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ABSTRACT: Tetranuclear Fe clusters have been synthesized 

bearing a terminal FeIII-oxo center stabilized by hydrogen bonding 

interactions from pendant tert-butyl amino pyrazolate ligands. This 

motif was supported in multiple Fe oxidation states, ranging from 

[FeII
2FeIII

2] to [FeIII
4]; two oxidation states were structurally char-

acterized by single crystal X-ray diffraction. The reactivity of the 

FeIII-oxo center in proton coupled electron transfer (PCET) with X–

H (X = C, O) bonds of various strengths was studied in conjunction 

with analysis of thermodynamic square schemes of the cluster oxi-

dation states. These results demonstrate the important role adjacent 

metal centers have on modulating the reactivity of a terminal metal-

oxo. 

Terminal metal-oxo moieties are invoked as key intermediates in 

both natural and synthetic catalysts of mid-first-row transition 

metal ions (Mn, Fe, and Co).1 For example in photosynthesis, water 

is oxidized in photosystem II by a CaMn4O5 cluster known as the 

oxygen evolving complex (OEC);2 numerous computational stud-

ies of the catalytic mechanism have proposed a high-valent Mn-oxo 

playing a key role in O–O bond formation.3 Similarly, a number of 

synthetic water oxidation catalysts employing various multinuclear 

scaffolds have been reported, where a terminal metal-oxo is impli-

cated as a key intermediate (Figure 1).1e-g, 4 

Studies of synthetic transition metal-oxo complexes have been 

integral for understanding these reactive moieties in catalytic sys-

tems.1a, 5 However, there is a paucity of literature concerning mul-

tinuclear complexes bearing well-characterized terminal metal-oxo 

motifs.6 In a rare example where the effects of a neighboring metal 

oxidation state on a terminal metal-oxo could be interrogated, Que 

and coworkers reported that the spin state of an FeIV-oxo center 

would change depending on the oxidation state of a neighboring Fe 

in a μ2-O bridged bimetallic complex (L’2OFe2(OH)(O)2+/3+).6c The 

authors demonstrated that structural and spin-state changes due to 

reduction of this secondary Fe leads to a thousand-fold activation 

of the [Fe2] complex towards C–H oxidation.  

To gain further insights into these multimetallic effects, our 

group has examined well-defined tetranuclear clusters of Fe and 

Mn, which facilitate intramolecular oxygen atom transfer reactions; 

however, a terminal metal-oxo intermediate could not be ob-

served.7 Inspired by reports of mononuclear terminal metal-oxo 

motifs stabilized by second coordination sphere hydrogen bonding 

interactions,8 our group has previously used this strategy to access 

a terminal MnIII–OH moiety as part of a [Mn4] cluster.9 Herein, we 

describe the synthesis, structural characterization, and reactivity 

studies of clusters bearing a terminal FeIII-oxo motif, stabilized by 

 
Figure 1. Multinuclear catalysts with proposed terminal metal-

oxo intermediates (top), and structurally characterized terminal 

FeIII-oxo complexes (bottom) 

tert-butyl-amino-pyrazolates, to probe the significance of a multi-

nuclear scaffold on structural and reactivity aspects of a terminal 

metal-oxo. 

Treating the reported LFe3(OAc)(OTf)2 cluster (-OTf, triflate = 

trifluoromethane sulfonate)10  with three equivalents of potassium 

tert-butyl-amino-pyrazolate (KPzNHtBu) and iodosylbenzene 

(PhIO), followed by addition of iron (II) triflate bis-acetonitrile 

(Fe(OTf)2 • 2 MeCN) and excess potassium hydroxide in tetrahy-

drofuran produces the neutral [FeII
3FeIII] cluster, 1 (Scheme 1). Sin-

gle crystal X-ray diffraction (XRD) studies of 1 reveal a structure 

similar  to our previously reported [Mn4] cluster bearing a terminal 

hydroxide ligand (Figure 2A);9 the apical metal displays a trigonal 

bipyramidal geometry, with the terminal hydroxide ligand hydro-

gen bonded to each amino-pyrazolate (N–O distances of 2.826(1), 

2.765(1), 2.789(1) Å for 1). The relatively short distance between 

the apical Fe and the interstitial μ4-O (Fe4–O1), 1.837(1) Å, is con-

sistent with an FeIII in the apical position of the cluster, with the 

remaining Fe centers being FeII.7b, 11  

The electrochemistry of the [Fe4] hydroxide clusters in THF fea-

tures three quasi-reversible events assigned to the 

[FeII
3FeIII]→[FeII

2FeIII
2] (-1.53 V; all potentials vs. Fc/Fc+), 

[FeII
2FeIII

2]→[FeIIFeIII
3] (-0.68 V), and [FeIIFeIII

3]→[FeIII
4] (-0.10 

V) redox couples (Figure S36). Each of the corresponding oxida-

tion states of the cluster could be isolated (Scheme 1). Mössbauer
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Scheme 1. Synthesis of [Fe4] clusters. (Inset) 1,3,5-triarylbenzene ligand platform (L3-) and tert-butyl amino pyrazolate ligand 

(PzNHtBu-). 

 

spectra of the oxidized clusters 2, 3, and 4 are consistent with oxi-

dations occurring at the FeII centers in the tri-iron core and the Fe–

OH moiety remaining FeIII (Figures 2C, S42, S46, and S47). 

Access to a terminal FeIII-oxo moiety was achieved by deproto-

nation of the [FeII
2FeIII

2] hydroxide cluster, 2, with potassium tert-

butoxide (KOtBu; Scheme 1). The resulting compound, 5, was 

crystallographically characterized (Figure 2B); deprotonation of 

the hydroxide ligand leads to structural changes to the apical Fe in 

5. The Fe4–O2 distance contracts to 1.817(2) Å, compared to the 

distances in 1 (1.937(1) Å) and the precursor 2 (1.907(3) Å); this 

bond length matches closely with the structurally characterized 

FeIII-oxo complexes reported by Borovik and Fout.8e, 8h, 8i Com-

pound 6, prepared by deprotonating 3, also displays a short Fe4–

O2 distance (1.795(8) Å). Furthermore, the apical Fe-μ4-O distance 

(Fe4–O1) elongates to 1.965(2) Å in 5 and 2.049(7) Å in 6, from 

1.890(3) Å in 2 and 1.948(2) Å in 3, which is consistent with a 

greater trans influence exerted by the terminal oxo ligand. The 

Mӧssbauer spectra of 5 and 6 are consistent with the [FeIII
2FeII

2] 

and [FeIII
3FeII] oxidation state assignments, respectively (Figure 2D 

and S54). The quadrupole doublet assigned to the apical FeIII-oxo 

centers in 5 and 6 have parameters distinct from the other previ-

ously reported data for [(H3beau)Fe(O)]2-, and most other terminal 

Fe-oxo complexes (Table 1).8e, 12 Further spectroscopic studies of 

these FeIII-oxo clusters are underway to understand the source of 

their atypical Mӧssbauer parameters. 

Terminal FeIII-oxo complexes are rare, and typically stabilized 

through hydrogen bonding interactions.8e, 8h, 8i, 13 The structures of 

5 and 6 display comparable hydrogen bonding distances to other 

structurally characterized FeIII-oxo complexes, [(H3beau)Fe(O)]2- 

and [N(afaCy)3Fe(O)]+, along with similar equatorial Fe–N dis-

tances (Table 1). However, the μ4-O distances in 5 (1.965(2) Å) and 

6 (2.049(7) Å) are significantly shorter than the Fe–N distances for 

the amine trans to the oxo in the mononuclear systems (~2.27 Å). 

This is likely a result of greater ligand flexibility in the mononu-

clear systems; the geometry of these FeIII-oxo complexes display 

greater deviations from ideal trigonal bipyramidal geometry com-

pared to the apical Fe in 5 and 6, based on a structural index param-

eter (τ; ideal trigonal bipyramidal geometry = 1.0). For the clusters 

reported here, the rigid geometry of the pyrazolate ligands prevents 

significant distortion of the apical Fe out of the equatorial plane.  

The hydroxide ligand in 2 was determined to be very basic in 

THF (pKa = 30.1; Table S1). Analogous equilibrium studies were 

performed on 3 and, as expected, oxidation of the cluster reduces 

the basicity of the FeIII-oxo moiety (pKa = 23.0 for 3; Table S2). 

Attempts to deprotonate 4 with various bases, even at low temper-

atures, only resulted in decomposition, so a pKa value for this oxi-

dation state was not measured. These data were combined with 

electrochemical information for clusters 1 (vide supra) and 5 (Fig-

ure S38), to produce thermodynamic square schemes according to 

equation 1 (Figure 3): 14 

BDEO–H = 23.06 E° + 1.37 pKa + C  (1) 
 Similar to our previously reported studies on  
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Figure 2. Crystal structures of tetranuclear Fe hydroxide cluster, 1 

(A), and oxo cluster, 5 (B). Ellipsoids shown at the 50% probability 

level with solvent molecules, and hydrogen atoms (except for N–H 

moieties) omitted for clarity. (C) Mӧssbauer spectrum of 2 (black 

dots) with simulated parameters: (i) δ = 1.12 mm/s, |ΔEq| = 3.20 

mm/s (solid blue), (ii) δ = 1.10 mm/s, |ΔEq| = 2.76 mm/s (dashed 

blue), (iii) δ = 0.52 mm/s, |ΔEq| = 0.81 mm/s (orange), (iv) δ = 0.41 

mm/s, |ΔEq| = 2.17 mm/s (green). (D) Mӧssbauer spectrum of 5 

(black dots) with simulated parameters: (i) δ = 1.12 mm/s, |ΔEq| = 

3.14 mm/s (solid blue), (ii) δ = 1.10 mm/s, |ΔEq| = 2.87 mm/s 

(dashed blue), (iii) δ = 0.52 mm/s, |ΔEq| = 1.13 mm/s (orange), (iv) 

δ = 0.43 mm/s, |ΔEq| = 3.04 mm/s (green). 

[Fe3Mn] hydroxide and aquo clusters, the bond dissociation en-

thalpy of the O–H bond (BDEO–H) increases upon oxidation of the 

distal Fe centers, ranging from 72 kcal/mol in 1 to 84 kcal/mol in 

3.15  

The three distal Fe oxidation states have a dramatic effect on the 

reactivity of the FeIII-oxo center through modifying the pKa and 

BDEO–H values. For example, 5 is incapable of performing proton 

coupled electron transfer (PCET) reactions16,17 with substituted 

phenols over a range of phenol BDEO–H values (79 – 85 kcal/mol); 

only proton transfer to generate 2 is observed as expected from the 

combination of low BDEO–H for 1 and high pKa of 2  

 

Figure 3. Thermodynamic cycles to evaluate the BDEO–H values of 

the hydroxide clusters 1 – 3. Reduction potentials (horizontal lines) 

are references to Fc/Fc+. pKa values (vertical lines) are based on 

relative pKa values of cationic acids in THF. Diagonal lines are the 

BDEO–H values calculated from these parameters according to the 

Bordwell equation (eq 1). Approximate values (~) have been ex-

trapolated from the Bordwell equation. 

 (Figure 3, Table 2 and Figure S13). Oxidation of the remote Fe 

centers in 6 and 7 enables PCET reactivity with these phenols (Fig-

ures S14 and S16), resulting in the formation of 2 and 3, respec-

tively.  

31P NMR and GC/MS analyses suggest that 7 is capable of trans-

ferring an oxygen atom to trimethylphoshine (PMe3), where the 

other FeIII-oxo clusters display no reaction towards the phosphine 

on similar timescale (see SI). The difference in reactivity is likely 

due to the low reduction potentials of 5 and 6 precluding efficient 

oxygen atom transfer reactivity. A more oxidizing cluster, through 

oxidations of the distal Fe centers, 7 can undergo OAT. 

 

Table 1. Selected Bond Distances and Angles, Structural Index Parameter, and Mӧssbauer Parameters of Reported FeIII-Oxo 

Complexes 

 5 6 [(H3beau)Fe(O)]2- 8e [N(afaCy)3Fe(O)]+ 8h 

Fe–O (Å) 1.817(2) 1.795(8) 1.813(3) 1.806(1) 

Fe–Nequatorial (Å) 
2.104(2), 2.098(2), 

2.093(2) 

2.100(8), 2.085(9), 

2.087(9) 

2.030(4), 2.060(4), 

2.082(4) 

2.049(1), 2.049(1), 

2.052(1) 

Fe–Ltrans (Å) 1.965(2) (L=O2-) 2.049(7) (L=O2-) 2.271(4) (L=NR3) 2.276(1) (L=NR3) 

N–O (H-bond; Å) 2.647, 2.717, 2.685 2.718, 2.790, 2.750 2.732, 2.702, 2.686 2.641, 2.645, 2.673 

∠Nequatorial–Fe–O (°) 96.3, 92.8, 92.0 93.6, 97.5, 96.3 103.3, 99.7, 100.8 102.6, 103.1, 103.1 

Fe–N|N’|N’’
equatorial (Å) 0.14 0.22 0.42 0.45 

Structural Index  

Parameter (τ)a 
0.9 0.8 0.5 0.4 

Mossbauer parameters 

(mm/s) 
δ = 0.43, |ΔEq| = 3.04 δ = 0.47, |ΔEq| = 2.53 δ = 0.30, |ΔEq| = 0.91 - 

a τ = [Σ (∠Nequit.–Fe–N’equit.) - Σ (∠Nequit.–Fe–O)]/90 
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Table 2. Reactivity of the [Fe4]-Oxo Clusters, 5 - 7. 

 BDE 

(kcal/mol) 

Reactivity Observeda 

5 

(FeII
2FeIII

2) 

6 

(FeII 

FeIII
3) 

7 

(FeIII
4) 

9,10-dihy-

droanthra-

cene 

78 PCET  PCET PCET 

fluorene 82 PCET  PCET PCET 

2,4,6-tBu3-

PhOH 
82 PT PCET PCET 

PMe3 - NR NR OAT 

aPT = proton transfer, PCET = proton-coupled electron transfer 

(based on cluster products), OAT = oxygen atom transfer, NR = no 

reaction observed. bSecond-order rate constant. 

The kinetics of C–H activation by these clusters was investi-

gated. The reaction between 5 and 9,10-dihydroanthracene (DHA; 

BDEC–H = 78 kcal/mol)14c displays an expected first order depend-

ence on substrate concentration, with an overall second order rate 

constant of 87 M-1 s-1, and a considerable kinetic isotope effect 

(KIE) of 7 with d4-DHA. These data are consistent with a rate-lim-

iting C–H bond activation for the PCET process to form 1 and an-

thracene. The second-order rate constants between 5 and C–H 

bonds of varying BDEC–H and pKa values were measured and dis-

play a linear dependence of the PCET reaction rate on the pKa of 

the organic substrate (Figure 4), suggesting either a concerted or 

stepwise pKa-driven process.18 Reactions between DHA and 6 or 7 

produce the corresponding hydroxide-clusters and anthracene in 

yields comparable to 5 (Table S3) indicating PCET processes, but 

complex kinetics precluded the determination of rate constants and 

further insights into the mechanism of these reactions.  

Overall, this report offers a rare systematic study of the effects 

of neighboring redox active metals on structural and reactivity as-

pects of a terminal metal-oxo. Because it is part of a cluster, the 

reactivity of the terminal metal-oxo motif can be tuned without 

changing the formal redox state of the metal supporting it; however, 

redox events at distal centers have significant effect on the acidity 

and BDE of the corresponding O-H bond. Clearly, the cluster as an 

assembly is essential for reactivity beyond the structural aspects of 

the isolated metal-oxo motif. Further development of multinuclear 

model systems is necessary to fully understand the nature and am-

plitude of these effects. 

 

Figure 4. Plot of log k2 (normalized to number of reactive C-H 

bonds) versus reported pKa values of the organic substrates in 

DMSO for PCET reactions with 5. 
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