Tetrahedron Letters 52 (2011) 4285-4287

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Unexpected diastereoselective one-pot assembly of hexahydroazulenones from 2-alkylcyclohexanones and arylacetylenes in KOH/DMSO suspension

Boris A. Trofimov^{a,*}, Elena Yu. Schmidt^a, Elena V. Skitaltseva^a, Nadezhda V. Zorina^a, Nadezhda I. Protsuk^a, Igor A. Ushakov^a, Albina I. Mikhaleva^a, Oleg A. Dyachenko^b, Olga N. Kazheva^b, Grigorii G. Aleksandrov^c

^a A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation ^b Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation ^c N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prp., Moscow 119991, Russian Federation

ARTICLE INFO

Article history: Received 17 March 2011 Revised 24 May 2011 Accepted 3 June 2011 Available online 21 June 2011

Keywords: Azulenones 2-Alkylcyclohexanones Arylacetylenes Vinyl ketones

ABSTRACT

2-Alkylcyclohexanones react with arylacetylenes (KOH/DMSO, 100 °C, 1 h) to afford unexpectedly hexahydroazulenones in 34–50% yields and ca. 100% diastereoselectivity (instead of the expected acetylenic alcohols), the minor products being isomeric arylethenyl ketones.

© 2011 Elsevier Ltd. All rights reserved.

The development of new C–C bond forming reactions remains a fundamental challenge of organic chemistry.¹ Particular endeavors in this area are directed to discover reactions that allow the creation of several carbon-carbon bonds in one synthetic operation leading to the construction of important polycyclic structures with desired regio- and stereochemical control.^{1a} Among such structures the azulene scaffold, especially that of azulenone, has attracted attention due to its theoretical,² biological³ and pharmaceutical⁴ significance. These structures are abundant in nature and represent rewarding synthetic objectives. Approaches toward enantio- or diastereoselective construction of the azulenone skeleton are limited by the intramolecular cyclization of β-aryl- α -diazaketones (Büchner reaction) in the presence of rhodium complexes⁵ or rhodium salts,⁶ and by the cycloaddition of 2-phenyl-2-acylketenes with alkynyl ethers.^{2a} In addition, the base-catalyzed condensation of cyclopentadienes with phorone to give hexahydroazulenones containing no asymmetric carbons has been reported.7

In this Letter, we report our serendipitous finding that 2-alkylcyclohexanones **1** and **2** when allowed to react with arylacetylenes **3–6** in KOH/DMSO suspension (alkylcyclohexanone:arylacetylene:KOH molar ratio = 1:1:1) at 100 °C for 1 h gave, instead of the expected acetylenic alcohols **7**,⁸ (3aR,8aR)-8a-alkyl-6,7-diaryl-1,2,3,3a,8,8a-hexahydroazulen-4(5H)-ones **8–13** in 34–50% yield along with a mixture of minor products, arylethenyl ketones **14–19**, in trace amounts in 24% yield (Scheme 1).⁹

The structures of azulenones **8–13** follow unambiguously from single-crystal X-ray diffraction of compound **8** (Fig. 1) as a typical representative of this series.¹⁰ The cycloheptene counterpart of molecule **8** has the bath conformation. The cyclopentane ring adopts the sofa conformation with the C(7) atom deviated by 0.61 Å from the average, almost an ideal plane formed by the remaining carbon atoms. The dihedral angle between the averaged planes of the benzene rings is 124.0°. Thus, the X-ray data provide evidence that azulenones **8–13** are formed stereoselectively as single diastereomers.

The ¹H and ¹³C NMR spectra of compounds **8–13** were in agreement with the azulenone structure. In the ¹H NMR spectra of azulenones **8–13**, doublets due to the 5-CH₂ (3.36–3.40 and 3.69–3.71 ppm, ²J = 18.3 Hz) and 8-CH₂ (2.54–2.55 and 2.75–2.79 ppm, ²J = 14.2 Hz) protons were present. The CH₂ protons (positions 1, 2 and 3) were represented as complex multiplets (1.39–2.31 ppm). Assignments of the ¹³C signals were based on 2D HSQC and HMBC spectra (Fig. 2). The configurations of carbon atoms 8a and 3a were determined using 2D NOESY spectra, where a correlation between the alkyl group protons and H3a was observed.

Ketones **14–19** are the products of C-vinylation of 2-alkylcyclohexanones **1** and **2**. Ketones **14a–c**, which were identified by ¹H NMR, GLC, and MS, were obtained in the ratio **14a:14b:14c =** 3:1:2, were formed via vinylation of 2-methylcyclohexanone (**1**) at positions 2 and 6.

^{*} Corresponding author. Tel.: +7 395251 19 26; fax: +7 395241 93 46. *E-mail address:* boris_trofimov@irioch.irk.ru (B.A. Trofimov).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.06.019

Scheme 1. Reaction of 2-alkylcyclohexanones 1 and 2 with arylacetylenes 3-6 in KOH/DMSO suspension.

Figure 1. X-ray structure of azulenone 8.

Figure 2. Characteristic NOESY and HMBC correlations of azulenones 8-13.

The yields and stereochemistry of these vinyl ketones were sensitive toward the substituents present on the starting arylacetylenes 3-6 (Scheme 1). With tolylacetylene (4) and 4-phenylphenylacetylene (6), only vinyl ketones **15a** and **17a** of *Z*-configuration were formed, while in the case of 3-fluorophenylacetylene (5), no vinyl ketone was detected.

Initial attempts to optimize the reaction (using a two-fold excess of arylacetylene, lower or higher temperature) only marginally altered the product yields and ratios, though systematic optimization may further improve the characteristics of this synthetically interesting one-pot assembly.

In conclusion, a highly unexpected diastereoselective one-pot assembly of diarylazulenones from 2-alkylcyclohexanones and arylacetylenes in KOH/DMSO suspension has been described. The process represents a new reaction which involves the formation of four C—C bonds and yields biologically and synthetically important condensed bicyclic systems in a single operation. Further investigations are intended to define the scope and limitations of the reaction by extending it to other cyclic ketones and substituted acetylenes.

Acknowledgment

This work was carried out using financial support from the Russian Foundation of Basic Research (Grant 11-03-00270).

References and notes

- (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624; (b) Karimi, B.; Behzadna, H.; Elhamifar, D.; Akhavan, P. F.; Esfahani, F. K. Synthesis 2010, 1399; (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094; (d) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
- (a) Brown, D. G.; Hoye, T. R.; Brisbois, R. G. J. Org. Chem. **1998**, 63, 1630; (b) Wang, H.; Michalak, K.; Michalak, M.; Jimenez-Oses, G.; Wicha, J.; Houk, K. N. J. Org. Chem. **2010**, 75, 762.
- 3. Epstein, O. L.; Cha, J. K. Angew. Chem. Int. Ed. 2005, 44, 121.
- (a) Fujiwara, M.; Ijichi, K.; Tokuhisa, K.; Katsuura, K.; Wang, G.-Y.-S.; Uemura, D.; Shigeta, S.; Konno, K.; Yokota, T.; Baba, M. Antiviral Chem. Chemother. **1996**, 7, 230; (b) Fujiwara, M.; Ijichi, K.; Tokuhisa, K.; Katsuura, K.; Shigeta, S.; Konno, K.; Wang, G. Y. S.; Uemura, D.; Yokota, T.; Baba, M. Antimicrob. Agents Chemother. **1996**, 40, 271.
- 5. O'Keeffe, S.; Harrington, F.; Maguire, A. R. Synlett 2007, 2367.
- (a) Maguire, A. R.; O'Leary, P.; Harrington, F.; Lawrence, S. E.; Blake, A. J. J. Org. Chem. 2001, 66, 7166; (b) Maguire, A. R.; Buckley, N. R.; O'Leary, P.; Ferguson, G. J. Chem. Soc., Perkin Trans. 1 1998, 4077; (c) Padwa, A.; Krumpe, K. E.; Gareau, Y.; Chiacchiot, U. J. Org. Chem. 1991, 56, 2523.

- Ivchenko, C. B.; Ivchenko, P. V.; Nifant'ev, I. E.; Kashulin, L. A.; Taidakov, L. V.; Kuz'mina, L. G. Russ. Chem. Bull. 2000, 49, 724.
- (a) Favorsky, A. E. Zh. Ross. Khim. Obshch. 1906, 37, 643; (b) Smith, M.; March, J. March's Advanced Organic Chemistry, 6th ed.; Wiley: New York, 2007. p 1360.
- 9. General procedure for the synthesis of azulenones **8–13** [an example of the reaction of 2-methylcyclohexanone (1) with phenylacetylene **3**]: A mixture of ketone 1 (2.00 g, 17.8 mmol), phenylacetylene 3 (1.82 g, 17.8 mmol), and KOH-0.5H₂O (1.16 g, 17.8 mmol) in DMSO (20 mL) was heated (100 °C) and stirred for 1 h. The reaction mixture, after cooling (20–22 °C), was diluted with H₂O (50 mL), neutralized (NH₄Cl), and extracted with Et₂O (10 mL × 4). The organic extract obtained was washed with H₂O (10 mL × 3) and dried (K₂CO₃) overnight. After removal of the solvent, the crude residue (3.34 g) was purified by column chromatography (SiO₂, benzene) to give azulenone 8 (2.09 g, 37%) and a mixture of vinyl ketones 14a–c (0.92 g, 24%).

Azulenones 9–13 and ketones 15a,17a were obtained analogously.

(3aR,8aR)-8a-Methyl-6,7-diphenyl-1,2,3,3a,8,8a-hexahydroazulen-4(5H)-one (**8**): White crystals (mp 90–92 °C). Anal. Calcd for $C_{23}H_{24}O$ (316.44): C, 87.30; H, 7.64. Found: C, 87.38; H, 7.24. IR (KBr, cm⁻¹) v_{max} : 3080, 3057, 2926, 2864, 1696, 1599, 1492, 1442, 1379, 1338, 1278, 1255, 1209, 1152, 1134, 1120, 1068, 1030, 975, 912, 764, 700, 565, 530, 502. ¹H NMR (400.13 MHz, CDCl₃, ppm): δ 7.10–6.97 (m, 10H, H_o, H_o', H_m, H_m', H_p, H_p'), 3.71 (d, 1H, ${}^2_{J_{H5-H5'}}$ = 18.3 Hz, H5), 3.40 (d, 1H, ${}^2_{J_{H5-H5'}}$ = 18.3 Hz, H5'), 3.00–2.98 (m, 1H, H3a), 2.78 (d, 1H, ${}^2_{J_{H5}}$ + 14.2 Hz, H8), 2.55 (d, 1H, ${}^2_{J_{H8-H8'}}$ = 14.2 Hz, H8), 2.55 (d, 1H, ${}^2_{J_{H8-H8'}}$ = 14.2 Hz, H8'), 2.28, 1.77 (m, 2H, H3, H3'), 1.87, 1.72 (m, 2H, H2, H2, L2), 1.50, 1.39 (m, 2H, H1, H1'), 1.05 (s, 3H, Me). ¹³C NMR (101.61 MHz, CDCl₃, ppm): δ 210.6 (C=0), 144.4 (C_r'), 142.7 (C_i), 139.0 (C7), 132.9 (C6), 129.4 (Cm, Cm'), 128.0, 127.8 (C₀, C₀'), 126.4, 126.1 (C_p, C_{p'}'), 60.9 (C3a), 51.9 (C8a), 51.2 (C5), 45.3 (C8), 39.3 (C1), 26.9 (C8a-Me), 24.9 (C3), 23.3 (C2).

(3*aR*,8*aR*)-8*a*-Methyl-6,7-di-*p*-tolyl-1,2,3,3*a*,8,8*a*-hexahydroazulen-4(5H)-one (**9**): Yield 34%. White crystals (mp 86–88 °C). Anal. Calcd for C₂₅H₂₈O (344.49): C, 87.16; H, 8.19. Found: C, 87.14; H, 8.27. IR (KBr, cm⁻¹) v_{max} : 3019, 2956, 2923, 2861, 1703, 1511, 1488, 1460, 1450, 1404, 1377, 1344, 1273, 1212, 1182, 1131, 1076, 1042, 957, 949, 817, 724. ¹H NMR (400.13 MHz, CDCl₃, ppm): δ 6.94–6.86 (m, 8H, H_o, H_o', H_m, H_m'), 3.69 (d, 1H, $^{2}_{H5-H5'}$ = 18.3 Hz, H5), 3.37 (d, 1H, $^{2}_{JH5-H5'}$ = 18.3 Hz, H5), 2.39–2.97 (m, 1H, H3a), 2.75 (d, 1H, $^{2}_{JH8-H8'}$ = 14.0 Hz, H8'), 2.31, 1.78 (m, 2H, H3, H3'), 2.27 (s, 6H, C_p-Me, C_p-Me), 1.92, 1.76 (m, 2H, H2, H2'), 1.53, 1.43 (m, 2H, H1, H1'), 1.05 (s, 3H, C8a-Me). ¹³C NMR (101.61 MHz, CDCl₃, ppm): δ 210.4 (C=O), 141.4 (C_f), 139.9 (C_i), 138.2 (C7), 135.3 (C_g, C_{p'}), 132.2 (C6), 129.2 (C_m, C_{m'}), 128.7, 127.6 (C₂₀, C₀), 60.5 (C3a), 51.8 (C8a), 51.5 (C5), 45.4 (C8), 39.5 (C1), 27.3 (C8a-Me), 25.1 (C3), 23.5 (C2), 21.4 (C_p-Me, C_{p'}-Me).

 $\begin{array}{l} (3aR,8aR)\hbox{-}6,7\hbox{-}Bis(3\hbox{-}fluorophenyl)\hbox{-}8a\hbox{-}methyl\hbox{-}1,2,3,3a,8,8a\hbox{-}hexahydroazulen-} \\ 4(5H)\hbox{-}one ({\bf 10}): Yield 44%. Yellow oil. Anal. Calcd for C_{23}H_{22}F_20 (352.42): C, \\ 78.39; H, 6.29; F, 10.78. Found: C, 78.33; H, 6.25; F, 10.81. IR (film, cm^{-1}) v_{max}: \\ 3068, 2960, 2937, 2868, 1704, 1610, 1582, 1485, 1462, 1437, 1343, 1265, 1191, \\ 1131, 1075, 1001, 973, 907, 872, 785, 703, 522. ^{1}H NMR (400.13 MHz, CDCl_3, \\ ppm): \delta 7.10\hbox{-}6.71 (m, 8H, H_o, H_{o'}, H_m, H_{m'}, H_p, H_{p'}), 3.69 (d, 1H, ^2_{JH5-H5'} = 18.3 Hz, H5'), 3.00\hbox{-}2.98 (m, 1H, H3a), \\ 2.79 (d, 1H, ^2_{JH8-H8'} = 13.9 Hz, H8), 2.54 (d, 1H, ^2_{JH8-H8'} = 13.9 Hz, H8'), 2.28, \\ 1.78 (m, 2H, H3, H3'), 1.92, 1.75 (m, 2H, H2, H2'), 1.51, 1.44 (m, 2H, H1, H1'), \\ 1.08 (s, 3H, C8a-Me). ^{13}C NMR (101.61 MHz, CDCl_3, ppm): \delta 208.9 (C=O), 162.5 \\ (d, J = 246.5 Hz, C_3, C_{2'}), 146.2 (d, J = 7.3 Hz, C_{1'}), 144.4 (d, J = 7.3 Hz, C_{1}), 138.7 \\ (d, J = 2.2 Hz, C7), 133.0 (d, J = 2.2 Hz, C6), 129.6, 129.5 (d, J = 7.3 Hz, C_5, S_5), \\ 125.0 (d, J = 2.9 Hz, C_6, C_{6'}), 116.1 (d, J = 21.3 Hz, C_2, C_{2'}), 113.8, 113.5 (d, J = 21.3 Hz, C_4'), 6.08 (C3a), 51.8 (C8a), 50.9 (C5), 45.2 (C8), 39.3 (C1), 27.0 \\ (C8a-Me), 24.9 (C3), 23.3 (C2). \\ \end{array}$

(3aR,8aR)-6,7-Di(biphenyl-4-yl)-8a-methyl-1,2,3,3a,8,8a-hexahydroazulen-4(5H)one (**11**): Yield 37%. White crystals (mp 162 °C). Anal. Calcd for C₃₅H₃₂O (468,63): C, 89.70; H, 6.88. Found: 89.68; H, 6.91. IR (film, cm⁻¹) v_{max} : 3029, 2960, 2932, 2865, 1701, 1602, 1518, 1486, 1461, 1448, 1403, 1377, 1343, 1262, 1130, 1076, 1007, 909, 840, 766, 733, 697, 648. ¹H NMR (400.13 MHz, CDCl₃, ppm): δ 7.49–7.47, 7.34–7.30, 7.08–7.05 (m, 18H, H_{arom}), 3.73 (d, 1H, ²_{JH5-H5'} = 18.2 Hz, H5), 3.42 (d, 1H, ²_{JH5-H5'} = 18.2 Hz, H5'), 2.99–2.96 (m, 1H, H3a), 2.79 (d, 1H, ²_{JH8-H8'} = 13.9 Hz, H8), 2.59 (d, 1H, ²_{JH8-H8'} = 13.9 Hz, H8'), 2.26, 1.83 (m, 2H, H3, H3'), 1.87, 1.71 (m, 2H, H2, H2'), 1.52, 1.42 (m, 2H, H1, H1'), 1.06 (s, 3H, C8a-Me). ¹³C NMR (101.61 MHz, CDCl₃, ppm): δ 210.4 (C=O), 143.3–126.5 (24C_{arom}), 139.1 (C7), 132.6 (C6), 61.0 (C3a), 51.9 (C8a), 51.0 (C5), 45.3 (C8), 39.3 (C1), 27.0 (C8a-Me), 25.0 (C3), 23.2 (C2).

(3aR8aR)-8a-Ethyl-6,7-diphenyl-1,2,3,3a,88a-hexahydroazulen-4(5H)-one (12):Yield 39%. White crystals (mp 91–93 °C). Anal. Calcd for $C_{24}H_{26}O$ (330.46): C, 87.23; H, 7.93. Found: C, 87.29; H, 8.05. IR (film, cm⁻¹) ν_{max} : 3055, 3021, 2961, 2938, 2875, 1701, 1599, 1492, 1460, 1443, 1380, 1345, 1265, 1130, 1069, 1029, 965, 911, 765, 700, 544. ¹H NMR (400.13 MHz, CDCl₃, ppm): δ 7.09–6.96 (m, 10H, H_o, H_{o'}, H_m, H_{m'}, H_p, H_{p'}), 3.72 (d, 1H, ²J_{H5–H5'} = 18.1 Hz, H5), 3.40 (d, 1H, ${}^{2}J_{H5-H5'}$ = 18.1 Hz, H5'), 2.97–2.94 (m, 1H, H3a), 2.69 (d, 1H, ${}^{2}J_{H8-H8'}$ = 14.0 Hz, H8), 2.62 (d, 1H, ${}^{2}J_{H8-H8'}$ = 14.0 Hz, H8'), 2.28, 1.80 (m, 2H, H3, H3'), 1.89, 1.74 (m, 2H, H2, H2'), 1.64, 1.53 (m, 2H, H1, H1'), 1.34, 0.90 (m, 2H, CH₂-Me), 0.45 (t, 3H, ${}^{3}J_{CH2-Me}$ = 7.7 Hz, Me). ${}^{13}C$ NMR (101.61 MHz, CDCl₃, ppm): δ 210.8 (C=0), 144.0 (C_{f}), 142.5 (C_{i}), 138.7 (C7), 132.8 (C6), 129.4, 129.2 (C_{m} , $C_{m'}$), 127.9, 127.8 (C_{o} , $C_{o'}$), 126.3, 126.0 (C_{p} , $C_{p'}$), 61.4 (C3a), 55.5 (C8a), 50.9 (C5), 41.0 (C8), 34.9 (C1), 30.2 (C8a-CH₂-Me), 25.4 (C3), 23.3 (C2), 8.2 (C8a-CH₂-Me), Me).

 $\begin{array}{l} (3aR,8aR)-6,7-Bis(3-fluorophenyl)-8a-ethyl-1,2,3,3a,8,8a-hexahydroazulen-4(5H)-one (13): Yield 50%. Yellow oil. Anal. Calcd for C_{24}H_{24}F_{2}O (366.44): C, 78.66; H, 6.60; F, 10.37. Found: C, 78.87; H, 6.54; F, 10.21. IR (film, cm⁻¹) <math display="inline">v_{max}$: 3069, 3037, 2964, 2936, 2877, 2866, 1703, 1610, 1582, 1485, 1461, 1436, 1381, 1347, 1265, 1153, 1076, 964, 911, 872, 785, 734, 702, 648, 522. ¹H NMR (400.13 MHz, CDCl₃, ppm): δ 7.02–6.68 (m, 8H, H_o, H_{o'}, H_m, H_{m'}, H_p, H_{p'}), 3.69 (d, 1H, $^2_{JH5-H5'}$ = 18.0 Hz, H5), 3.34 (d, 1H, $^2_{JH5-H5'}$ = 18.0 Hz, H5'), 2.94–2.91 (m, 1H, H3a), 2.63 (m, 2H, H8, H8'), 2.27, 1.73 (m, 2H, H3, H3'), 1.90, 1.67 (m, 2H, H2, H2'), 1.53, 1.38 (m, 2H, H1, H1'), 1.24, 0.84 (m, 2H, C8a-CH_2-Me), 0.45 (t, 3H, $^3_{JCH2-Me}$ = 7.4 Hz, C8a-CH₂-Me). 13 C NMR (101.61 MHz, CDCl₃, ppm): δ 210.8 (C=O), 163.4 (d, J = 246.7 Hz, C_3, C_{3'}), 146.8 (d, J = 7.6 Hz, C_{1'}), 145.2 (d, J = 7.6 Hz, C_{1}), 139.4 (C7), 133.7 (C6), 130.5, 130.4 (d, J = 8.4 Hz, C_5, C_5), 125.9, 125.8 (d, J = 2.13 Hz, C_4, C_6), 117.0, 116.8 (d, J = 2.17 Hz, C_2, C_{2'}), 114.6, 114.3 (d, J = 2.13 Hz, C_4, C_4), 62.3 (C3a), 55.4 (C8a), 51.5 (C5), 41.7 (C8), 35.8 (C1), 31.0 (C8a-CH₂-Me), 26.3 (C3), 24.2 (C2), 9.2 (C8a-CH₂-Me). \end{cases}

Vinyl ketones 14a-c as a mixture: Yield 24%. Yellow oil. Anal. Calcd for C15H18O (214.30): C, 84.07; H, 8.47. Found: C, 84.33; H, 8.61. IR (film, cm⁻¹) v_{max}: 3058, 3026, 2931, 2861, 1949, 1776, 1707, 1616, 1601, 1494, 1450, 1373, 1309, 1232, 1144, 1126, 1074, 1029, 966, 764, 748, 699. ¹H NMR (400.13 MHz, CDCl₃, ppm) for 14a: δ 7.16-7.14 (m, 2H, H_m), 7.12-7.10 (m, 1H, H_p), 7.04-7.02 (m, 2H, H_o), 6.51 (d, 1H, ${}^{3}J_{H\alpha-H\beta}$ = 12.5 Hz, H_{\alpha}), 5.64 (d, 1H, ${}^{3}J_{H\alpha-H\beta}$ = 12.5 Hz, H_{\beta}), 2.26, 1.82 (m, 2H, H6, H6'), 1.93, 1.45 (m, 2H, H3, H3'), 1.85, 1.48 (m, 2H, H5, H5'), 1.75, 1.53 (m, 2H, H4, H4'), 1.22 (s, 3H, Me). ¹³C NMR (101.61 MHz, CDCl₃, ppm) for **14a**: δ 213.3 (C=0), 137.1 (C₂), 136.3 (C₄), 131.0 (C₆), 128.8 (C₀), 127.9 (C_m), 127.8 (C_p), 52.1 (C2), 44.9 (C3), 39.8 (C6), 29.1 (C5), 24.3 (Me), 22.2 (C4). ¹H NMR (400.13 MHz, CDCl₃, ppm) for 14b: δ 7.30 (m, 2H, H_o), 7.21 (m, 1H, H_p), 7.19 (m, 2H, H_m), 6.42 (dd, 1H, ${}^{3}J_{H\alpha-H\beta}$ = 16.1 Hz, ${}^{3}J_{H\alpha-H\beta}$ = 7.3 Hz, H α), 6.22 (d, 1H, ${}^{3}J_{H\alpha-H\beta}$ = 16.1 Hz, H_β), 3.07 (m, 1H, H6), 2.38 (m, 1H, H2), 2.14, 1.60 (m, 2H, H5, H5'), 2.06, 1.39 (m, 2H, H3, H3'), 1.62, 1.25 (m, 2H, H4, H4'), 0.99 (d, 3H, ^{3}J = 6.5 Hz, Me). 13 C NMR (101.61 MHz, CDCl₃, ppm) for **14b**: δ 211.3 (C=O), 137.2 (C₁), 130.9 (C_β), 128.5 (C_m), 128.1 (C₂), 127.6 (C_β), 126.3 (C₆), 54.0 (C6), 45.5 (C2), 36.9 (C3), 35.8 (C5), 25.3 (C4), 14.6 (Me). ¹H NMR (400.13 MHz, CDCl₃, ppm) for **14c**: δ 7.23 (m, 2H, H_m), 7.18 (m, 1H, H_p), 7.10 (m, 2H, H_o), 6.60 (m, 1H, H_a), 3.37 (m, 2H, CH₂-Ph), 2.28 (m, 1H, H2), 2.75, 2.35 (m, 2H, H5), 2.27, 1.72 (m, 2H, H4), 1.97, 1.48 (m, 2H, H3), 1.09 (d, 3H, ³/₁ = 6.4 Hz, Me). ¹³C NMR (101.61 MHz, CDCl₃, ppm) for **14c**: δ 202.9 (C=O), 138.7 (C_i), 137.3 (C6), 135.8, (C_α), 128.7 (C_m), 128.6 (C_o), 125.9 (C_p), 44.1 (C2), 34.0 (CH₂-Ph), 31.9 (C3), 27.2 (C5), 24.7 (C4), 16.2 (Me)

 $\begin{array}{l} (Z)\mbox{-}2\mbox{-}(4-methylstyryl)\mbox{cyclohexanone} ({\bf 15a})\mbox{: Yield 18\%. Yellow oil. Anal. Calcd for $C_{16}H_{20}$O$ (228.33): C, 84.16; H, 8.83, Found: C, 84.11; H, 8.91. IR (film, cm^{-1}) $v_{max}\mbox{: 302, 2930, 2861, 1709, 1610, 1512, 1490, 1449, 1407, 1373, 1337, 1308, 1254, 1212, 1182, 1148, 1117, 1084, 1040, 1021, 980, 960, 950, 949, 818, 741, 533.^{1}H NMR (400.13 MHz, CDCl_3, ppm) <math display="inline">\delta$ 7.04–7.01 (m, 2H, H_m), 6.97–6.95 (m, 2H, H_o), 6.52 (d, 1H, ${}^3J_{H\alpha-H\beta}$ = 12.5 Hz, H_\beta), 5.66 (d, 1H, ${}^3J_{H\alpha-H\beta}$ = 12.5 Hz, H_g), 2.31, 1.86 (m, 2H, H6, H6'), 1.98, 1.49 (m, 2H, H3, H3'), 1.91, 1.51 (m, 2H, H5, H5'), 1.77, 1.57 (m, 2H, H4, H4'), 2.29 (s, 3H, C_p-Me), 1.25 (s, 3H, C2-Me). ${}^{13}C$ NMR (101.61 MHz, CDCl_3, ppm) δ 214.0 (C=O), 137.0 (C_p), 136.7 (C_{\alpha}), 133.2 (C_i), 131.1 (C_p), 128.9 (C_o), 128.7 (C_m), 52.4 (C2), 45.2 (C3), 40.0 (C6), 29.3 (C5), 24.3 (Me), 22.3 (C4), 21.3 (C_p-Me). \end{array}

(Me), 22.3 (C4), 21.3 (C_p-Me). (Z)-2-[2-(Biphenyl-4-yl)/vinyl]-2-methylcyclohexanone (**17a**) in a mixture with **11**: Yield 11%. White powder. ¹H NMR (400.13 MHz, CDCl₃, ppm): δ 7.56–7.55, 7.48–7.47, 7.40–7.38, 7.28–7.23, 7.16–7.14 (m, 9H, H_{arom}), 6.56 (d, ³J_{Hα-Hβ} = 12.5 Hz, 1H; H_β), 5.73 (d, ³J_{Hα-Hβ} = 12.5 Hz, 1H; H_α), 2.27, 1.83 (m, 2H; H6,6') 1.97, 1.44 (m, 2H; H3,3'), 1.86, 1.49 (m, 2H; H5,5'), 1.79, 1.53 (m, 2H; H4,4'), 1.28 (s, 3H, Me). ¹³C NMR (101.61 MHz, CDCl₃, ppm): δ 212.4 (C=O), 140.9, 140.0, 135.3, 129.1, 128.8, 127.7, 127.4, 127.2, 127.0 (12C_{arom}), 137.5 (Cα), 130.6 (Cβ), 54.3 (C2), 45.7 (C3), 37.1 (C6), 29.8 (C5), 22.7 (C4), 25.4 (C2-Me).

10. Atomic coordinates, bond lengths, bond angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). These data can be obtained free of charge via www.ccdc.cam.uk.conts/retrieving.html or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk). Any request to the CCDC for data should quote the full literature citation and CCDC reference number CCDC 826323.