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 2 

Abstract 25 

 26 

Blood glucose monitoring has attracted extensive attention because diabetes 27 

mellitus is a worldwide public health problem. Here, a novel and label-free 28 

fluorescent sensing strategy was reported for simple and sensitive detection of glucose 29 

in human serum on the basis of H2O2-mediated fluorescence quenching of 30 

double-stranded DNA (ds-DNA) templated copper nanoparticles (Cu NPs). In this 31 

strategy, the fluorescence intensity of ds-DNA templated Cu NPs was found to be 32 

quenched effectively in the presence of H2O2. Similarly, glucose could be monitored 33 

based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. 34 

Under the optimized conditions, the strategy exhibited sensitive and selective 35 

detection of glucose in a linear range from 50 nM to 100 μM and with a detection 36 

limit of 12 nM. In addition, the method was successfully applied in the detection of 37 

glucose in human serum samples with satisfactory results. Furthermore, the strategy 38 

was free of any fluorescence dye label, complex DNA sequence design, and 39 

sophisticated experimental techniques. Therefore, the proposed approach could hold 40 

great potential for diabetes mellitus research and clinical diagnosis. 41 

 42 

Keywords: Glucose detection; H2O2; Label-free fluorescent sensor; Copper 43 

nanoparticles 44 

 45 
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 3 

1. Introduction 47 

 48 

As a major component of animal and plant carbohydrates, glucose plays a key 49 

role in living systems. It acts not only as an important energy source of the living cells, 50 

but also as a metabolic intermediate in the synthesis of other complex molecules. The 51 

blood glucose levels are also an important indicator of human health conditions.
1
 The 52 

deficiency of glucose may result in hypoglycemia. On the other hand, a high level of 53 

glucose is connected to many other diseases such as diabetes, hypertension and 54 

cardiovascular diseases. About 300 million people suffered from diabetes in the year 55 

2010; and this number is estimated to almost double in 2030 by the statistics of the 56 

World Health Organization. Thus, it is of great importance to be able to accurately 57 

monitor the blood glucose levels in clinical diagnosis of diabetes. Several 58 

conventional methods including spectrophotometry, fluorometry, chemiluminescence 59 

and electrochemistry have been developed for the monitoring blood glucose levels.
2-7

 60 

Although these methods were quite powerful, they usually suffered from some 61 

disadvantage. The spectrophotometry and electrochemistry-based methods were 62 

limited by the interference of blood color and contamination of the electrode by the 63 

proteins in blood. Among these methods, fluorescent method was used widely due to 64 

its operational simplicity and high sensitivity.
3
 Quantum dots (QDs) become one of 65 

the most popular fluorescence materials in such application.
8-10

 However, most of 66 

previous strategies usually suffered from complicated modification or harsh detection 67 

environment. Furthermore, the cytotoxic effect of the probes could not be neglected.
11, 

68 

12
 Thus, it is still highly desirable to develop simple, low-cost and sensitive 69 

approaches for the determination of glucose.  70 

In contrast to the conventional organic dyes and quantum dots, fluorescent metal 71 

nanoclusters or nanoparticles have attracted significant attention in the field of 72 

bioanalysis due to their unique electrical, optical properties and low toxicity.
13-17 

73 

Among the various reported metal nanoclusters or nanoparticles, DNA or 74 

oligonucleotide templated fluorescent copper nanoparticles as a type of newly 75 
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 4 

emerged functional biochemical probe, have possessed great potential as fluorescent 76 

probes for biochemical applications because of their advantages of good 77 

biocompatibility, low-cost, ease of preparation, low-toxicity and excellent 78 

fluorescence property.
18-22

 79 

Recently, Mokhir et al. reported that ds-DNA could act as an efficient template 80 

for the formation of Cu NPs through the reduction of Cu
2+

 by ascorbic acid and the 81 

formed Cu NPs exhibited excellent fluorescence, whereas ss-DNA template did not 82 

support the formation of Cu NPs.
23

 The formation of ds-DNA templated Cu NPs 83 

contained two steps. The first step in the reaction was the reduction of Cu (II) to Cu (I) 84 

followed by the disproportionation of Cu (I) into Cu (II) and Cu (0). The second step 85 

was that the formed Cu (0) was clustered on ds-DNA scaffolds. Furthermore, ds-DNA 86 

templated Cu NPs could be facilely prepared within 5 minutes at room temperature. 87 

Thus, due to its simplicity, high efficiency, rapidity, and hypotoxicity, the ds-DNA 88 

templated Cu NPs have been used as fluorescence probes in some biological 89 

assays.
18-20, 24, 25

 Chen et al. found that Pb
2+

 could quench the fluorescence of ds-DNA 90 

templated Cu NPs.
24

 Based on the phenomenon, they have used ds-DNA templated 91 

Cu NPs as a novel fluorescence probe for the detection of Pb
2+

 through the 92 

5d
10

(Pb
2+

)–3d
10

(Cu
+
) metallophilic interactions to induce fluorescence quenching.

24
 93 

Hu et al. have utilized ds-DNA templated Cu NPs as novel fluorescence probe for 94 

label-free detection of biothiols based on the quenching of their fluorescence.
18

 The 95 

quenching effect was ascribed to the coordination complex formed by the Cu-S 96 

metal-ligand bond between the Cu NPs and the biothiols. Our group found that 97 

dopamine could also effectively quench the fluorescence of Cu NPs by the formation 98 

of photo-induced electron transfer process between dopamine and Cu NPs.
25 

However, 99 

exploration of fluorescence quenching of ds-DNA templated Cu NPs is still at a very 100 

early stage. 101 

Interestingly, we found that the fluorescence intensity of ds-DNA templated Cu 102 

NPs could be quenched effectively by H2O2 in this study. Moreover, glucose could be 103 

oxidized by dissolved oxygen (O2) in the presence of glucose oxidase (GOD) to 104 

produce glucose acid and H2O2. Then, the concentration of glucose could be obtained 105 
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 5 

by detecting the amount of the enzymatically generated H2O2, which quenched the 106 

fluorescence of Cu NPs. The principle of our proposed fluorescent sensor for 107 

hydrogen peroxide (H2O2) and glucose detection was schematically represented in 108 

Scheme 1. The ds-DNA templated Cu NPs were used as fluorescent indicator. In the 109 

absence of hydrogen peroxide, the formed ds-DNA templated Cu NPs exhibited 110 

excellent fluorescence intensity. However, it was found that the fluorescence intensity 111 

of the ds-DNA templated Cu NPs could be quenched effectively by the presence of 112 

H2O2 (shown in Scheme 1A). The fluorescence quenching mechanism was discussed 113 

in ESI†. Based on the intensive quenching effects, H2O2 could be successfully 114 

detected through the fluorescence change of ds-DNA templated Cu NPs. In addition, 115 

by taking advantage of H2O2 as a mediator, this strategy was further exploited for 116 

constructing oxidase-based biosensors for glucose detection. As shown in Scheme 1B, 117 

glucose was oxidized by dissolved oxygen (O2) in the presence of glucose oxidase to 118 

produce glucose acid and H2O2. Consequently, the glucose concentration could be 119 

determined indirectly by the amount of enzymatically generated H2O2 according to 120 

the fluorescence quenching. Hence, a novel and cost-effective fluorescent sensor was 121 

constructed for sensitive detection of glucose based on the H2O2-mediated 122 

fluorescence quenching of ds-DNA templated Cu NPs.  123 

(Scheme 1) 124 

 125 

2. Experimental 126 

 127 

2.1. Reagents  128 

 129 

All oligonucleotides in this work were synthesized by Sangon Biotechnology Co. 130 

Ltd. (Shanghai, China) and used without further purification. The sequences of these 131 

oligonucleotides were shown as follows: P1 5'-CAT AGC GGC AGG ATC AGT TAC 132 

AGT G-3'; P2: 5'-CAC TGT AAC TGA TCC TGC CGC TAT G-3'. Glucose oxidase, 133 

CuSO4·5H2O, H2O2 (30%) and ascorbic acid were purchased from Sigma-Aldrich 134 
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 6 

(USA). All other chemicals were of analytical grade and without further purification. 135 

All the water used in this work was obtained from a Millipore Milli-Q water 136 

purification system (with an electrical resistance of >18.2 MΩ).  137 

 138 

2.2. Apparatus 139 

 140 

The fluorescence measurements were performed on a Hitachi F-7000 141 

fluorescence spectrometer (Hitachi Co. Ltd., Japan) equipped with a Xenon lamp 142 

excitation source. A quartz fluorescence cell with an optical path length of 10 mm was 143 

used. The excitation wavelength was set at 340 nm, and the fluorescence emission 144 

spectra of Cu NPs were collected from 500 nm to 640 nm at room temperature with 145 

both the excitation and emission slit set at 5.0 nm. All fluorescence measurements 146 

were carried out at room temperature unless stated otherwise. 147 

 148 

2.3. Synthesis of ds-DNA templated Cu NPs 149 

 150 

The ds-DNA templated Cu NPs were synthesized according to the literature with 151 

a slight modification.
18-20, 25

 Briefly, a mixture solution containing 1 μM P1 and 1 μM 152 

P2 ss-DNA in MOPS buffer (20 mM MOPS, 300 mM NaCl, pH 7.0) was firstly 153 

prepared. Then the mixture was denatured at 95 
o
C for 10 min, and subsequently 154 

cooled down slowly to room temperature to ensure that P1 and P2 DNA were 155 

completely hybridized to form ds-DNA. After that, 10 μL 2.5 mM CuSO4 solutions 156 

and 10 μL 30 mM ascorbic acid solutions were added into the mixture solution and 157 

kept for 5 minutes at room temperature to form ds-DNA templated Cu NPs. Finally, 158 

the fluorescent spectrum of the mixture was recorded by F-7000 spectrophotometer 159 

(Hitachi Co. Ltd., Japan) immediately. The morphology of ds-DNA templated Cu NPs 160 

was characterized by transmission electron microscope (TEM) and shown in Fig. 1. 161 

And the size of ds-DNA templated Cu NPs was about 3-5 nm. 162 

(Fig. 1) 163 

 164 
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 7 

2.4. Fluorescence quenching effect by H2O2 165 

 166 

In a typical measurement, different concentrations of H2O2 were freshly prepared 167 

before use. Then, 10 μL different concentrations of H2O2 were added into 90 μL 168 

as-prepared ds-DNA Cu NPs, and the mixture was incubated at room temperature for 169 

10 min in the dark. After that, the fluorescence intensity of the mixture was 170 

immediately measured by F-7000 spectrophotometer with the excitation wavelength 171 

of 340 nm. 172 

 173 

2.5. Label-free detection of glucose 174 

 175 

In a typical assay of glucose, a 10 μL mixture solution (20 mM MOPS, 300 mM 176 

NaCl, pH 7.0) containing 0.05 mg/mL glucose oxidase and different concentrations of 177 

glucose were incubated at 37 
o
C for 30 min. After that, the above mixture was added 178 

into 90 μL prepared Cu NPs and incubated at room temperature for 10 min in the dark. 179 

At last, the fluorescence intensities of the reaction solution were measured by F-7000 180 

spectrophotometer with the excitation wavelength of 340 nm.  181 

 182 

3. Results and discussion 183 

 184 

3.1. Evaluation the quenching effect of H2O2 185 

 186 

In order to evaluate the feasibility of the strategy, the fluorescence intensity of 187 

obtained Cu NPs were tested in the absence and presence of H2O2. As shown in Fig. 2, 188 

it was observed that ds-DNA templated Cu NPs exhibited excellent fluorescence at 189 

565 nm in the absence of H2O2 (curve a in Fig. 2). However, the fluorescence 190 

intensity decreased significantly (curve b in Fig. 2) after the addition of H2O2. These 191 

results indicated that H2O2 could strongly quench the fluorescence intensity of 192 

ds-DNA templated Cu NPs. Based on the quenching effect, a simple and label-free 193 
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 8 

fluorescent assay could be developed for H2O2 detection by using the ds-DNA 194 

templated Cu NPs. 195 

(Fig. 2) 196 

 197 

It has been reported that the fluorescence intensity of ds-DNA templated Cu NPs 198 

was obviously pH dependent and relatively low in acidic solutions. Thus, the effect of 199 

pH value on the fluorescence response was studied. The efficiency of fluorescence 200 

quenching was calculated by F0/F, where F0 and F were the fluorescence intensity of 201 

ds-DNA templated Cu NPs in the absence and presence of 10 μM H2O2, respectively. 202 

As shown in Fig. 3A, the fluorescent quenching efficiency increased gradually in the 203 

pH value range from 4.0 to 7.0 and then decreased when the pH value was higher than 204 

7.0. A remarkable response was obtained at pH 7.0. Therefore, pH 7.0 was suitable 205 

for this sensing system. 206 

Furthermore, the incubated time of H2O2 was another important parameter 207 

influencing the fluorescent intensity. So, the effect of incubated time of H2O2 was also 208 

investigated to improve the sensitivity of this strategy. As shown in Fig. 3B, the 209 

fluorescence intensity decreased obviously in the presence of 10 μM H2O2. And there 210 

was no obvious change in the fluorescence intensity of ds-DNA templated Cu NPs 211 

after 10 min. Thus, the incubated time of H2O2 was set at 10 min.  212 

(Fig. 3) 213 

 214 

To further demonstrate the fluorescence quenching ability of H2O2, the 215 

fluorescence intensity of ds-DNA templated Cu NPs at different concentrations of 216 

H2O2 was investigated under the optimized experimental condition. The fluorescence 217 

spectra of the ds-DNA templated Cu NPs in the presence of variable concentrations of 218 

H2O2 were shown in Fig. 4A. It was found that the fluorescence intensity of ds-DNA 219 

templated Cu NPs decreased with the H2O2 concentration increasing from 10 nM to 220 

50 μM. Fig. 4B depicted the relationship between the H2O2 concentration and the 221 

fluorescence intensity at the maximum emission wavelength. As shown in inset of Fig. 222 

4B, a good linear relationship was obtained in the concentration range from 10 nM to 223 
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 9 

2 μM (R = 0.9957). The detection limit (in terms of the 3σ rule) was calculated to be 3 224 

nM. The detection limit was comparable to or better than those of previously reported 225 

fluorescence methods.
26-28

 226 

(Fig. 4) 227 

 228 

3.2. Fluorescent detection of glucose 229 

 230 

The fluorescence quenching of Cu NPs by H2O2 enabled the implementation of 231 

the ds-DNA templated Cu NPs as versatile fluorescence indicators for sensitive 232 

detection of the activity of O2-dependent oxidases and their substrates. For example, 233 

glucose could be oxidized by oxygen (O2) in the presence of glucose oxidase (GOx) 234 

to generate H2O2. Thus, it is also possible for the detection of glucose by 235 

H2O2-mediated fluorescence quenching of ds-DNA templated Cu NPs. 236 

Since glucose and glucose oxidase were all essential to produce H2O2, some 237 

parameters (such as concentration of glucose oxidase and incubated time of glucose 238 

oxidase) were optimized to achieve the sensitive detection of glucose. Firstly, the 239 

effect of glucose on the fluorescence intensity was investigated. It was found that no 240 

significant change of the fluorescence intensity were observed when Cu NPs only 241 

mixed with glucose, indicating that glucose had little effect on the fluorescence 242 

intensity of Cu NPs. Secondly, the effect of the concentration of glucose oxidase on 243 

the fluorescence quenching was also studied. The efficiency of fluorescence 244 

quenching was calculated by F0/F, where F0 and F were the fluorescence intensity of 245 

ds-DNA templated Cu NPs in the absence and presence of glucose, respectively. As 246 

shown in Fig. 5A, the efficiency of fluorescence quenching reached a maximum value 247 

when the glucose oxidase concentration was 0.05 mg/mL. Thus, 0.05 mg/mL glucose 248 

oxidase was selected as the optimized concentration. Additionally, the incubated time 249 

of glucose oxidase was another important parameter influencing the fluorescent 250 

intensity. So, the effect of incubated time of glucose oxidase was investigated to 251 

improve the sensitivity of this strategy. It could be seen from Fig. 5B that the 252 

fluorescence intensity increased rapidly and then approached a plateau after 30 min. 253 
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 10 

Therefore, 30 min of the glucose oxidase incubated time was used throughout the 254 

experiments.  255 

(Fig. 5) 256 

 257 

Fig. 6 depicted the typical fluorescent assay of glucose on the basis of 258 

H2O2-mediated fluorescence quenching of ds-DNA templated Cu NPs. It could be 259 

seen from Fig. 6A, the fluorescent intensity decreased gradually with increasing 260 

concentrations of glucose range from 50 nM to 500 μM, which suggested that the 261 

higher the glucose concentration being added, the more H2O2 was generated. Fig. 6B 262 

illustrated the relationship between the glucose concentration and the fluorescence 263 

intensity. According to fluorescence quenching model of Stern-Volmer,
29, 30

 the F0/F 264 

exhibited a good linear relationship with the logarithmic glucose concentrations in the 265 

range from 50 nM to 100 μM (shown in the inset of Fig. 6B). Where, F0 and F were 266 

the fluorescence intensity of sensing system in the absence and presence of glucose, 267 

respectively. The detection limit was calculated to be 12 nM based on three times the 268 

standard deviation rule (3σ), which was comparable to or better than that of most 269 

previously reported methods.
31-35

 Thus, these results demonstrated that the proposed 270 

method could be applied to sensitively determinate glucose. 271 

(Fig. 6) 272 

 273 

3.3. Selectivity of glucose 274 

 275 

In order to demonstrate the selectivity of the present strategy toward glucose, 276 

other possible interfering substances were investigated, such as various saccharides, 277 

amino acids, ascorbic acid (AA), and uric acid (UA). As shown in Fig. 7, except for 278 

glutathione (GSH) and cysteine (Cys), these substances did not result in obvious 279 

interference in glucose detection. This was because the thiol group of GSH and Cys 280 

could also quench the fluorescence intensity of Cu NPs.
18, 36

 Thus, a masking agent 281 

(N-ethylmaleimide, NEM) was introduced into the sensor system to eliminate 282 

interference from GSH and Cys.
34

 After incubation of GSH or Cys with NEM, a 283 
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 11 

negligible fluorescence response was observed, whereas glucose detection was 284 

unaffected by the introduction of NEM. The results suggested that the proposed assay 285 

exhibited high selectivity and could be used for determination of glucose in biological 286 

samples.  287 

(Fig. 7) 288 

 289 

3.4. Detection of glucose in human serum samples 290 

 291 

To verify the feasibility of our new approach for detection of glucose in 292 

biological samples, we applied it to analyze glucose in healthy human blood serum 293 

samples provided by Xinyang Central Hospital (Xinyang, China). Taking into 294 

consideration the normal glucose level in healthy human blood as well as the linear 295 

range of our method, the blood serum samples were diluted 20 times. Then, 0.3 mM 296 

NEM was added into the samples to eliminate the interference from GSH and Cys in 297 

real samples. The results were presented in Table 1. The glucose concentrations of the 298 

serum samples were coincided with those provided by local hospital. In order to 299 

determine the accuracy and precision of the method, appropriate amounts of glucose 300 

standards were added to the human serum sample (shown in Table S1 of ESI†). The 301 

results revealed that proposed method was feasible for practical blood glucose 302 

monitoring in real samples.  303 

(Table 1) 304 

 305 

4. Conclusions 306 

 307 

In conclusion, we have developed a label-free and sensitive fluorescent biosensor 308 

for glucose detection on the basis of H2O2-mediated fluorescence quenching of 309 

ds-DNA templated Cu NPs. Due to the excellent quenching ability of H2O2, the 310 

label-free sensor exhibited sensitive and selective detection of glucose with a 311 

detection limit of 12 nM. The method was also applied to monitor glucose levels in 312 

Page 11 of 36 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 12 

human serum with satisfactory results, suggesting that our approach had great 313 

potential for diabetes mellitus research and clinical diagnosis. The strategy was 314 

convenient and without complicated preparation procedure. Furthermore, the 315 

proposed strategy provided an alternative platform to detect other substrates through 316 

oxidation by its O2-dependent oxidase which could generate H2O2. Thus, it could 317 

offer a new approach to developing low-cost and sensitive methods for biological and 318 

clinical diagnostics applications. 319 
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Figure captions 396 

 397 

Scheme 1 (A) Schematic illustration of fluorescence quenching of ds-DNA templated 398 

Cu NPs by H2O2. (B) Schematic illustration of fluorescent strategy for glucose 399 

detection based on H2O2-mediated fluorescence quenching of ds-DNA templated Cu 400 

NPs.  401 

 402 

Fig. 1 TEM image of ds-DNA templated Cu NPs. 403 

 404 

Fig. 2 Fluorescence spectra of ds-DNA templated Cu NPs in the absence (curve a) and 405 

presence of 10 μM H2O2 (curve b), respectively. 406 

 407 

Fig. 3 (A) The effect of pH values on the fluorescence responses of the sensing 408 

system. Where F0 and F were the fluorescence intensity of ds-DNA templated Cu NPs 409 

in the absence and presence of 10 μM H2O2, respectively. (B) The effect of H2O2 410 

incubation time on the fluorescence intensity. 411 

 412 

Fig. 4 (A) Fluorescent spectra of ds-DNA templated Cu NPs in the presence of 413 

different concentrations of H2O2, the curves from top to bottom, the concentration of 414 

H2O2 were 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 μM, respectively. (B) The 415 

relationship between the fluorescence intensity and H2O2 concentration. Inset of (B) is 416 

the calibration curve. The error bars represent the standard deviation of three 417 

measurements. 418 

 419 

Fig. 5 (A) The effect of glucose oxidase on the fluorescence response. Where, F0 and 420 

F were the fluorescence intensity of sensing system in the absence and presence of 421 

glucose, respectively. (B) The effect of glucose oxidase incubation time on the 422 

fluorescence intensity.  423 

 424 

Fig. 6 (A) Fluorescent spectra of sensing system in the presence of different 425 
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concentrations of glucose. (B) The relationship between the fluorescence intensity and 426 

glucose concentration. Inset of (B) is the calibration curve. The error bars represent 427 

the standard deviation of three measurements. 428 

 429 

Fig. 7 The selectivity of H2O2-mediated fluorescence quenching for glucose assay. 430 

Where, F0 and F are the fluorescence intensity of sensing system in the absence and 431 

presence of glucose and other analytes, respectively. The error bars represent the 432 

standard deviation of three measurements. 433 

 434 

435 
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Table captions 436 

 437 

Table 1 Determination of glucose levels in the human serum samples (n = 3). 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

Page 18 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 19 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

Scheme 1 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

(B)

(A)

Page 19 of 36 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 20 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

Fig. 1 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

10 nm 

Page 20 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 21 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

Fig. 2 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

Page 21 of 36 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 22 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

Fig. 3 586 

 587 

 588 

 589 

 590 

 591 

(A)

(B)

Page 22 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 23 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

Fig. 4 615 

 616 

 617 

 618 

 619 

 620 

 621 

(A)

(B)

Page 23 of 36 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 24 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

  645 

Fig. 5 646 

 647 

 648 

 649 

 650 

 651 

(B)

(A)

Page 24 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 25 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

Fig. 6 676 

 677 

 678 

 679 

 680 

 681 

(A)

(B)

Page 25 of 36 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 26 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

Fig. 7 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

Page 26 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 27 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

Table 1 723 

Samples Proposed method (mM) RSD (%) Local hospital (mM) Relative deviation (%) 

1 4.51 2.8 4.66 -3.2 

2 5.34 3.5 5.20  2.7 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 

 

 

 

 

 

(A)

(B)

Page 32 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5 
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Fig. 6 

 

 

 

 

 

(A)

(B)

Page 34 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
11

/0
9/

20
15

 1
4:

22
:0

2.
 

View Article Online
DOI: 10.1039/C5RA14852A

http://dx.doi.org/10.1039/c5ra14852a


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 
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Table 1 

Samples Proposed method (mM) RSD (%) Local hospital (mM) Relative deviation (%) 

1 4.51 2.8 4.66 -3.2 

2 5.34 3.5 5.20  2.7 

3 6.28 2.3 6.55 -4.1 
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