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Here we report a novel electron-donor-acceptor (EDA) complex-

enabled three-component cyanofluorination of vinyl azides under 

metal-free conditions in a cis-specific manner.    This reaction 

protocol is operationally simple without exclusion of either 

moisture or oxygen, allowing to access a wide range of highly-

functionalized αααα-azido-β-fluoronitriles that bearing quaternary 

carbons are difficult to be obtained by existing methods. 

The electron-donor-acceptor (EDA) complex-enabled organic 

synthesis is a mild and sustainable approach, emerging as a valuable 

platform for access to a range of products from relatively simple 

feedstocks under transition-metal-free conditions.
1
 Although the 

physicochemical properties of EDA complexes have been 

extensively studied since the 1950s,
2
 their use in synthetic 

chemistry remains underexplored.
1
 Recently, synthetic 

achievements involving EDA complexes
3
 include, for instance, 

radical perfluoroalkylation,
3a-d

 asymmetric alkylation,
3e-g

 

intramolecular cyclization,
3h

 and biaryl coupling.
3i-j

 For the 

continued advancement of this field, the design and development 

of novel and efficient strategies to prepare useful organic 

molecules, such as fluorinated compounds, is highly desirable. 

We have an intense interest in the transformation of alkenes into 

fluorine-containing compounds
4
 due to the great utility of 

organofluorine compounds as pharmaceuticals, agrochemicals, and 

materials.
5
 In the past ten years, the development of efficient and 

direct fluorination protocols has been of considerable significance.
6
 

In spite of the great progress made in the transition-metal catalysed 

construction of Csp
2
-F bond via C-H activation

7
 and cross-coupling 

reactions,
8
 the techniques for direct access to aliphatic Csp

3
-F bond 

is relatively underdeveloped owing to the challenges in the 

achievement of satisfactory regioselectivity.
9
 In addition to the 

benzylic
10

 and allylic fluorination,
11

 the fluorination via olefin 

functionalization provides a practical approach for the precise 

installation of a fluorine atom on alkanes.
12

 Recently, radical 

fluorination of alkenes via iron or silver catalysis has received 

significant attention (Scheme 1).
13

 However, the lack of stereo-

control was often encountered in the fluorination of alkenes.  
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Scheme 1 Fluorination of alkenes for access to aliphatic Csp

3
-F bond. 

Within the realm of open-shell chemistry, alkene radical cations 

display a combination of free radical and cation chemistry that 

confers a fascinating manner of reactivity and selectivity on them.
14

 

Inspired by this concept, we questioned whether the fluorination of 

olefins via alkene radical cation intermediates might be rerouted to 

deliver fluorinated products in good regio- and stereo-selectivity. 

Thus, we describe herein a metal-free and mild protocol for regio- 

and stereo-selective cyanofluorination of vinyl azides with 

Selectfluor as a fluorine source and TMSCN as a cyanating reagent, 

affording α-azido-β-fluoronitriles that bearing quaternary α-

carbons are difficult to access by existing methods (Scheme 1). To 

the best of our knowledge, this reaction represents the first 

example of synthesis of α-azido-β-fluoronitriles via 

cyanofluorination of vinyl azides. 
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Table 1 Optimization of reaction conditions 
a

 

Ph

N3

1a

SelectFluor (1.5 equiv)

solvent, rt
Ph

2a

NC
N3

F

CN source (2 equiv)""

 

entry solvent “-CN“ source t (h) yield (%)
b 

1 DCM TMSCN 24 < 5 

2 DMF TMSCN 24 < 5 

3 MeCN TMSCN 0.5 37 

4
c
 MeCN TMSCN 0.5 < 5 

5 MeCN/DCM (1:1) TMSCN 1 65 

6 MeCN/DCM (1:2) TMSCN 1.5 78 

7 MeCN/DCM (1:3) TMSCN 3 77 

8 MeCN/DCM (1:4) TMSCN 8 77 

9 MeCN/DCM (1:2) TBSCN 24 < 5 

10 MeCN/DCM (1:2) nBu4NCN 24 < 5 

11 MeCN/DCM (1:2) CuCN 24  < 5 

12
d
 MeCN/DCM (1:2) TMSCN 1.5 75 

a
1a (0.2 mmol), Selectfluor (0.3 mmol) and “

–
CN”

 
source (0.4 mmol) in organic 

solvent or co-solvent (2 mL). 
b
Isolated yield. cCsF (0.4 mmol). 

 d
In the dark. 

 

Initially, examination and optimization of the reaction 

parameters were carried out under natural light using vinyl azide 1a 

as the model substrate, Selectfluor as the source of atomic fluorine 

and TMSCN as the source of nucleophilic cyanation reagent (Table 

1). A brief screening of organic solvents revealed that a co-solvent 

system was critical to furnishing the desired product in good yields 

(entries 5–8) since each solvent alone turned out to be inferior 

(entries 1–3). We were delighted to identify the solvent mixture 

CH3CN/DCM (1:2) as the best one in terms of chemical yield (entry 

6). It should be noted that a prolonged reaction time was needed to 

consume 1a when increasing the ratio of DCM (entries 5–8). 

Employing CsF as the “TMS
+
” scavenger, to our surprise, the 

reaction was inhibited (entry 4). An evaluation of other nucleophilic 

cyanogen sources showed that TMSCN was the most effective one 

compared to TBSCN, tetrabutylammonium cyanide, and copper(I) 

cyanide (entry 6 vs. entries 9–11). The reaction also proceeded 

smoothly in the dark (entry 12), which reveals that light is not 

essential for this transformation. Additionally, the reaction was 

surprisingly insensitive to air, so all the reactions were run under an 

aerobic atmosphere. 

Typically, EDA complex exhibits a new absorption band, the 

charge-transfer (CT) band, which is shifted to longer wavelength 

compared to the UV-vis absorption spectra of its individual 

components.
2
 In many cases, this band lies within the visible region, 

thus showing a distinctive coloration. In early stage of our 

investigations, we did observe that a noticeable yellow colour 

appeared immediately when adding white solid Selectfluor into an 

acetonitrile solution of 1a (Figure 1a, see ESI†). Moreover, the 

optical absorption spectrum showed a bathochromic shift to the 

visible spectral region, above 450 nm, where neither the substrate 

nor Selectfluor absorbs (Figure 1b, see ESI†). It is no doubt that an 

EDA complex formed between vinyl azide 1a and Selectfluor in 

acetonitrile. 

R = H, 2b, 75% (1.5 h)NC
N3

F
R

R = F, 2c, 78% (2 h)
R = Cl, 2d, 86% (2 h)

R = Br, 2e, 80% (2 h)

R = Me, 2f, 73% (1.5 h)

R = OMe, 2g, 55% (1.5 h)
R = NO2, 2h , 70% (8 h)
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Scheme 2 Scope for cyanofluorination of vinyl azides. [a] The d.r. value was 

determined by 
19

F NMR spectroscopy of the product. 

With the optimized reaction conditions established (Table 1, 

entry 6), we next investigated the scope of this protocol (Scheme 

2). A number of vinyl azides bearing a variety of substituents were 

examined, showing that a wide range of substrates and functional 

groups are tolerated (2a–y). In most cases, a high conversion of 

vinyl azide occurred within 8 h. Substrates bearing electron-

donating and electron-withdrawing groups at the para or meta 

positions on the phenyl rings provided the corresponding α-azido-β-

fluoropropanenitriles in good yields (2b–o), although the highly 

electron-rich substrates with a methoxyl group or an acetamido 

group gave relatively low yields (2g and 2o). This cyanofluorination 

appears to be sensitive to steric effects and prolonged reaction time 

was required, producing the desired o-bromide only in 26% yield 

(2p). Notably, the cyanofluorination of vinyl azides with alkenyl (2k) 

and alkynyl (2l) groups on phenyl rings was readily proceeded 

without compromising the chemical yields. Besides phenyl rings, 

the naphthyl (2q) and thienyl (2r) moieties were also well 

compatible with the reaction conditions. This protocol was 

subsequently applied to non-terminal (Z)-vinyl azides (2s–w) and 

tetrasubstituted alkene (2x), furnishing the desired products in 
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acceptable yields with excellent stereoselectivities, albeit with some 

stereochemical erosion in the example of 2u. The stereochemical 

outcome of these reactions could be determined by the reactive 

conformation of the carbocation intermediate D (Scheme 4). 

Despite the good reactivity of aryl vinyl azides, we found that alkyl 

vinyl azide (2y) performed poorly. It was reasoned that the 

conjugated π-system with aryl moiety might be crucial to the 

formation of EDA complex and following electron transfer. 

N3NC
F

H

2w

NNC
F

H

N

N

PMP

CuSO4•5H2O (5 mol %)

sodium L-ascorbate (10 mol %)

tBuOH/H2O (2:1)

rt, 4h

+

OMe

3, 81%

N3NC
F

H

2w

N3HOOC
F

H

4, 90%

aq. NaOH

100 °C, 12 h

N3
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O
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Ph

Ph

F

N3
Ph
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HO

6
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H2O (2 equiv)
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F-atom transferH2OSelectFluorSET

N3
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2a +
not detected

(1)

(2)

(3)

(4)

 

Scheme 3 Further transformations and control experiments. 

Overall, access to highly-functionalized fluorine-containing 

products by cyanofluorination of vinyl azides provides an 

opportunity to rapidly generate useful synthons for further 

transformations. To illustrate this point, we conducted copper-

catalysed click reaction and hydrolysis reaction, converting 2w into 

the desired fluorinated 1,2,3-triazole (3) (Scheme 3, eq 1) and 

carboxylic acid (4) (eq 2) in 81% and 90% yields respectively. 

Meanwhile, the cis-cyanofluorination can be unambiguously 

confirmed by the crystal structures of 3 and 8 (see ESI†).
15

 

Furthermore, control experiments were performed to gain more 

insights into the reaction pathway. In the presence of radical 

scavenger TEMPO, no fluorine-incorporated products were found, 

but the TEMPO adduct 5 was obtained (eq 3). As might be 

expected, the reaction of cyclopropyl vinyl azide 6, a radical probe, 

with Selectfluor and water gave the ring-opening product 7 in 70% 

yield (eq 4).
4b,16

 It is of note that ring opening of the reporter group 

in the radical cation intermediate could be ultrafast (k > 1 × 10
11

 s
–

1
).

16
 These results strongly support the involvement of a radical 

process in the EDA complex-enabled  cyanofluorination. 

On the basis of above observations and our previous 

publication,
4b

 a plausible mechanism was depicted in Scheme 4. At 

first, the formation of an EDA aggregate A would take place. In 

contrast to recent synthetic achievements involving the 

intermediacy of a photoactive EDA complex,
1
 the subsequent single 

electron transfer (SET) is activated thermally, leading to the 

generation of an alkene radical cation (C) within B, followed by a 

fast fluorine atom transfer in cage to yield the carbocation 

intermediate D. The final step is a nucleophilic cyanation, furnishing 

the desired cyanofluorination product in a stereo-controlled 

fashion. On the other hand, out-of-cage diffusion and following 

atomic fluorine transfer, as an alternative pathway, cannot be 

excluded at the present stage. 

+

R1 N3

R2

N N

F Cl

SET

N

N
Cl

F

R1

N3

R2

R1

N3

R2

1
colorless

2BF4

N

N

F

Cl

SelectFluor
white solid

colored EDA complex

in cage
F-atom transfer

R1
R2

F H

N3
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R1

N3

R2

SelectFluor

F-atom
transfer

H F

R2

N3R1

CN

R1

N3NC
R2

F H

2

A

B
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Scheme 4 Proposed mechanism. 

In summary, we have developed an operationally simple and 

unprecedented protocol for the synthesis of α-azido-β-

fluoronitriles from vinyl azides under mild reaction conditions. 

The investigations indicated that an EDA complex-enabled 

generation of alkene radical cation and subsequent fluorine 

atom transfer could be involved in the reaction. Moreover, this 

transformation showed excellent regio- and stereo-selectivity, 

as well as tolerance of a broad range of functional groups. 

Other applications of EDA complex as an efficient strategy for 

the development of novel and useful synthetic methods are 

underway in our lab. 
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