_{24}H_{35}NO_2$	78.00	9.55	3.79	77.45	9.57	3.89
XIXXX	$i-C_{a}H_{7}$	CONHCH ³	N(CH ₃) ₂	I	84^a	180 - 181 (0.2)	$\mathrm{C}_{21}\mathrm{H}_{30}\mathrm{N}_{2}\mathrm{O}$	77.25	9.26	8.58	77.82	9.44	8.42
XL	$i-C_3H_7$	CONHC ₂ H ₅	$N(CH_3)_2$	I	57^{a}	183 - 185(0.3)	$C_{22}H_{32}N_2O$	77.60	9.47	8.23	77.59	9.36	8.08
XLI	$i-C_3H_7$	CONHC ₃ H ₇	N(CH ₃) ₂	ſ	±02	$182 - 183 \left(0.3 \right)$	$C_{23}H_{34}N_2O$	77.92	9.67	7.90	77.01	9.57	7.79
IITIX	$i-C_3H_7$	CONHC ₆ H ₁₁	N(CH ₃) ₂	ر بر	46^{a}	202 - 205(0,2)	$C_{26}H_{38}N_{2}O$	79.14	9.71	7.10	79.11	09.60	7.09
IIIIX	$i-C_3H_7$	CONIICH ₂ CH=CII ₂	$N(CH_3)_2$	ſ	59^{a}	185 - 187(0.4)	$\mathrm{C}_{23}\mathrm{H}_{32}\mathrm{N}_{2}\mathrm{O}$	78.36	9.15	7.95	77.78	9.04	7.84
XLIV	$(CH_3)_2N(CH_2)_3$	CONHC ₃ H ₇	$N(CH_3)_2$	Ţ	53^{a}	200-202(0.5)	$C_{25}H_{39}N_3O$	75.52	9.89	10.57	74.91	9.96	10.64
XLV	$i-C_3H_7$	$CON(C_3H_7)_2$	$N(CH_3)_2$	К	28^{a}	$167 - 169 \left(0.3 \right)$	$C_{26}H_{40}N_2O$	78.73	10.17	7.06	78.10	9.94	6.92
XLVI	$i-C_3H_7$	CONHCONHC ₃ H ₇	N(CH ₃) ₂	ľ	94^{c}	k .	$C_{24}H_{35}N_3O_2$	72.51	8.87	10.57	72.20	8.99	10.58
XLVII	$C_2 H_5$	$C(NH)C_2H_5$	N(CH _a) ₂	М	83ª	173 - 175(0.3)	$C_{21}H_{30}N_2$	81.23	9.74	9.02	80.81	9.67	8.89
XLVIII	$i-C_3H_7$	$C(NH)C_3H_7$	N(CII ₃) ₂	z	20^{a}	169 - 171(0.3)	$C_{23}H_{34}N_2$	81.60	10.12	8.28	81.48	66.6	8.39
IIL	C_2H_5	COC ₂ H,	N(CH ₃) ₂	0	67^{a}	$160 - 162 \left(0.5 \right)$	$C_{2i}H_{29}NO$	80.98	9.39	4.50	81.97	9.36	4.63
^a Once dist from ethanol- decompositior	illed. ^b Crystallized -ligroin (bp 75–120°)).	from petroleum ether (bj . ^ Crystallized from acc	o 40–70°).	Jrude produ 1 alcohol.	i Cryste	rystallized from li ullized from isopro	groin (bp 75–120°) pyl alcohol. ⁴ Cryst	. ° Hydrochl tallized from :	oride. / C 	brystallize Attempt	d from eth s at distilla	mol. " Cr ion resulte	ystallized in some

sive action, as well as their *in vitro* antibacterial, antifungal, trichomonicidal, and antiamebal effects.

Experimental Section³

Chemistry.—The new compounds are listed in Table I, along with yields, physical constants, and analytical data.

Nitriles (I-XIII) were prepared according to the general procedure we recently described,^{2a} and which consists in alkylating nonsubstituted nitriles with an aminoalkyl or alkyl halide in the presence of sodamide.

Method A. α -(3-Dimethylaminopropyl)-1-naphthylacetonitrile (I).—Sodamide (8.2 g, 0.21 mole) was cautiously added to a solution of 1-naphthylacetonitrile (33.4 g, 0.2 mole) in anhydrous benzene (200 ml), refluxing the mixture with stirring for 2 hr. After cooling to 40°, a solution of 3-(N,N-dimethylamino)-1-chloropropane (25.5 g, 0.21 mole) in anhydrous benzene (150 ml) was added dropwise over 1 hr. The suspension was then refluxed for 6 hr and cooled to room temperature, and water was cautiously added. The benzene layer was separated and extracted with dilute HCl and the acid extract was washed with ether and made alkaline with 10% NaOH. The oil which separated was extracted with ether and the solution was washed with water and dried (Na₂SO₄). After removal of the solvent the residue was distilled at 163-165° (0.6 mm) to give a colorless oil.

Method B differed from method A in that an aminoalkyl or an alkyl halide was treated with an α -aminoalkylnitrile.

 α -Isopropyl- α -(3-diethylaminopropyl)-1-naphthylacetonitrile (VI).—Sodamide (10.1 g, 0.26 mole) was cautiously added to a solution of V (56.1 g, 0.2 mole) in anhydrous benzene (300 ml) and the mixture was refluxed with stirring for 2 hr. After cooling to 40°, 2-bromopropane (32 g, 0.26 mole) was added dropwise over 1 hr. The mixture was refluxed for 6 hr and then treated as described in method A, yielding a viscous oil, bp 167–168° (0.3 mm).

Primary Amides (XIV-XXI).—The procedure consisted of hydrolyzing the nitriles with sulfuric and acetic acid, according to the general method previously described.^{2b}

Method C. α -Ethyl- α -(3-dimethylaminopropyl)-1-naphthylacetamide (XIV).—II (28 g, 0.1 mole) was dissolved in a 1:1:1 mixture of concentrated H₂SO₄, glacial acetic acid, and water (109 ml). The solution was refluxed for 24 hr, cooled to room temperature, diluted with water, and made alkaline with 30% NaOH. The oil was separated and extracted with ether and the ethereal solution was washed with water and dried (Na₂SO₄). After removal of the solvent, the residue was distilled at 210– 212° (0.6 mm), giving a glassy product.

Method D. α -Isopropyl- α -(3-piperidinopropyl)-1-naphthylacetamide (XX) was obtained by hydrolyzing XI for 216 hr as described in method C. After distillation at 214-217° (0.2 mm), the product was treated with ligroin (bp 75-120°) yielding colorless crystals, mp 112-113°.

Acids (XXII-XXIX).—Following the general procedure previously described,¹ the required acids were prepared by reaction of the amides with isoamyl nitrite in glacial acetic acid, and in the presence of HCl.

Method E. α -Ethyl- α -(3-dimethylaminopropyl)-1-naphthylacetic Acid Hydrochloride (XXII).—Hydrogen chloride was slowly bubbled, for 1.5 hr, at room temperature, through a cooled solution of XIV (29.8 g, 0.1 mole) in glacial acetic acid (200 ml). Freshly distilled isoamyl nitrite (37.2 ml) was added over 2 hr, with stirring, and the bright red solution was then maintained at room temperature for additional 2 hr and afterwards heated at 100° overnight. The solvent was removed at 50° under reduced pressure, and the residue was triturated with ether. On crystallization from ethanol a colorless product, mp 251– 252°, was obtained.

Method F. α -Isopropyl- α -(3-morpholinopropyl)-1-naphthylacetic Acid Hydrochloride (XXIX).—XXI was treated as described in method E, but the above procedure was repeated several times until a sample of the reaction mixture, evaporated to dryness, gave a residue completely soluble in dilute NaOH. After crystallization from ethanol, the product gave colorless crystals, mp 226-227° dec.

Acid Chlorides. General Procedure.—The appropriate acid hydrochloride (30 g) was dissolved in SOCl₂ (150 ml) and the

⁽³⁾ Boiling points are uncorrected. Melting points are corrected and were taken on a Büchi capillary melting point apparatus.

				T_A	BLE II:	PILARMACOL	OGICAL SCI	RENING R	ESULTS						
	Annrox			Hypogly activity	cemic (rat)	Anti- inflammatory activity	Analge activity (Increase	ssic mouse)	Surface local anes- thetic	Anti- tussive activity (sruinea		An An Lin	tispasmodie z hibition of st	tetivity <i>in vil</i> asms produce	ro, ^c ad hv
	LD ⁵⁰ (mouse),	Behavior results	Í	Blood sugar	Ì	(rat) Ichib of	of reaction		activity (guinea	pig) Inhib of	Diuretie activity	Acetyl- choline	Ilistamine	Nirotine	Serotonin
Compd	mg/kg ip	Effects on mouse	те/kg ip	decrease, X	mg/kg orally	edema, Sta	time, 22	mg, kg ip	ріг), 2, ⁸	coughing, Se	(rat), vol. T/C^d	1 × 10-7 g/ml	1×10^{-6} μ/ml	$2 imes 10^{-6}$ g./ml	$1 imes 10^{-\epsilon}$ g/ml
, mai	195-215	Mod spontancous mo-	<u>50</u>	15	50	16	44 4	50			1.24	Inactive	Inactive	Inactive	Inactive
II	150-170	Mod behavior excite-	50	Inactive	50	Inactive	65	$\overline{00}$:: ::		6 <u>7</u>	96	88	29
		ment, mod motor in- coordination													
III	140-160	Mod CNS depression, mod musele hymotonie	57	21	50	<u>x</u>	14	25			1.35	ž	54	ŝ	98
IV	140-170	Mod behavior excite-	100	0f	50	Inactive	54	100		<u>x</u>	1.19	17	91	27	ş
		menu, markea motor incoordination		0	2										
V	130-150	Marked behavior ex-	50	Inactive	50	52	$\frac{45}{5}$	50		0 <u>2</u>		61	31	Inactive	30
ΙΛ	140-160	ettement Mod spontaneous mo-	25	21	50	28	30	25		1:		100	001	001	100
	4 	tility decrease	i	20	10	4		i					Ĭ	i	
III	160-190	Mod behavior excite- ment mod musile	00	21	06	13	22	02		Inactive		X Ti	11	66	16
		hypotonia hypotonia		17	01										
VIII	50-60	Mod behavior excite-	101	Inactive	50	55	40	25		Inactive		54	Z	89 9	Inactive
XL	60.80	ment Marked CNS denres-	50	96	0ğ	Inactive	134	50		Inactive		Ż	100	55	(101
		sion, marked motor		<u>x</u>	10					-					
		incoordination, mus-													
X	130-150	the hypotoma Marked CNS depres-	50	Inactive	50 20	Inactive	16	50		16		73	13	95	50
ł		sion, motor incoor-													i
		dination, marked musele bynotonia													
NI	310-350	Mod passivity increase,	25	32	50	16	9	55		07	2.00	22	12	<u>i</u> :	100
		mod motor incoor-		25	10										
ХII	340-370	dination Rehavior excitement.	20	Inactive	50	Inactive	12	00		S.		<u>x</u>	Inactive	16	X
		mod muscle hypotonia								i					ŝ
NIII	150 - 180	Mod CNS depression,	100	=	50	Inactive	22	100		Inactive		95	61	61	22
		marked motor meo- ordination													
XIV	90 - 110	Behavior excitement,	<u>00</u>	23	50	Inactive	25	50	59	21	3.20	Inactive	-27	Inactive	18
		motor incoordination		19	10										
ΛN	185-195	Mod behavior excite-	100	20	50	<u>x</u>	5	100	<u>8</u>		1.66	96	1()()	14	<u>8</u>
		ment, moa muscie hypotonia													
IAX	140-170	Mod spontaneous mo-	25	98	00	Inactive	24	25	0†	Inactive		X.		Inactive	01
		tility decrease, mod		22	10										

Vol. 9

	64	24	10	55	28									75		67	62	38
	84	17	Inactive	15	13									62		84	42	68
	84	10	20	22	63									52		73	96	89
	Inactive	22	28	37	18									47		57	62	40
	1.41	Inactive	1.74		1.31	Inactive	1.27	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive			2.86	1.70	1.71
	16	45	Inactive	17	Inactive									42		Inactive	Inactive	Inactive
	52	49	83	19	62									15		39	42	42
	50	25	100	25	50	200	100	200	200	200	100	100	50	25		25	50	50
	37	60	30	49	50	34	30	58	58	43	47	99	55	38		46	99	61
	44	Inactive	Inactive	Inactive	28	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	16		16	Inactive	25
	50	50 10	$50 \\ 10$	50	50	50	20	20	50 10	10 20	$50 \\ 10$	50	10 20	1 20		$50 \\ 10$	50	50
	19	28 24	$30 \\ 20 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ $	17	13	27 16	34 35	35 30	25 13	27 25	27 18	27	0 I I	Inacuve 30 28		49 31	Inactive	Inactive
	50	25	100	25	50	200	100	200	200	200	100	100	50	25		50	50	50
motor incoordination, marked muscle hypo- tonia	Mod behavior excite- ment	Mod spontaneous mo- tility decrease, mod muscle hypotonia	Mod spontane us mo- tility decrease, mod muscle hymotonia	Mod behavior excite- ment, mod motor in- coordination	Mod spontaneous mo- tility decrease, mod motor incoordination, mod ipsilateral flexor reflex docrease	Mod behavior excite- ment	Mod motor incoordina- tion	Mod spontaneous ac- tivity decrease	Mod CNS depression	Mod CNS depression	Mod spontaneous mo- tility and irritability	aecrease Mod behavior excite-	ment Mod behavior excite-	ment Mod spontaneous mo- tility decrease, mod	muscle hypotonia, moderate ipsilateral flexor reflex decrease	Marked behavior ex- citement, mod motor	Mod CNS depression,	mod muscle hypotonia Irritability increase, mod piuna reflex in- crease, mod muscle hypotonia
	90 - 120	6080	150-170	20-90	180-210	1150-1230	600-650	1180-1250	580 - 650	380-420	290-330	190 - 220	270-320	130-160		60-75	65 - 80	6080
	ΙΙΛΧ	IIIAX	XIX	XX	IXX	ПХХ	IIIXX	VIXX	ХХV	IVXX	IIVXX	ΠΙΛΧΧ	XIXX	XXX		IXXX	IIXXX	IIIXXX

711

						TABLE II	(Continue	(<i>p</i> .							
					,	Anti-	Analg	esic	Surface local	Anti- tussive		147	i vihomenet	etivit <i>v in vile</i> a	
	Approx			Hypoglyc activity	emic (rat)	inflammatory activity	activity (Increase	mouse)	anes- thetic	acuvity (guinea via)	Dintertic	$\sim\%$ in Acetyl-	ribition of sp	asms produced	
	L1) _{se} (mouse).	Behavior results	·	Blood sugar		(rat) Inhib of	or reaction		(guinea	Inhib of	activity	choline	Histamine 1 × 10-e	Nicotine 	Serotonin 1 × 10-6
-	mg/kg	Pffeets on mouse	mg/kg in	decrease %	mg/kg orally	edema. %ª	time. X	тд/kg ip	$pig), \ \%^{h}$	eoughing, %e	(rat), vol. T/C^d	1 × 10 ^{-,} g/ml	т Х 10 ⁻⁴ в/тп	2 × 10 × 20	ر اس ع
- >	95-110	Marked CNS depres- sion, motor incoor- dination, mod muscle	50	Inactive	50	Inactive	73	50	38	30	Inactive	02	43	49	49
	280-310	Approximation and spontaneous mo- tility decrease, mod- erate motor incoordi-	50	Inactive	50	31	52	50	2	Inactive		52	9	64	55 2
1/	285-320	nation Mod behavior excite- ment, muscle hypo- tonia, mod pinua re- totaxi inconsci	50	Inactive	50	Inactive	18	20	<u>.</u>	74		-16	92	20 10	49
II.	145–165	Relies Increase Marked CNS depres- sion, marked motor incoordination, mod	100	25 15	50	13	8	100	35	Inactive	Inactive	55	1 77	Inactive	41
Ш	70-85	muscle hypotonia Mod CNS depression, motor incoordina- tion, marked pinna	90	17 13	50 10		22	50	22	ž		52 22	6X	80 60	50
X	185-210	reflex decrease Mod behavior excite- ment, mod motor in-	50	20 20	10^{-10}	X7	50	50	20	Inactive		26	20	Ŧ2	29
	140-160	coordination Mod behavior excite- mont	50	26 15	50 10	21	61	50	3	Inactive		Inactive	<u> 7</u>	55	56
	275-310	Mod spontaneous mo- tility decrease	50	5 E	50 10	Inactive	37	50	15	Inactive	2.43	14	7 . 1	Ş İ	<u>19 2</u>
	135 160	Mod behavior excite- ment	9 <u>6</u>	20 30 20 30	20 10	84	Re l	20	67	- ·	8.00 00	}	; ;	10	or oniteou
	120-140	Mod behavior excite- ment, motor incoor- dination, mod nuscle	50	27 26	50 10	12	25	50	11	Inactive		<u>r.</u>	e,	+	1 Bach C
	70-85	Mode CNS depression, marked motor inco- ordination, mod mus-	50	24 Inactive	50 10	Inactive	77	50	35	35	Inactive	55	56	Inactive	92
	130-150	cie nypownus Mod behavior excite-	10 10	88 S	50 10	34	49	50	61	Inactive	1.43	Inactive	F()	Z Z	8
_	195-210	Mod spontaneaus mo- tility decrease, mod motor incoordination, mod muscle hypotoni	90	31 Inactive	10	82 87	68	05	19	Inactive	1.31	12	4	50	30

Vol. 9

XLVII 75	5-85	Mod motor incoordina- tion, mod pinna re-	50	31 23	50 10	25	43	50	55	13		45	35	35	Inactive
XLVIII 14()160	nex decrease Mod spontaneous mo- tility decrease, motor incoordination, mod	50	38 18	50 10	19	20	50	12	Inactive	2.01	93	82	88	100
)(11)-105	muscle hypotonia Mod spontaneous mo- tility decrease, mod motor incoordination,	25	27 21	50 10	45	30	25	85	Inactive	1.68	87	100	26	100
Chlorpropamide		mod muscle hypotonia		37	50										
Phenylbutazone Morphine·HCl Cocaine·HCl				70	10	37	61 67	100 5	50	37					
Hydrochloro- Hydrochloro- thiazide a Tested orally orally at 50 mg/k linic), 0.0035 µg/ml.	at 100 r g; the ; 11; dipb	ng/kg. ⁶ The compounds w standard was tested at 6.25 nenhydramine hydrochloride	vere teste mg/kg. :(antihist	ed at a col ° The col taminic), (ncentratio mpounds 1 0.0074 μg/i	n of 1 mg/m were tested a ml; hexame	 The EL the a concent thonium bi 	₁₆ value fo ration of 1 tartrate (s	or the st. µg/ml. intinicot	andard is 0.7 The ED‰ va inic), 0.88 μg/	1.56 mg/ml. ^e Te dues for the 'ml; and chl	sted intrap standards a orpromazin	eritoncally a re atropine su e hydrochlor	t 5 mg/kg ulfate (ant ride (antise	. ^d Tested iacetylcho- erotoninic),

September 1966

Esters (XXX-XXXVIII).—The method adopted involved the reaction of acid chlorides with sodium alkoxides.

Method G. Isopropyl α -Isopropyl- α -(3-dimethylaminopropyl)-1-naphthylacetate (XXXIII).—Sodium (4.6 g, 0.2 g-atom) was dissolved in isopropyl alcohol (300 ml) with heating to 50°, and α -isopropyl- α -(3-dimethylaminopropyl)-1-naphthylacetyl chloride hydrochloride (36.8 g, 0.1 mole) was then added to the cooled solution. The mixture was stirred for 3 hr, the solvent was distilled under reduced pressure, and ether was added to the residue and filtered. After removal of the solvent, the product distilled as a colorless oil, bp 177-179° (0.4 mm).

Method H. Phenyl α -isopropyl- α -(3-dimethylaminopropyl)-1-naphthylacetate (XXXVI) was prepared from the acid chloride and phenol as described in method G, but ethanol was added as the solvent. After crystallization from ligroin (bp 75–120°), it melted at 111–112°.

Secondary amides (XXXIX-XLIV) were prepared by reaction of the acid chlorides with excess amines, in benzene solution.

Method I. N-Propyl- α, α -di(3-dimethylaminopropyl)-1naphthylacetamide (XLIV).— α, α -Di(3-dimethylaminopropyl)-1naphthylacetyl chloride hydrochloride (44.8 g, 0.1 mole) was added in portions to a solution of propylamine (29.5 g, 0.5 mole) in anhydrous benzene (400 ml), cooling moderately. The mixture was stirred for 3 hr and then allowed to stand overnight, afterwards filtering, and distilling the benzene under reduced pressure. Ether was added to the residue, the solution was filtered, and the solvent was removed. Distillation of the residue at 200–202° (0.5 mm) gave a colorless oil.

Method J. N-Allyl- α -isopropyl- α -(3-dimethylaminopropyl)-1-naphthylacetamide (XLIII).—Reaction of the acid chloride with allylamine, as described in method I, gave a mixture which was allowed to stand for 3 hr at room temperature and then refluxed for 2 hr. The crude product isolated was then refluxed with 15% NaOH for 1 hr to destroy any unreacted chloride, the oil in suspension was extracted with ether, and the solution was washed with water and dried (Na₂SO₄). After removal of the solvent the residue was distilled at 185–187° (0.4 mm) to give an oily product.

Miscellaneous Derivatives. N,N-Dipropyl- α -isopropyl-1-naphthylacetamide.— α -Isopropyl-1-naphthylacetyl chloride⁴ (49.3 g, 0.2 mole) was added dropwise to a solution of dipropylamine (48.6 g, 0.48 mole) in anhydrous benzene (300 ml), with stirring. The mixture was refluxed for 2 hr, allowed to stand overnight, and then filtered. The solution was then washed with water and dried (Na₂SO₄), and the benzene was removed under reduced pressure. Distillation of the residue at 154–156° (0.1 mm) gave a colorless oil (54.1 g, 87% yield).

a colorless oil (54.1 g, 87% yield). Anal. Calcd for $C_{21}H_{29}NO$: C, 80.98; H, 9.39; N, 4.50. Found: C, 80.64; H, 9.35; N, 4.58.

Method K. N,N-Dipropyl- α -isopropyl- α -(3-dimethylaminopropyl)-1-naphthylacetamide (XLV).—N,N-Dipropyl- α -isopropyl-1-naphthylacetamide was alkylated with 3-(N,N-dimethylamino)-1-chloropropane in the presence of sodamide, as described in method B. Anhydrous toluene was used as the solvent, as in the preparation of the analogous tertiary amides.² The crude product was fractionated, bp 167–169° (0.3 mm), giving a very viscous oil.

Method L. N-[α -Isopropyl- α -(3-dimethylaminopropyl)-1naphthylacetyl]-N'-propylurea (XLVI).—A solution of XV (31.2 g, 0.1 mole) and propyl isocyanate (21.3 g, 0.25 mole) in toluene (500 ml) was refluxed for 48 hr, cooled, and extracted with dilute HCl. The solution was made alkaline with 5% Na₂CO₃, the oil was separated and extracted with ether, and the ethereal solution was washed with water and dried (Na₂SO₄). Removal of the solvent under reduced pressure gave a viscous oil which, on attempts at distillation, showed some decomposition.

Method M. 1-Dimethylamino-4-ethyl-4-(1-naphthyl)-5iminoheptane (XLVII).—This method follows the general procedure previously described.²⁴ A solution of II (28 g, 0.1 mole) in anhydrous toluene (100 ml) was added to Grignard reagent prepared from magnesium (4.86 g, 0.2 g-atom) and ethyl iodide (31.2 g, 0.2 mole) in anhydrous ether (100 ml). The ether was

⁽⁴⁾ G. Pala, T. Bruzzese, and A. Mantegani, *Farmaco* (Pavia), *Ed. Sci.*, **19**, 235 (1964).

distilled and the residue was maintained at 95° for 16 hr. The mixture was then cooled and 10% HCl was cautiously added (400 ml). The acid layer was separated and made alkaline with 30% NaOH, the oily product was extracted with ether, and the resulting ethereal solution was dried (Na₂SO₄). The solvent was removed under reduced pressure and the residue was distilled at 173–175° (0.3 mm), giving a colorless oil.

Method N. 1-Dimethylamino-4-isopropyl-4-(1-naphthyl)-5iminooctane (XLVIII).—A solution of III (29.4 g, 0.1 mole) in anhydrous toluene (100 ml) was added to Grignard reagent prepared by magnesium (9.7 g, 0.4 g-atom) and propyl bromide (49.2 g, 0.4 mole) in anhydrous ether (200 ml). The ether was distilled and the residue was maintained at 95° for 120 hr. The mixture was then cooled and treated as described in method M. The product obtained was a colorless oil, bp $169-171^{\circ}$ (0.3 mm).

Method O. 1-Dimethylamino-4-ethyl-4-(1-naphthyl)-5-heptanone (IL).—XLVII (31 g, 0.1 mole) was refluxed for 288 hr with concentrated HCl (500 ml), and the cooled mixture was diluted with water, washed with ether, and made alkaline with 30% NaOH. The oil was separated and extracted with ether, the solution was dried (Na₂SO₄), and the ether was distilled yielding an oily product, bp 160–162° (0.5 mm).

Pharmacology.-The acute toxicity, behavioral effects, and hypoglycemic, analgesic, local anesthetic, antitussive, diuretic, antispasmodic, antipyretic, and choleretic activities were investigated by the techniques previously described.^{1,2a,b} The antiinflammatory activity was tested orally in rats, using the carrageenin-induced edema technique.⁵ The action on the arterial pressure was studied in rats under urethan anesthesia (1 g/kg ip), recording the pressure at the carotid by means of a physiological pressure transducer connected to a Sanborn polygraph. The antibacterial, antifungal, and trichomonicidal activities were studied in vitro, as described by Coppi, et al.:⁶ the antiamebal action was examined in vitro, according to de Carneri.⁷ Chlorpropamide, phenylbutazone, morphine, cocaine, oxolamine, hydrochlorothiazide, and atropine, diphenhydramine, hexamethonium, and chlorpromazine were used as standards for comparison, respectively, of the hypoglycemic, antiinflammatory, analgesic, local anesthetic, antitussive, diuretic, and antispasmodic activities.

Results and Discussion

Table II gives the most interesting results of the pharmacological screening. As expected, the majority of the compounds examined displayed a marked hypoglycemic action on oral administration. Considered as a whole, the acids showed the greatest activity, whereas the amides, substituted or not, esters, and nitriles showed a decreasing order of activity. Nothing definite can as yet be stated about the ureides, ketimines, and ketones, because of the scarcity of available data. Moreover, when considering the toxicity, even if merely approximately, the series of acids is seen to be by far the most promising. Another point of interest was the increased potency imparted to the compounds by substitution of the α -methylene group with an isopropyl or aminopropyl radical, compared with the other substituents tested. The hypoglycemic action was particularly evident in the case of XXIII $(\alpha$ -isopropyl- α -3-dimethylaminopropyl-) and XXIV $(\alpha, \alpha$ -di-3-dimethylaminopropyl-1-naphthylacetic acid), the potency of which, at a dose of either 50 or 10 mg/kg

was of the same order as that of the reference standard, chlorpropamide.

As for the other activities investigated, many of the compounds showed CNS depression which appeared as a slight motor incoordination, decrease of the spontaneous motility, body muscle tonus, and of the pinna and ipsilateral flexor reflexes. A number of the substances were found to exert antiinflammatory activity against carrageenin-induced edema, this effect being particularly marked for V (α -3-diethylamino-propyl-1-naphthylacetonitrile). XVII (α -isopropyl- α -3-diethylaminopropyl-1-naphthylacetamide), XXX-(ethyl $-\alpha$ -isopropyl- α -3-diethylaminopropyl-1-VIII naphthylacetate), XLII (N-cyclohexyl- α -isopropyl- α -3-dimethylaminopropyl-1-naphthylacetamide), and IL (1-dimethylamino-4-ethyl-4-naphthyl-5-heptanone). As for the hot plate analgesic method, the activity found was modest in every case when compared with that of morphine, but was more interesting, especially for IX (α -isopropyl- α -3-pyrrolidinylpropyl-1-naphthylacetonitrile), when phenylbutazone was taken as the reference standard. Many of the compounds showed a marked local anesthetic action which was most interesting in the case of XIX (α -isopropyl- α -3-pyrrolidinylpropyl-1-naphthylacetamide), XLVIII (1-dimethylamino - 4 - isopropyl - 4 - naphthyl - 5 - iminooctane), and IL. Among the substances tested for antitussive activity, XVIII (α, α -di-3-diethylaminopropyl-1-naphthylacetamide), XXX (methyl α -isopropyl- α -3-dimethylaminopropyl-1-naphthylacetate), XXXVI (phenyl α -isopropyl- α -3-dimethylaminopropyl-1-naphthylacetate), and XXXVIII were found to inhibit significantly the experimental cough. A number of the compounds showed some diuretic activity, which was more pronounced for XIV (α -ethyl- α -3-dimethylaminopropyl-1-naphthylacetamide), XXXI (ethyl α -isopropyl- α -3-dimethylaminopropyl-1-naphthylacetate), and XL-II. As for the antispasmodic activity in vitro, only compounds VI (α -isopropyl- α -3-diethylaminopropyl-1-naphthylacetonitrile), IX, XV (α -isopropyl- α -3-dimethylaminopropyl-1-naphthylacetamide), XL-VIII, and IL were found to be of some interest. Nothing of particular interest was found in investigating the antipyretic, choleretic, and hypotensive actions, as well as the *in vitro* antibacterial, antifungal, trichomonicidal, and antiamebal effects.

Due to the promising results shown in the preliminary hypoglycemic testing of XXIII and XXIV, these two compounds are now undergoing a more detailed pharmacological and toxicological study and this will be reported in the near future. An investigation of other substances chemically related to the title compounds is also in progress, in order to shed more light on the structure-hypoglycemic activity relationships.

Acknowledgments.—The authors thank Mr. O. Boniardi and Mr. G. Pinna for their assistance in preparing the compounds, Dr. G. Sekules for the microanalyses, Dr. G. Erba for his aid in the pharmacological screening, and Miss L. Tomasi, Miss A. Franchi, and Mr. E. Pavesi for carrying out the biological tests.

⁽⁵⁾ E. Arrigoni-Martelli and I. Conti, Farmaco (Pavia), Ed. Prat., 19, 135 (1964).

⁽⁶⁾ G. Coppi, A. Maselli, and C. Ciani Bonardi, Farmaco (Pavia), Ed. Sci., 20, 203 (1965).

⁽⁷⁾ I. de Carneri, Arch. Intern. Pharmacodyn., 113, 273 (1958).