Chemistry Letters 1999 83 ## Methanol Formation from Dichloromethane under Hydrothermal Conditions Yuki Yamasaki,[#] Heiji Enomoto, Nakamichi Yamasaki,[†] and Masaru Nakahara^{††} Resource Engineering, Faculty of Engineering, Tohoku University, Aoba-ku, Sendai 980-8579 †Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Akebonocho, Kochi 780-8520 ††Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Received October 9, 1998; CL-980777) ${ m CH_2Cl_2}$ (1 mole) mixed with NaOH (2 moles) was treated under hydrothermal conditions at 250 °C. The chlorinated methane was completely hydrolyzed to form methanol and the formate by the Cannizzaro reaction. The reactant and products were analyzed by $^1{ m H-}$, $^2{ m H-}$, and $^{13}{ m C-NMR}$. Solvent isotope effect on the transformation was also investigated. The hazardous and environmentally troublesome organic solvent was safely converted into the useful compounds. Dichloromethane is one of the most widely used chlorinated organic solvents that can dissolve a variety of chemicals. Recently, it is wanted to make innovations for recycling thermally stable chlorinated compounds to protect our environment and ozone layer. Such hazardous compounds as dioxin and PCBs (polychlorinated biphenyls) have been target compounds.¹⁻³ The purpose of this work is to examine a possibility of applying hydrothermal reactions to the chlorinated compounds in order to transform the used materials into some useful forms without carbon dioxide emission.4 Tester and coworkers studied the decomposition of CH₂Cl₂ by the supercritical water oxidation reaction⁵ and the main products were carbon monoxide and dioxide. Here we attempt to find suitable conditions by which we can avoid the drastic and complete oxidation of CH₂Cl₂ for saving energy on the earth by recycling. In the temperature range 80-150 °C, Moelwyn-Hughes et al. first have studied the reaction kinetics of CH₂Cl₂ in aqueous alkaline solution at a low concentration due to the solubility limit.^{6,7} CH₂Cl₂ becomes completely miscible with water when heated up. Concentrated solution at $\sim 1 \text{ M} (1 \text{ M} = 1 \text{ mol dm}^{-3})$ is therefore studied here by means of ¹H-, ²H-, and ¹³C-NMR which is sensitive and rich in structural information. A mixture of CH₂Cl₂ (7.8 mmol) and 8 cm³ of 2 M NaOH (NaOD) in H₂O (D₂O; 99.9% D) were pored into an autoclave which was made of stainless steel and lined with Teflon (inner volume, 28 cm³). The mole ratio of the alkali to chlorine atoms, [OH]/[Cl], was 1.02. In ambient conditions, the mixture has two liquid phases because of the low solubility (0.23 M) of CH₂Cl₂ in water. In a sealed glass tube, it was observed that the mixture becomes homogeneous at about 165 °C; the concentration was about 0.92 M. The autoclave was placed in an oven kept at 250 ± 1 °C. After a reaction time, the autoclave was cooled down to room temperature in 10-20 min in order to stop the hydrothermal reaction. The reaction products were analyzed by taking ¹H-, ²H-, and 13C-NMR spectra with a NMR spectrometer (JEOL, EX270) as a function of the reaction time; a sample tube of 10 mm in o.d. was used. The reaction time was regarded as being approximately equal to the time during which the hydrothermal solution was kept in the oven. For the peak assignment and the quantitative analysis of the proton intensities, benzene C₆H₆ contained in a capillary was used as an external reference. The concentration of the chloride ion was also measured by means of **Figure 1.** ¹H-NMR spectra for the solution hydrothermally treated with NaOH in H₂O at 250 $^{\circ}$ C for (a) 45 min, (b) 90 min, (c) 270 min, and (d) ¹H-and (e) ²H-NMR spectrum with NaOD in D₂O (99.9% D) for 45 min. Chemical shifts (δ/ppm) were determined relative to C₆H₆ at 7.28 ppm. The number near the peak represents the relative intensity. ionchromatography (Hitachi, Ion-chromatoanalyzer). The decomposition ratio of CH₂Cl₂ thus obtained agreed well with that due to the ¹H-NMR analysis. Figure 1 shows the chemical species determined by ¹H-and ²H-NMR analysis of the solution after the hydro-thermal reaction of CH₂Cl₂ with NaOH or NaOD at 250 °C. The signal assigned to water is vertically expanded to such an extent that the product signals become discernible. Comparison of the time-dependent spectra (a) to (c) allows us to see that the gradual consumption of the reactant CH₂Cl₂ is accompanied by the production of methanol and the formate ion. The transformation of this hazardous compound to the safe and useful ones is completed in 270 min under the alkaline hydrothermal conditions. While the amount of methanol is gradually increased, the increase of the formate ion is suppressed by its gradual decomposition, as mentioned below. How are the products dueterated during the transformation process in D₂O solvent? It can be seen from the ¹H- and ²H- spectra in Figure 1. In an independent run, we have 84 Chemistry Letters 1999 confirmed that CH₃OH and HCOO cannot be transformed into CD₃OD and DCOO in D₂O under the same hydrothermal conditions. Only a weak signal of the deuterated reactant CD₂Cl₂ is recognized at \sim 5.5 ppm. In contrast, the yield of CD₃OD at 270 min was calculated to be \sim 40%. These therefore indicate that the H/D exchange reaction takes place not for CH₂Cl₂ but *via* such a reactive intermediate as CH₂(OD)₂ or HCHO in D₂O.⁶ Since no other products except formic acid and methanol were detected in this study, this hydrothermal reaction is similar to the Cannizzaro reaction, ^{8,9} in which disproportionation of formaldehyde or its hydrate yield gives rise to HCOO and CH₃OH. In this disproportionation reaction, formaldehyde or its hydrated form is reduced to CH₃OH and oxidized to HCOO through bimolecular hydride transfer. In contrast to the usual Cannizzaro reaction, however, the alkali is not added in excess. The products of the usual Cannizzaro reaction in D₂O with alkali are known not to be subjected to the H/D exchange. In this study, the deuterated products was formed as shown in spectrum (e). The yields (%) of HCOO and CH3OH are shown in Figure 2 as a function of reaction time. At early reaction time, both products are increased with time. There are no products during 0-15 min probably due to the dead time caused by inefficient heat transfer in the autoclave. The yields of HCOO (○) and CH₃OH (●) are almost the same at the early stage. Before the yield of CH₃OH becomes saturated, that of HCOObegins to decrease and then disappear due to decomposition. The yield of CH₃OH reaches ~50% just as predicted from the bimolecular hydride transfer reaction. After ~400 min, such sparingly water-soluble gases as CO (dominant), CO2, and H2 were detected by means of gas chromatography (Hewlett Packard GC5890). The total amount of the gases can be explained by considering the difference in the yield between methanol and the formate. The formate ion is considered to be decomposed to CO + H₂O. In words, the total mass balance for carbon is kept during the reaction. The solution hydrothermally treated for 270 min was also analyzed by ionchromatography in order to determine the Cl concentration. The dechlorination ratio is estimated to be more than 99%, which corresponds to the almost complete decomposition of CH₂Cl₂. In the ¹³C-NMR analysis of the same reaction solution, the Cannizzaro reaction Figure 2. Time dependence of the yields of $HCOO^{-}(\bigcirc)$ and $CH_3OH(\bigcirc)$, which were calculated from the molal ratio of the product to the reactant CH_2CI_3 . products were observed at 171 ppm (HQOO) and at 49.5 ppm (QH_3OH). The present NMR study of the hydrothermal reaction clearly shows that CH_2Cl_2 can be completely transformed or recycled to safe and useful compounds without hazardous ones. ## References and Notes - # Present address: Osaka Prefectural College of Technology, Depart. Indust. Chem., 26-12 Saiwai-cho, Neyagawa, Osaka 572-8572 - 1 N. Yamasaki, T. Yasui, and K. Matsuoka, Environ. Sci. Technol., 14, 550 (1980). - N. Yamasaki, K. Yanagisawa, and M. Fujita, Organohalogen Compd., 19(Dioxin '94), 343 (1994). - 3 K. Hatakeda, Y. Ikushima, S. Ito, N. Saito, and O. Sato, Chem. Lett., 1997, 245. - 4 M. Nakahara, T. Tennoh, C. Wakai, and H. Enomoto, Chem. Lett., 1997, 163. - 5 A. Marrone, R. P. Lacance, J. L.DiNaro, B. D. Phenix, J. C. Meyer, J. W. Tester, W. A. Peters, and K. C. Swallow, "Innovations in supercritical fluids", American Chemical Society, Washington, D.C.(1995), Chap. 13, p.197. - I. Fells and E. A. Moelwyn-Hughes, J. Chem. Soc., 1958, 1326. - 7 I. Fells and E. A. Moelwyn-Hughes, *J. Chem. Soc.*, **1959**, 398. - 8 S. Cannizzaro, Justus Liebigs Ann. Chem., 88, 129(1853). - C. G. Swain, A. L. Powel, W. A. Sheppard, and C. R. Morgan, J. Am. Chem. Soc., 101, 3576(1979).