Highly Stereoselective Dimerization of 3-Alkoxyimino-2-aryl-alkylnitriles via Oxidative Carbon–Carbon Bond Formation

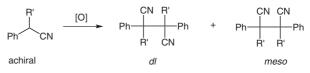
Yunfei Du,* Yongliang Zhang, Songqing Wang, Kang Zhao*

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology,

Tianjin University, Tianjin 300072, P. R. of China

Fax +86(22)27890968; E-mail: kangzhao@tju.edu.cn

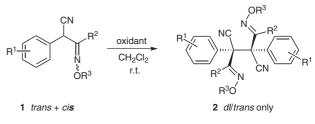
Received 16 March 2009


Abstract: The MnO₂-mediated oxidative dimerization of a series of 3-alkoxyimino-2-aryl-alkylnitriles was investigated. The developed method stereospecifically afforded solely the corresponding C₂-symmetric *dl*-dimers, with the *trans*-configuration of the C=N double bonds, in good to excellent yields under mild conditions. The alkoxyimino substituents in the substrates and a thermodynamically controlled mechanism are proposed to be essential for the stereoselectivity of this radical dimerization process.

Key words: MnO₂, oxidative dimerization, 3-alkoxyimino-2-arylalkylnitriles, *dl*-dimers, stereoselectivity

Oxidative homocoupling of α -substituted benzylcyanides can result in carbon–carbon bond formation between the two identical sp³-hybridized benzylic carbon atoms, which would provide the most straightforward and expedient approach to the synthesis of the substituted 2,3-diarylsuccinonitriles. A large variety of oxidants, for example *tert*-butyl peroxide,¹ iodine,² sodium nitrite,³ oxygen,^{1b} H₂O₂,^{1b,4} K₃Fe(CN)₆,^{3,5} HNO₃,⁶ NiO₂,⁷ KMnO₄,^{3,8} $Ag_2O_3^3 PbO_2^3$ and di-*tert*-butylhyponitrite⁹ have been reported for such homocoupling reactions. Generally, these transformations undergo non-diastereoselective radical dimerization processes and mixtures of both *dl*- and *meso*isomers are obtained (Scheme 1). Due to the fact that a great deal of effort has been devoted to achieving high diastereoselectivity in many other homocoupling reactions,¹⁰ we thought it desirable to realize the stereoselective oxidative dimerization of a-substituted benzylcyanide derivatives. Herein, we report the stereospecific homocoupling of 3-alkoxyimino-2-aryl-alkylnitriles, a class of highly αfunctionalized benzylcyanides, which affords exclusively the *dl*-dimers with no formation of the *meso*-isomers (Scheme 1).

We recently reported an efficient and practical FeCl₃mediated intramolecular cyclization of 3-alkoxyimino-2aryl-alkylnitriles that allows the facile preparation of a series of *N*-alkoxyindole-3-carbonitriles.¹¹ In an attempt to elucidate the reaction mechanism, we also applied K_3 Fe(CN)₆, which is a less potent single-electron oxidant than FeCl₃, to treat substrate **1a**, and it was found that the homodimer of **1a** was obtained without any detection of the cyclized indole products. This oxidative coupling


SYNLETT 2009, No. 11, pp 1835–1841 Advanced online publication: 12.06.2009 DOI: 10.1055/s-0029-1217369; Art ID: W03609ST © Georg Thieme Verlag Stuttgart · New York

reaction intrigued us enough to further explore its oxidative condition and stereoselectivity as well as its scope and generality.

We began our investigation with 1a, a mixture of *trans* and *cis*-isomers (*trans/cis* = 4.7:1), as the model substrate with which to screen various readily available oxidants (Scheme 2). It was found that, in addition to K₃Fe(CN)₆, MnO₂ and Ag₂O could also efficiently convert 1a into its homodimer, while the other oxidants were either unreactive or inefficient for this transformation (see Table 1). Based on the experimental results, compound 1a in all cases was found to give solely the *dl*-isomer rather than a mixture of *dl*- and *meso*-isomers; a distinct feature always observed for such homocoupling reactions. We finally selected the convenient oxidant MnO₂ to transform a series of 3-alkoximino-2-aryl-alkylnitriles into their corresponding homocoupled dimers.

After optimization,¹² the oxidative coupling reaction under study was finally conducted in the presence of four equivalents of MnO_2 in dried CH_2Cl_2 with stirring at room temperature. The results shown in Table 2 show that substrates with both electron-withdrawing and electron-donating groups on the benzene ring could conveniently furnish the corresponding homodimers in good to excellent yields (84–97%). When the electron-withdrawing groups were substituted on the benzene ring (entries 4, 5 and 13 in Table 2), the reaction proceeded smoothly to furnish the coupling dimer in high yields (93–96%) within shorter periods of time (0.5 h). It is noteworthy that when

 Table 1
 Oxidants Screened for the Homocoupling of 1a^a

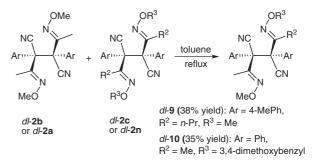
Entry	Oxidant (equiv)	Solvent	Temp (°C)	Time (h)	Yield (%) ^{b,c}
1	DDQ (1.5)	CH_2Cl_2	r.t.	2	NR
2	I ₂ (2.0)	CH_2Cl_2	r.t.	2	NR
3	CAN (2.5)	MeCN	r.t.	2	NR
4 ^d	K ₃ Fe(CN) ₆ (2.0)	MeOH	r.t.	0.5	89
5	$KMnO_{4}(1.5)$	Acetone	r.t.	0.5	_e
6	$Cu(OAc)_2 \cdot H_2O(2.0)$	AcOH	100	1	30
7	$Mn(OAc)_{3} \cdot 3H_{2}O(1.5)$	AcOH	100	1	20
8	NaNO ₂ (3.0)	AcOH	r.t.	2	NR
9	PbO ₂ (2.0)	AcOH	r.t.	1	_e
10	Ag ₂ O (2.0)	CH_2Cl_2	r.t.	3	94
11	MnO ₂ (2.0)	CH_2Cl_2	r.t.	4	89
12	MnO ₂ (3.0)	CH_2Cl_2	r.t.	2.5	92
12	MnO ₂ (4.0)	CH_2Cl_2	r.t.	1	97
13	MnO ₂ (5.0)	CH_2Cl_2	r.t.	1	93
_					

^a Reaction conditions: **1a** (2.0 mmol), oxidant, solvent (30 mL).

^b Isolated yield after silica gel chromatography. ^c NR: no reaction occurred.

^d 10% aq NaOH (7 equiv) was added as additive.^e Complex mixture, no desired product detected.

 R^2 or R^3 were bulkier benzyl, phenyl, or long-chained alkyl groups (entries 3, 7, 8, 11 and 14 in Table 2), the reaction also furnished the desired product in good yields (84–92%), at the expense of requiring relatively longer reaction times (2–3 h).


The products were stable solids whose structures were determined by detailed studies of the spectroscopic data. In all cases, only one single isomer was observed and the number of signals in the ¹H and ¹³C NMR spectra clearly established the symmetry of the molecules. The C₂-symmetry was further established by the X-ray crystal structure of the coupling product *dl*-**2n** (Figure 1).¹³ The C=N double bonds in the dimerized products were assigned the *trans*-configuration, regardless of the stereochemistry (*trans* or *cis*) of the substrates employed (for the ratios of the *trans* and *cis* isomers, see Table 2).

When a similar substrate **3**, structurally differing from substrate **1** by the naphthalene ring, was treated with MnO₂ under the same reaction conditions, an intramolecular cyclized product **5** was also obtained in a yield of 35%, in addition to the expected coupling dimer *dl*-**4**. However, if either Ag₂O or K₃Fe(CN)₆ was applied as the oxidant, only the dimerized *dl*-**4** was obtained in yields of 92% and 86%, respectively, with no formation of the cyclized **5** in either case (Scheme 3).

Scheme 3

We finally turned our attention to a possible explanation for the stereoselectivity of this radical dimerization process. Firstly, we wanted to know whether *dl*-2 could be converted into a thermodynamic mixture of both *dl*- and meso-isomers. The previous report showed that similar dimerized products of some benzylcyanides a-substituted with an ester, could display thermal equilibration of the dl- and meso-diastereoisomers via a radical dissociationrecombination process.^{3,14} Surprisingly, it was found that no new product was generated when each dimerized dl-2 was heated at reflux temperature in toluene over two hours. However, heating a mixture of equimolar equivalents of *dl*-2b and *dl*-2c in toluene at reflux temperature over 30 min did afford the cross-dimerized dl-9 as the only heterocoupling product in 38% yield, in addition to the recovered dl-2b (60%) and dl-2c (59%). Similarly, the single cross-heterodimer *dl*-10 was obtained in 35% yield from *dl*-2a and *dl*-2n under identical conditions, with 61% of *dl*-2a and 63% of *dl*-2n recovered (Scheme 4).

Scheme 4

Unfortunately, all attempts to separate the other expected cross-dimers, for example, the heterocoupling dimers from *dl*-2a and *dl*-2b, *dl*-2e and *dl*-2k, *dl*-2h and *dl*-2k, or *dl*-2h and *dl*-2j as pure products failed, since the three dimers, i.e., the two starting homodimers and the expected heterodimer, always coexisted as a mixture in each case.

Secondly, treating the unsubstituted α -phenyl ketonitrile **11** with MnO₂ under the described conditions led to a mixture of *dl*- and *meso*-**12** in a ratio of 1.2:1, determined by ¹H NMR analysis (Scheme 5). This result is in general agreement with previous observations reported in the literature on the dimerization of substrate **11** with PbO₂.³

 Table 2
 Oxidative Dimerization of 3-Alkoxyimino-2-aryl-alkylnitriles Mediated by MnO2^a

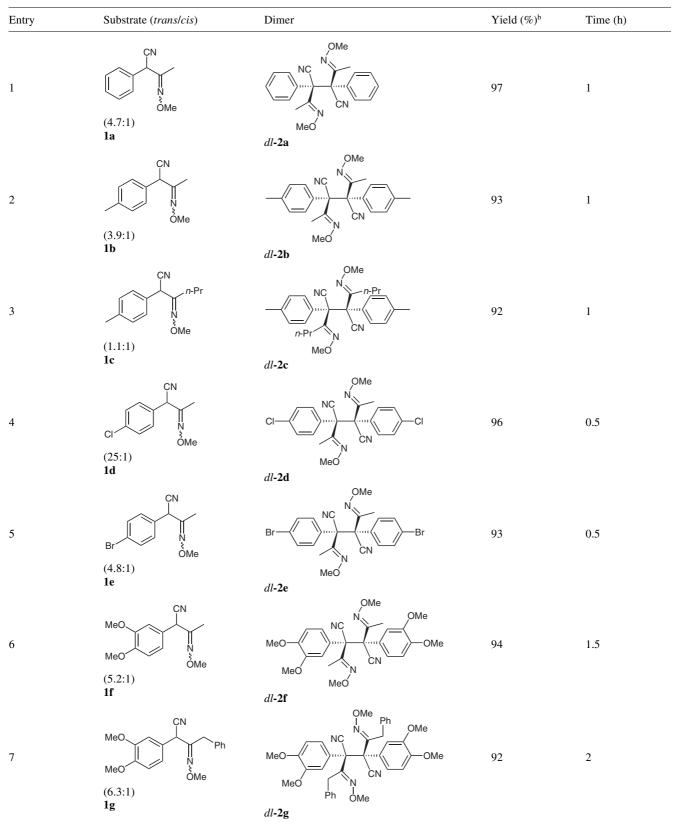


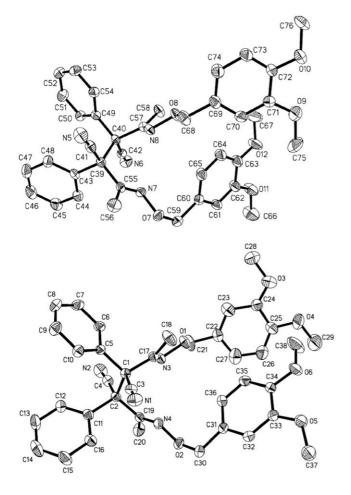
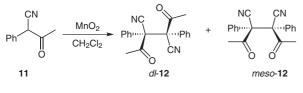
 Table 2
 Oxidative Dimerization of 3-Alkoxyimino-2-aryl-alkylnitriles Mediated by MnO₂^a (continued)

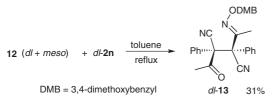
Entry	Substrate (trans/cis)	Dimer	Yield (%) ^b	Time (h)
8	CN MeO MeO (7.2:1) Ih	MeO MeO MeO MeO Ph N CN MeO MeO MeO MeO MeO MeO MeO MeO MeO MeO	84	3
9	CN NeO (5:1) 1 i	MeO NC NC CN OMe	96	1.5
10	$MeO \xrightarrow{CN} N \xrightarrow{N} OMe$ $(5.5:1)$ $1j$	MeO NC OMe OMe MeO NC OMe OMe MeO MeO OMe MeO OMe	87	1.5
11	CN MeO (4.1:1) 1 k	MeO NC NC OME	91	2
12	MeO (5.6:1) 11	MeO Me OMe MeO MeO dl-21	90	2
13	CI CI N S OMe (19:1) 1m	CI NC NC CI CI CI MeO	94	0.5
14	CN N ODMB (4:1) 1n	ODMB NC NC NC CN DMB dl-2n ^c	91	2

^a Reaction conditions: MnO₂ (4.0 equiv), r.t., CH₂Cl₂.

^b Isolated yield after silica gel chromatography.

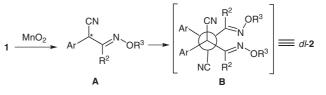
^c DMB refers to 3,4-dimethoxybenzyl group.


Figure 1 X-ray crystal structure of *dl*-2n

85% (*dl/meso* = 1.2:1, determined by ¹H NMR)

Scheme 5


Furthermore, a mixture of equimolar amounts of 12 (dl + meso) and dl-2n, upon being refluxed in toluene for 30 min, afforded the cross-dimerized product dl-13 as a sole heterodimer in 25% yield, together with 68% of 12 (dl + meso) and 72% of recovered dl-2n (Scheme 6).

Scheme 6

These experimental observations prompted us to conclude that the alkoxyimino substituent in substrate 1 should play an important role in the stereoselective formation of single dl-dimers and that the stereospecific dimerization should follow a thermodynamically controlled, rather than an oxidant-mediated dynamically controlled pathway.

Alternatively, we tentatively propose that the presence of the alkoxyimino substituent in substrate **1** might be partially responsible for the stereochemistry of this radical coupling reaction. Moreover, the weak π - π stacking interaction (concluded from the X-ray data) between the two aryl groups could direct the predominant *Re*-face (or *Si*face) approach of the radical intermediate **A**. The formation of the most preferable transition-state **B** should then be responsible for this highly substrate-controlled diastereoselective dimerization process (Scheme 7).

In conclusion, a class of highly α -substituted benzylcyanides that could undergo oxidative dimerization to generate the 2,3-diarylsuccinonitriles with complete diastereoselectivity under mild and efficient conditions has been discovered.^{15–21} Further studies on the application of the obtained *dl*-dimers in organic synthesis are currently under investigation in our lab.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

Acknowledgment

We acknowledge the National Natural Science Foundation of China (#20802048) and Cultivation Foundation (B) for New Faculty of Tianjin University (#5110109) for financial support. We also thank Miss Xiling Zhao, University of California, San Diego, for revising our English text.

References and Notes

- (a) Huang, R. L.; Kum-Tatt, L. J. Chem. Soc. 1954, 2570.
 (b) Kharasch, M. S.; Sosnowsky, G. Tetrahedron 1958, 3, 105. (c) Frenette, M.; Aliaga, C.; Font-Sanchis, E.; Scaiano, J. C. Org. Lett. 2004, 6, 2579.
- (2) (a) Chalanay, L.; Knoevenagel, E. Chem. Ber. 1892, 25, 297. (b) Villemin, D.; Alloum, A. B. Synth. Commun. 1992, 22, 3169.
- (3) De Jongh, H. A. P.; De Jonge, C. R. H. I.; Mijs, W. J. J. Org. *Chem.* **1971**, *36*, 3160; and references cited therein.
- (4) Barber, H. J.; Slack, R. J. Chem. Soc. 1944, 612.
- (5) Hartzler, H. D. J. Org. Chem. 1966, 31, 2654.
- (6) Hitomi, S.; Hideki, K.; Takuji, O. Bull. Chem. Soc. Jpn. 1988, 61, 501.

- (7) Yin, Z.; Zhang, Z.; Kadow, J. F.; Meanwell, N. A.; Wang, T. J. Org. Chem. 2004, 69, 1364.
- (8) (a) Kaiser, E. M. J. Am. Chem. Soc. 1967, 89, 3659.
 (b) Mieczyslaw, M.; Krzysztof, S. Tetrahedron 1998, 54, 8797.
- (9) Protasiewicz, J.; Mendenhall, G. D. J. Org. Chem. 1985, 50, 3220.
- (10) (a) Arai, S.; Takita, S.; Nishida, A. Eur. J. Org. Chem. 2005, 5262. (b) Barrero, A. F.; Quilez del Moral, J. F. E.; Sánchez, M.; Arteaga, J. F. Org. Lett. 2006, 8, 669. (c) Kozlowski, M. C.; DiVirgilio, E. S.; Malolanarasimhan, K.; Mulrooney, C. A. Tetrahedron: Asymmetry 2005, 16, 3599. (d) Clerici, A.; Pastori, N.; Porta, O. J. Org. Chem. 2005, 70, 4174 (e) Matsumura, Y.; Nishimura, M.; Hiu, H.; Watanabe, M.; Kise, N. J. Org. Chem. 1996, 61, 2809. (f) Nguyen, P. Q.; Schäfer, H. J. Org. Lett. 2001, 3, 2993. (g) Mazzega, M.; Fabris, F.; Cossu, S.; Lucchi, O. D.; Lucchini, V.; Valle, G. Tetrahedron 1999, 55, 4427. (h) Gansauer, A.; Bauer, D. J. Org. Chem. 1998, 63, 2070. (i) Hirao, T.; Asahara, M.; Muguruma, Y.; Ogawa, A. J. Org. Chem. 1998, 63, 2812. (j) Takenaka, N.; Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 3198. (k) Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez, R. J. Org. Chem. 2004, 69, 9100.
- (11) Du, Y.; Chang, J.; Reiner, J.; Zhao, K. J. Org. Chem. 2008, 73, 2007.
- (12) (a) CaH₂-dried EtOAc, THF and MeCN were also tested as solvents, but were not superior to CH_2Cl_2 . (b) An excess of MnO_2 (4 equiv) was used for a complete conversion of **1a** into dimerized *dl*-**2a** within a shorter period of time (1 h) although two equivalents of MnO_2 was enough for the total consumption of **1a**.
- (13) Compound *dl*-**2n**: Crystallized in the monoclinic space group P2 (1) with cell dimensions: a = 8.0723 (11) Å, b = 26.531 (4) Å, c = 16.356 (2) Å, $a = 90^{\circ}$, $\beta = 92.325$ (2)°, $\gamma = 90^{\circ}$, V = 3499.9 (8) Å³, Dc = 1.227 g/cm³, Z = 2. CCDC: 712678.
- (14) De Jongh, H. A. P.; De Jonge, C. R. H. I.; Sinnige, H. J. M.; De Klein, W. J.; Huysmans, W. G. B.; Mijs, W. J.; Van Den Hoek, W. J.; Smidt, J. J. Org. Chem. **1972**, 37, 1960.
- (15) General Procedure for the Synthesis of the Homocoupling Dimers dl-2: To a solution of 3alkoxyimino-2-aryl-alkylnitriles 1 (4 mmol) in CH₂Cl₂ (30 mL) was added, in one portion, the dried MnO₂ (16 mmol) powder with stirring at room temperature. TLC was used to monitor the reaction process until the total consumption of 1 was observed. The insoluble materials were removed via filtration and the filtrate was evaporated in vacuum to remove the solvent. The residue was then purified by flash silica gel chromatography, using a mixture of petroleum ether (PE) and EtOAc as eluent, to afford the desired homodimers 2. The synthesis of 12 (dl + meso) from 11 was conducted under similar reaction conditions.
- (16) **Procedures for the Synthesis of** *dl*-4 and 5: Case 1: When either MnO₂ or Ag₂O was used as the oxidant, the reactions were conducted following the procedure described for the synthesis of dimers *dl*-2. Case 2: When $K_3Fe(CN)_6$ was used as the oxidant: A mixture of 3 (5 mmol), $K_3Fe(CN)_6$ (20 mmol), and aq 10% NaOH (35 mmol) in MeOH (20 mL) was stirred at r.t. for 0.5 h. The reaction mixture was then extracted with EtOAc (3 × 20 mL) and the combined organic layer, after drying over anhydrous Na₂SO₄, was evaporated to remove the solvent. The residue was purified by silica gel column to give the homodimerized *dl*-4 in 86% yield, with no separation of **5**.
- (17) General Procedure for the Synthesis of Heterodimerized *dl*-Dimers: A mixture of *dl*-2b (0.30 mmol) and *dl*-2c (0.30 mmol) in toluene (20 mL) was stirred at reflux for 30 min.

After cooling to room temperature, the mixture was evaporated to remove the solvent. The residue was passed through silica gel column using a mixture of PE and EtOAc as eluent, to give the heterodimerized *dl*-9. Unreacted *dl*-2b and *dl*-2c were also recovered.

- (18) Substrates 1a, 1c, 1d, 1f and 1m were synthesized and characterized in our previous work (see reference 11). The others substrates were characterized as follows: (1b) White solid; mp 55–57 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(trans) =$ 7.29-7.18 (m, 4 H), 4.70 (s, 1 H), 3.93 (s, 3 H), 2.36 (s, 3 H), 1.77 (s, 3 H); δ(cis) = 7.29–7.18 (m, 4 H), 5.78 (s, 1 H), 3.93 (s, 3 H), 2.36 (s, 3 H), 1.91 (s, 3 H); HRMS (ESI): m/z [M+ H⁺] calcd for C₁₂H₁₅N₂O: 203.1179; found: 203.1180. (1e) White solid; mp 74–75 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(trans) = 7.55 - 7.52 \text{ (m, 2 H)}, 7.30 - 7.26 \text{ (m, 2 H)}, 4.70 \text{ (s,}$ 1 H), 3.93 (s, 3 H), 1.78 (s, 3 H); $\delta(cis) = 7.55 - 7.52$ (m, 2 H), 7.30-7.26 (m, 2 H), 5.77 (s, 1 H), 3.94 (s, 3 H), 1.92 (s, 3 H); HRMS (ESI): m/z [M + H⁺] calcd for C₁₁H₁₂BrN₂O: 267.0128; found: 267.0112. (1g) White solid; mp 86-87 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(trans) = 7.25-6.54$ (m, 8 H), 4.51 (s, 1 H), 4.04 (s, 3 H), 4.00 (d, J = 14.5 Hz, 1 H), 3.87 $(s, 3 H), 3.82 (s, 3 H), 3.19 (d, J = 15 Hz, 1 H); \delta(cis) = 7.25-$ 6.54 (m, 8 H), 5.54 (s, 1 H), 4.01 (s, 3 H), 3.85 (s, 3 H), 3.71 (s, 3 H), 3.58 (d, J = 6 Hz, 2 H); HRMS (ESI): m/z [M + H⁺] calcd for C₁₉H₂₁N₂O₃: 325.1547; found: 325.1555. (1h) White solid; mp 101-102 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(trans) = 7.52-6.76 \text{ (m, 8 H)}, 6.10 \text{ (s, 1 H)}, 4.11 \text{ (s, 3 H)},$ $3.87 (s, 3 H), 3.84 (s, 3 H); \delta(cis) = 7.52-6.76 (m, 8 H), 4.98$ (s, 1 H), 3.95 (s, 3 H), 3.87 (s, 3 H), 3.80 (s, 3 H); HRMS (ESI): m/z [M + H⁺] calcd for C₁₈H₁₉N₂O₃: 311.1390; found: 311.1397. (1i) White solid: mp 80–81 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(trans) = 7.32 - 7.28 \text{ (m, 2 H)}, 6.93 - 6.90 \text{ (m, }$ 2 H), 4.68 (s, 1 H), 3.93 (s, 3 H), 3.81 (s, 3 H), 1.77 (s, 3 H); $\delta(cis) = 7.32-7.28 \text{ (m, 2 H)}, 6.93-6.90 \text{ (m, 2 H)}, 5.75 \text{ (s,})$ 1 H), 3.94 (s, 3 H), 3.81 (s, 3 H), 1.92 (s, 3 H). HRMS (ESI): m/z [M + H⁺] calcd for C₁₂H₁₅N₂O₂: 219.1128; found: 219.1135. (1j) White solid; mp 89–90 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(trans) = 6.59 (s, 2 H), 4.67 (s, 1 H), 3.96 (s, 1 H)$ 3 H), 3.88 (s, 3 H), 3.85 (s, 3 H), 1.82 (s, 3 H); $\delta(cis) = 6.59$ (s, 2 H), 5.77 (s, 1 H), 3.97 (s, 3 H), 3.87 (s, 3 H), 3.85 (s, 3 H), 1.94 (s, 3 H); HRMS (ESI): m/z [M + H⁺] calcd for C₁₄H₁₉N₂O₄: 279.1339; found: 279.1345. (1k) Colorless oil; ¹H NMR (400 MHz, CDCl₃): $\delta(trans) = 7.31-7.29$ (d, 2 H), 6.93–6.89 (m, 2 H), 4.68 (s, 1 H), 4.13 (t, J = 8.0 Hz, 2 H), 3.80 (s, 3 H), 1.78 (s, 3 H), 1.70-1.63 (m, 2 H), 1.44-1.26 (m 2 H), 0.95 (t, J = 9.0, 3 H); $\delta(cis) = 7.31-7.29$ (d, 2 H), 6.93-6.89 (m, 2 H), 5.77 (s, 1 H), 4.13 (t, J = 8.0 Hz, 2 H), 3.80 (s, 3 H), 1.91 (s, 3 H), 1.70-1.63 (m, 2 H), 1.44-1.26 (m, 2 H), 0.95 (t, J = 9.0 Hz, 3 H); HRMS (ESI): m/z [M + H⁺] calcd for C₁₅H₂₁N₂O₂: 261.1598; found: 261.1610. (1n) White solid: mp 54–56 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(trans) =$ 7.38-7.34 (m, 5 H), 6.95-6.85 (m, 3 H), 5.11 (s, 2 H), 4.73 $(s, 1 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 1.81 (s, 3 H); \delta(cis) =$ 7.38–7.34 (m 5 H), 6.95–6.85 (m, 3 H), 5.83 (s, 1 H), 5.10 (s, 2 H), 3.89 (s, 3 H), 3.87 (s, 3 H), 1.93 (s, 3 H); HRMS (ESI): m/z [M + H⁺] calcd for C₁₉H₂₁N₂O₃: 325.1547; found: 325.1553.
- (19) (*dl*-**2a**) White solid; mp 185–186 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.33 (m, 1 H), 7.23 (d, *J* = 7.5 Hz, 2 H), 7.13 (d, *J* = 7.5 Hz, 2 H), 4.06 (s, 3 H), 1.91 (s, 3 H). ¹³C NMR (125 MHz, CDCl₃): δ = 150.1, 131.8, 129.8, 129.7, 128.3, 118.0, 62.8, 59.8, 14.1; HRMS (ESI): *m/z* [M + Na⁺] calcd for C₂₂H₂₂N₄NaO₂: 397.1635; found: 397.1639. (*dl*-**2b**) White solid; mp 144–146 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.06–7.00 (m, 4 H), 4.04 (s, 3 H), 2.33 (s, 3 H), 1.90 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 150.4, 139.7, 129.8, 129.0, 128.8, 118.2, 62.7, 59.6, 21.3, 14.1; HRMS

(ESI): m/z [M + Na⁺] calcd for C₂₄H₂₆N₄NaO₂: 425.1948; found: 425.1953. (*dl*-2c) White solid; mp 176–177 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.05–7.01 (t, 4 H), 4.04 (s, 3 H), 2.54–2.48 (m, 1 H), 2.34 (s, 3 H), 1.83–1.74 (m, 2 H), 1.69–1.61 (m, 1 H), 0.88 (t, J = 7.0 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 153.4, 139.6, 130.0, 129.1, 128.9, 118.1, 62.6, 59.0, 31.9, 21.3, 19.6, 14.8; HRMS (ESI): m/z [M + Na⁺] calcd for C₂₈H₃₄N₄NaO₂: 481.2574; found: 481.2577. (dl-2d) White solid; mp 143-144 °C; ¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.27 (d, J = 11.5 Hz, 2 H), 7.09 (d, J = 11.5 Hz, 2 H)$ 2 H), 4.05 (s, 3 H), 1.90 (s, 3 H); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 149.8, 136.4, 131.2, 130.1, 128.7, 117.5, 62.9,$ 59.2, 14.1; HRMS (ESI): *m*/*z* [M + Na⁺] calcd for C₂₂H₂₀Cl₂N₄NaO₂: 465.0856; found: 465.0861. (*dl*-2e) White solid; mp 160–161 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.43 (d, J = 8.5 Hz, 2 H), 7.03 (d, J = 8.5Hz, 2 H), 4.05 (s, 3 H), 1.90 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 149.7, 131.7, 131.4, 130.6, 124.7, 117.4, 62.9, 59.3, 14.1; HRMS (ESI): m/z [M + Na⁺] calcd for C₂₂H₂₀Br₂N₄NaO₂: 552.9845; found: 552.9850. (dl-2f) White solid; mp 186-187 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 6.77$ (s, 2 H), 6.61 (s, 1 H), 4.05 (s, 3 H), 3.88 (s, 3 H), 3.67 (s, 3 H), 1.94 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 150.2, 149.7, 148.1, 123.8, 122.3, 118.0, 112.8, 110.2, 62.5, 59.5, 55.9, 55.7, 13.9; HRMS (ESI): m/z [M + Na⁺] calcd for C₂₆H₃₀N₄NaO₆: 517.2058; found: 517.2065. (dl-2g) White solid; mp 189-190 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.26 (d, J = 7.5 Hz, 2 H), 7.19–7.11 (m, 3 H), 6.70–6.60 (m, 3 H), 3.94 (s, 3 H), 3.93 (d, J = 14.0 Hz, 1 H), 3.85 (s, 3 H), 3.62 (s, 3 H), 3.47 (d, J = 14.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 151.6, 149.9, 148.1, 135.7, 129.6, 128.2, 126.5, 124.0, 122.8, 118.1, 113.2, 110.3, 62.7, 59.7, 56.1, 55.9, 35.2; HRMS (ESI): m/z [M + Na⁺] calcd for C₃₈H₃₈N₄NaO₆: 669.2684; found: 669.2689. (dl-2h) White solid; mp 198-199 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.36–7.29 (m, 3 H), 6.84–6.82 (m, 5 H), 4.14 (s, 3 H), 3.90 (s, 3 H), 3.69 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 152.0, 150.2, 148.2, 131.9, 129.8, 128.4, 128.3, 123.5, 118.0, 113.7, 110.5, 63.4, 61.4, 56.2, 55.9; HRMS (ESI): m/z [M + Na⁺] calcd for C₃₆H₃₄N₄NaO₆: 641.2371; found: 641.2377. (*dl*-2i) White solid; mp 146–147 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.05 (d, J = 8.5 Hz, 2 H), 6.78 (d, J = 9.0 Hz, 2 H), 4.04 (s, 3 H), 3.80 (s, 3 H), 1.91 (s, 3 H); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 160.5, 150.4, 131.2, 123.5, 118.3, 113.6, 62.7,$ 59.5, 55.5, 14.1; HRMS (ESI): *m*/*z* [M + Na⁺] calcd for C₂₄H₂₆N₄NaO₄: 457.1852; found: 457.1854. (*dl*-2j) White solid; mp 180–182 °C; ¹H NMR (500 MHz, CDCl₃): δ = 6.42 (s, 1 H), 4.05 (s, 3 H), 3.84 (s, 3 H), 3.71 (s, 6 H), 1.97 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 152.7, 150.2, 138.9, 127.1, 118.1, 107.1, 62.8, 61.1, 60.1, 56.3, 14.2; HRMS (ESI): m/z [M + Na⁺] calcd for C₂₈H₃₄N₄NaO₈: 577.2269; found: 577.2273. (dl-2k) White solid; mp 67-70 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.04 (d, J = 8.0 Hz, 2 H), 6.77 (d, *J* = 9.0 Hz, 2 H), 4.27–4.19 (m, 2 H), 3.79 (s, 3 H), 1.91 (s, 3 H), 1.76 (quin, J = 7.0 Hz, 2 H), 1.45 (sext, J = 7.5 Hz, 2 H), 1.00 (t, J = 7.5 Hz, 3 H); ¹³C NMR (125) MHz, CDCl₃): δ = 160.5, 149.9, 131.2, 123.8, 118.4, 113.6, 74.6, 59.6, 55.5, 31.8, 19.2, 14.2, 14.1; HRMS (ESI): m/z [M + Na⁺] calcd for $C_{30}H_{38}N_4NaO_4$: 541.2785; found: 541.2792. (*dl*-2l) White solid; mp 101–102 °C; ¹H NMR (500 MHz, $CDCl_3$): $\delta = 9.18$ (t, J = 8.0 Hz, 1 H), 6.89 (dd, J = 8.0, 2.5Hz, 1 H), 6.80 (d, J = 7.5 Hz, 1 H), 6.65 (s, 1 H), 4.05 (s, 3 H), 3.64 (s, 3 H), 1.93 (s, 3 H); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 159.3, 150.1, 133.3, 129.3, 121.9, 118.0, 115.9,$ 115.1, 62.8, 59.7, 55.4, 14.1; HRMS (ESI): *m/z* [M + Na⁺]

calcd for C₂₄H₂₆N₄NaO₄: 457.1846; found: 457.1852. (*dl*-2l) White solid; mp 142–143 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.33 - 7.30$ (t, 1 H), 7.19-7.16 (t, 2 H), 7.05-6.99 (m, 4 H), 6.88 (d, J = 8.0 Hz, 1 H), 5.79 (d, J = 12 Hz), 5.10 (d, J = 12.5 Hz), 3.93 (s, 3 H), 3.89 (s, 3 H), 1.85 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 150.8, 148.9, 131.3, 130.5, 129.6, 129.5, 128.0, 121.4, 117.9, 112.0, 111.0, 59.8, 56.0, 55.9, 14.3; HRMS (ESI): *m*/*z* [M + Na⁺] calcd for C₃₈H₃₈N₄NaO₆: 669.2684; found: 669.2689. (*dl*-2m) White solid; mp 163–164 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.39 (d, J = 7.5 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.11 (d, J = 4.5 Hz, 1 H), 4.06 (s, 3 H), 1.93 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 149.4, 134.7, 133.6, 130.3, 130.0, 129.7, 127.7, 117.2, 62.9, 59.4, 14.2; HRMS (ESI): *m/z* [M + Na⁺] calcd for C₂₂H₂₀Cl₂N₄NaO₂: 465.0856; found: 465.0862. (*dl*-2n) White solid; mp 142–143 °C; ¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.33 - 7.30 (t, 1 H), 7.19 - 7.16 (t, 2 H), 7.05 - 6.99$ (m, 4 H), 6.88 (d, J = 8.0 Hz, 1 H), 5.79 (d, J = 12 Hz), 5.10(d, J = 12.5 Hz, 1 H), 3.93 (s, 3 H), 3.89 (s, 3 H), 1.85 (s, 3 H),3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 150.8, 148.9, 131.3, 130.5, 129.6, 129.5, 128.0, 121.4, 117.9, 112.0, 111.0, 76.7, 59.8, 56.0, 55.9, 14.3; HRMS (ESI): *m*/*z* [M + Na⁺] calcd for C₃₈H₃₈N₄NaO₆: 669.2684; found: 669.2689.

- (20) (*dl*-4) White solid; mp 202–204 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.80 (d, *J* = 8.0 Hz, 1 H), 7.65 (d, *J* = 8.5 Hz, 1 H), 7.59–7.50 (m, 3 H), 7.44–7.41 (m, 1 H), 7.20–7.18 (t, 1 H), 4.14 (s, 3 H), 1.98 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 150.3, 133.5, 132.5, 130.3, 129.1, 128.9, 128.0, 127.6, 127.6, 126.8, 126.3, 118.1, 62.9, 60.0, 14.3; HRMS (ESI): *m/z* [M + Na⁺] calcd for C₃₀H₂₆N₄NaO₂: 497.1948; found: 497.1949.(5) White solid; mp 100–101 °C; ¹H NMR (500 MHz, CDCl₃): δ = 8.51 (d, *J* = 8.5 Hz, 1 H), 7.95 (d, *J* = 8.0 Hz, 1 H), 7.70–7.61 (m, 3 H), 7.54–7.50 (m, 1 H), 4.14 (s, 3 H), 2.70 (s, 3 H). This compound was well characterized in our previous report (see reference 11).
- (21) (dl-9) White solid; mp 166–168 °C; ¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.06-6.99$ (m, 8 H), 4.05 (s, 3 H), 4.03 (s, 3 H), 2.54–2.46 (m, 1 H), 2.34 (s, 6 H), 1.90 (s, 3 H), 1.84–1.78 (m, 1 H), 1.76–1.62 (m, 2 H), 0.88 (t, J = 7.5 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 153.4, 150.4, 139.7, 139.6, 130.0, 129.9, 129.8, 129.0, 128.9, 128.9, 128.8, 118.3, 118.0, 62.7, 62.6, 59.5, 59.1, 31.9, 21.3, 19.6, 19.5, 14.8 14.1; HRMS (ESI): m/z [M + Na⁺] calcd for C₂₆H₃₀N₄NaO₂: 453.2261; found: 453.2268. (dl-10) White solid; mp 126-129 °C; ¹H NMR (500 MHz, CDCl₃): δ = 7.35–7.31 (m, 2 H), 7.24-7.17 (m, 4 H), 7.07-7.03 (m, 5 H), 6.90 (d, J = 8.0 Hz, 1 H), 5.21 (q, 2 H), 3.93–3.92 (t, 9 H, 3 × OMe), 1.95 (s, 3 H), 1.78 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 151.1, 149.7, 149.1, 131.9, 131.5, 131.0, 129.8, 129.7,$ 129.6, 128.3, 128.2, 121.7, 118.1, 118.0, 112.4, 111.3, 77.0, 62.6, 59.9, 59.8, 56.2, 56.2, 14.6, 13.0; HRMS (ESI): m/z [M + Na⁺] calcd for C₃₀H₃₀N₄NaO₄: 533.2159; found: 533.2165.(12) White solid; mp 161-162 °C; ¹H NMR (500 MHz, CDCl₃): $\delta(dl) = 7.46-7.33$ (m, 3 H), 7.03-7.01 (q, 2 H), 2.47 (s, 3 H); $\delta(meso) = 7.46 - 7.33$ (m, 5 H), 2.31 (s, 3 H). For previous characterization of this compound, see reference 3. (dl-13) White solid; mp 139-141 °C; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3): \delta = 7.42 - 7.23 \text{ (m, 7 H)}, 7.10 \text{ (d, } J = 7.5 \text{ (m, 7 H)}, 7.10 \text{ (d, } J = 7.5 \text{ (m, 7 H)}, 7.10 \text{ (d, } J = 7.5 \text{ (m, 7 H)}, 7.10 \text{ (m, 7 H)},$ Hz, 2 H), 6.70–6.96 (t, 4 H), 6.91 (d, J = 7.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ = 196.3, 151.4, 149.3, 149.2, 130.9, 130.3, 130.1, 129.9, 129.5, 129.4, 128.9, 128.5, 128.2, 120.9, 118.1, 117.3, 111.5, 111.2, 77.0, 64.4, 60.0, 56.2, 56.2, 28.4 (CH₃), 14.5 (CH₃); HRMS (ESI): *m*/*z* [M + Na⁺] calcd for C₂₉H₂₇N₃NaO₄: 504.1894; found: 504.1899.