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A redox-neutral Fe-catalyzed intramolecular C—H amidation of N-benzoyloxyureas is described. This methodology employs a simple 
iron complex in situ generated from Fe(OTf)2 and bipyridine as the catalyst and N-benzoyloxyureas as the nitrene precursors without 
using exogenous oxidants. An array of cyclic ureas were synthesized via aliphatic C(sp

3
)—H amidation in excellent yields. In addition, 

this catalytic system is also amenable to aryl C(sp
2
)—H nitrene insertion to provide benzimidazolones in moderate yields. 
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Background and Originality Content 

Nitrogen-containing heterocycles are privileged scaffolds in 
pharmaceuticals and natural products.

[1]
 Direct intramolecular 

C—H amination reaction provides straightforward access to these 
structural motifs and thus has drawn much attention and contin-
ued efforts.

[2]
 Iron-catalyzed nitrene insertion is among the most 

attractive approaches of C—H amination due to the abundant and 
environmentally benign nature of iron.

[3]
 In the last few decades, 

tremendously remarkable results have been disclosed with a vari-
ety of C(sp

3
)—H bonds, both activated and inert, successfully 

aminated in high selectivities and reactivities. Sulfamates were 
commonly used as the nitrene precursors in iron-catalyzed amina-
tion reaction, but necessitated exogenous oxidants (e.g., bis(tri-
fluoroacetoxy)iodo]benzene (PIFA), Scheme 1A).

[4-5]
 Significant 

advances were accomplished by a number of groups including 
Betley,

[6a]
 Plietker,

[6b]
 Che,

[6c]
 and others,

[7]
 employing azides to 

generate iron-nitreniod species (Scheme 1B). A remarkable recent 
example realized the amination of dioxazolones for the synthesis 
of γ-lactams reported by Chang group and remarkable reactivity 
was achieved using an iron(III) phthalocyanine catalyst.

[8]
 

Due to their ready accessibility and relatively weak N—O bond, 
hydroxylamine derivatives were actively used as nitrogen-transfer 
reagents involving transition-metal-nitrenoid intermediacy under 
redox-neutral conditions.

[9-10]
 However, their application in 

iron-catalyzed C—H amination has been rarely explored. To date, 
only a handful of examples were revealed by Morandi,

[10a]
 Jiao,

[10b]
 

Singh,
[10c]

 and Falck,
[10d]

 but they were limited to aryl C—H bond 
amination reactions. Our group has a keen interest in developing 
practical amination strategies using a synthetically convenient 
“iron salt/ligand” protocol.

[5]
 Notably, the amination of inert ali-

phatic primary, secondary, and tertiary C—H bonds of sulfamates 
in the presence of oxidants was enabled by handy catalysts in situ 
generated from cheap iron salts and readily available nitrogen 
ligands (e.g., bipyridine, Scheme 1C).

[5]
 Based on this precedence, 

we wondered whether the simple iron system is capable of cata-
lyzing the amidation of hydroxylamine derivatives (Scheme 1D). 
Herein, we reported an efficient Fe(OTf)2/bipyridine-catalyzed 
C—H amidation of N-benzoyloxyureas.

[11]
 In this new transfor-

mation, both C(sp
3
)—H and C(sp

2
)—H bonds are feasible sub-

strates delivering the cyclic ureas in moderate to excellent yields 
under external oxidant-free conditions. 

Scheme 1  C(sp3)—H amination involving Fe-nitrenoid intermediacies 

 

Results and Discussion 

We commenced our study employing N-benzoyloxylurea 1a as 
a model substrate. Much to our delight, cyclic urea 2a was ob-
tained in excellent yield (92%) with 10 mol% FeCl2/bipyridine (L1) 
as the catalyst (entry 1). Further systematic optimization of the 
reaction conditions was carried out and the selected results are 
summarized in Table 1 (see Tables S1—S5 in Supporting Infor-
mation for details). The reactions using 1,10-phenanthroline (L2) 
and a tridentate ligand (L3) provided 81% and 74% yields, respec-
tively (entries 2 and 3). Bipyridines containing both electron- 
donating  and electron-withdrawing substituents were studied 
(L4—L6, entries 4—6) and dramatically reduced reactivity was 
observed with electron deficient ligand (entry 5). 6,6’-Disub-
stituted bipyridine (L7) derived catalyst offered only 19% yield 
probably due to the steric effect. Varying the ratios of iron pre-
cursors versus ligands revealed that reducing the loading of lig-
ands led to lower reactivity (e.g., 47% yield with 10 mol% of L1, 
entry 9). After a brief screen of solvents, MeCN was superior albe-
it the reaction proceeded smoothly in CH2Cl2 (81%) and DCE (76%) 
(entries 10 and 11). Examination of a variety of iron salts revealed 
that Fe(OTf)2 (96%, entry 12) was more efficient and a similar 
result was obtained with FeBr2 (95%, entry 14). The reaction with 
reduced catalyst loading (5 mol%) was much less efficient, in turn 
only 54% yield of product was obtained (entry 15). Gratifyingly, 
the yield could be improved to 94% (91% isolated yield) upon 
heating of the reaction at 40 °C while maintained the catalyst 
loading (entry 16), which was identified as the optimal conditions. 

Table 1  Condition optimization 

 
a Reaction conditions: 1a (0.1 mmol), [Fe] (0.01 mmol, 10 mol%), K2CO3 

(2.0 equiv), rt, 6 h. b Determined by 1H NMR analysis using 1,3,5-trimeth-

oxybenzene as an internal standard. c Isolated yield. d With 5 mol% Fe(OTf)2. 
e At 40 °C. 
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Scheme 2  Substrate scopea 

 

a Reaction conditions: 1 (0.4 mmol), Fe(OTf)2 (0.02 mmol, 5 mol%), L1 

(0.06 mmol, 15 mol%), K2CO3 (2.0 equiv), 40 °C, 6 h. b 8 h. c In DCE (2 mL) 

for 8 h. d With 1 (0.2 mmol), Fe(OTf)2 (10 mol%), and L1 (30 mol%). 

With the optimized conditions in hand, we next examined the 
scope of the reaction (Scheme 2). Substrates bearing halogen 
atom such as F, Cl, and Br at the para-position of the phenyl pro-
vided the corresponding cyclic ureas 2b—2d in 81%—95% yields. 
Substrates with electron-donating groups (2e—2g) achieved 
72%—84% yields. Whereas an electron-withdrawing nitro group- 
containing substrate delivered the desired product 2h in lower 
yield (71%). Substrates 1i and 1j containing 1-naphthyl and 
2-naphthyl, respectively, provided the corresponding products 2i 
and 2j smoothly. Heteroaromatic substrates, such as a tryptamine 
derivative (2k, 98%) and 2-thienylethylamine (2l, 73%), were also 

well tolerated. This method is also applicable to non-benzylic ali-
phatic C—H bonds (e.g., 2m, 69%; 2n, 97%). It is noteworthy that 
the amidation of 3

o
 C—H bonds is more efficient in comparison 

with 2
o
 C—H bonds. Additionally, this method can be applied in 

the C(sp
2
)—H amidation to produce benzimidazolones in syn-

thetically useful yields (2o, 84%; 2p, 56%; 2q, 56%; 2r, 51%). Oth-
er substituents on the nitrogen atom were also investigated. Bn 
and allyl substituted ureas delivered the corresponding products 
in declined yields (2s, 67% and 2t, 67%). For the substrate 1u 
bearing both benzylic and tertiary C—H bonds, a 1.2

 
:
 
1 mixture of 

products 2u and 2u’ was obtained in excellent yield (93%) with 
the activated site slightly favored. 

Conclusions 

In conclusion, we have developed an intramolecular C—H 
amidation of N-benzoyloxyureas catalyzed by a simple “iron salt + 
ligand” strategy. With abundant and innocuous Fe(OTf)2/bipyri-
dine as the catalyst, both aliphatic C(sp

3
)—H and aryl C(sp

2
)—H 

bonds were successfully converted into a variety of cyclic ureas in 
moderate to excellent yields. This reaction features readily availa-
ble catalyst, high reactivity and selectivity, and external oxidant- 
free conditions. We anticipant that this simple iron catalytic sys-
tem offers an efficient and sustainable way to access privileged 
nitrogen-heterocycles. 

Experimental 

To an oven-dried 10 mL sealed tube were added Fe(OTf)2 (0.02 
mmol, 5 mol%), L1 (0.06 mmol, 15 mol%), K2CO3 (0.8 mmol, 2.0 
equiv), substrate 1 (0.4 mmol, 1.0 equiv) and MeCN (2.0 mL). The 
reaction was stirred at 40 °C for 6 h, filtered through a plug of 
celite, and washed with ethyl acetate. The filtrates were collected 
and concentrated under reduced pressure. The crude residue was 
purified by flash column chromatography (200—300 mesh SiO2) to 
give the desired products. 
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