$Me_2CO$  (20 ml),  $Me_2SO_4$  (0 5 ml) and dry  $K_2CO_3$  (100 mg) was refluxed for 2 hr and worked-up as usual Purification by TLC-AgNO<sub>3</sub> of the reaction residue yielded a crystalline compound which was identical to flavan 1a in all respects

Acknowledgements-We wish to thank Mr R Saucedo, Mr J Cárdenas, Mr H Bojórquez and Mr A Toscano for NMR, EM, IR and UV spectra

## REFERENCES

- 1 Waterman, G P and Khalid, A S (1980) Phytochemistry 19, 909
- 2 Bohlmann, F, Jakupovic, J, King, R and Robinson, H (1980) Phytochemistry 19, 1815
- 3 Pelter, A, Stainton, P and Barker, M (1965) J Heterocycl Chem 2, 262
- 4 Cardillo, G and Merlini, L (1971) J Chem Soc C 3967

Phytochemistry, Vol 22, No 5, pp 1306-1307, 1983 Printed in Great Britain

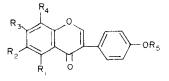
0031-9422/83/051306-02\$03 00/0 ( 1983 Pergamon Press Ltd

## ISOAURMILLONE, AN ISOFLAVONE FROM THE PODS OF MILLETIA AURICULATA

BODHENDU B GUPTA, ANJAN BHATTACHARYYA, SANTI R MITRA AND NARAYAN ADITYACHAUDHURY

Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Kalyani 741235, West Bengal, India

(Received 7 September 1982)


Key Word Index-Milletia auriculata, Leguminosae, pods, isoaurmillone, 5,7-dihydroxy-6-methoxy-4'-Oprenvloxvisoflavone

Abstract—The pods of Milletia auriculata have yielded a new substance, 5,7-dihydroxy-6-methoxy-4'-O-prenyloxyisoflavone.

In continuation of our studies on plants exhibiting pesticidal activity we became interested in the pods of Milletia auriculata, the roots of which are reported to possess insecticidal and piscicidal properties [1] A number of isoflavonoids have already been isolated from the roots [2], leaves and stems [3] of M auriculata From the petrol extract of the dried pods of M auriculata we have isolated another new isoflavone, isoaurmillone, to which we have assigned the structure 1

Isoaurmillone (1)  $C_{21}H_{20}O_6$  was obtained in poor yield (0.002%) from the petrol (bp 60-80°) extract of the dried pods of *M* auriculata. The colour reaction (green ferric colour), UV  $\lambda_{max}^{MeOH}$  269 nm and IR data  $\nu_{max}^{KBr}$ 1655 cm<sup>-1</sup> (=C=O) coupled with a low field singlet at  $\delta 80$ in the NMR spectrum are indicative of the presence of an isoflavone system [4]. Functional group analysis revealed the presence of OMe-1 ( $\delta$ 4.0, 3H, s), 2-phenolic hydroxyl groups (1H, singlets at  $\delta 85$  and 177, exchangeable with  $D_2O$  and a prenyloxy system [2, 5] ( $\delta 487$ , 2H, d, J = 7 Hz,-O-CH<sub>2</sub>,  $\delta 1$  80, 6H, d, = C Me<sub>2</sub>,  $\delta 5$  57, 1H, m, -CH=). The spectrum also disclosed four aromatic protons constituting an  $A_2B_2$  system (2H, d, J = 9 Hz at  $\delta$ 7 06 and 7.49) which are assignable to a *p*-disubstituted phenyl nucleus [4, 5] and an aromatic singlet at  $\delta 65$ . Further, the UV spectrum of 1, showing a bathochromic shift of 10 and 14 nm upon addition of aluminium chloride-hydrochloric acid and sodium hydroxide, respectively, suggested the presence of hydroxyl groups [4] at C-5 and C-7

Although the physical data of isoaurmillone (1) showed resemblance with those of aurmillone (5) the latter, on direct comparison (mp, mmp and co-TLC) with isoaurmillone (1), proved to be different The monomethyl (2) and dimethyl (3) ethers of 1 also showed differences with aurmillone (5) Acid hydrolysis of isoaurmillone gave a compound ( $M^+$  300), the physical and spectral data of which were found to be in agreement with tectorigenin, 5,7,4'-trihydroxy-6-methoxyisoflavone (4) [6] On the basis of these results, isoaurmillone was identified as 5,7-dihydroxy-6-methoxy-4'-O-prenyloxyisoflavone (1) which is a positional isomer of aurmillone (5) [7]



- $\begin{array}{l} I \ R_1 = R_3 = OH, R_2 = OMe, R_4 = H, R_5 = CH_2CH \boxplus CMe_2 \\ \textbf{2} \ R_1 = OH, R_2 = R_3 = OMe, R_4 = H, R_5 = CH_2CH \boxplus CMe_2 \end{array}$
- **3**  $R_1 = R_2 = R_3 = OMe$ ,  $R_4 = H$ ,  $R_5 = CH_2CH = CMe_2$  **4**  $R_1 = R_3 = OH$ ,  $R_2 = OMe$ ,  $R_4 = R_5 = H$
- **5**  $R_1 = R_3 = OH, R_2 = H, R_4 = OMe, R_5 = CH_2CH = CMe_2$

## EXPERIMENTAL

Isolation of 1 The dried pods were extracted with petrol and the concd extract was chromatographed over Si gel C<sub>6</sub>H<sub>6</sub> eluates afforded a yellow solid which was further purified by rechromatography over Si gel Elution of the chromatogram with C<sub>6</sub>H<sub>6</sub>-petrol (8 2) furnished a yellow solid which crystallized from CHCl<sub>3</sub>-petrol (1 1) as yellow needles, mp 162 5–163 5°,  $[\alpha]_{D} \pm 0^{\circ}$ , C<sub>21</sub>H<sub>20</sub>O<sub>6</sub> (M<sup>+</sup> 368), UV  $\lambda_{max}^{MeOH}$  269 nm,  $\lambda_{max}^{MeOH-AlCl_3-HCl}$  279 nm,  $\lambda_{max}^{MeOH-NaOAc}$  283 nm, IR  $\nu_{max}^{KBr}$  1655 cm<sup>-1</sup>, NMR  $\delta$ 40 (3H, s, OMe-1), 6.5 (s, one phenolic OH), 127 (s, one chelated phenolic OH), 4.87 (2H, d, J = 7 Hz,  $-OCH_2$ ), 18 (6H, 2 × s, =CMe<sub>2</sub>), 5 57 (1H, m, -CH =), 7 06 (2H, d, J = 9 Hz), 7 49 (2H, d, J = 9 Hz), 6 5 (s, ArH-1), 8 0 (1H, s, C-2-proton)

Monomethylation of 1. Compound 1 on methylation with CH<sub>2</sub>N<sub>2</sub> for 24 hr gave a yellow crystalline compound (2), mp 118-119°, C<sub>22</sub>H<sub>22</sub>O<sub>6</sub> (M<sup>+</sup> 382), UV  $\lambda_{max}^{MeOH}$  266 nm,  $\lambda_{max}^{MeOH-AlCl_3-HCl}$  276 nm IR  $\nu_{max}^{BB}$  1650 cm<sup>-1</sup>, NMR  $\delta$ 1 52 (3H, s, Me), 1 8 (3H, br s, Me), 3 91 (3H, s, OMe-1), 3 97 (3H, s, OMe-1), 4 53 (2H, d, J = 7 Hz, -OCH<sub>2</sub>-), 5 53 (1H, m, CH=), 6 45 (s, ArH-1), 7 0 (2H, d, J = 9 Hz), 7 47 (2H, d, J = 9 Hz), 7 94 (1H, s, C-2-proton)

Dimethylation of 1 Methylation of 1 with Me<sub>2</sub>SO<sub>4</sub>-K<sub>2</sub>CO<sub>3</sub> in Me<sub>2</sub>CO for 45 hr afforded the dimethyl ether 3 after usual workup, mp 220–222°, C<sub>23</sub>H<sub>24</sub>O<sub>6</sub> (M<sup>+</sup> 394), IR v<sup>KBr</sup><sub>max</sub> 1655 cm<sup>-1</sup>, NMR.  $\delta$ 1 78 (6H, d, = CMe<sub>2</sub>), 5 55 (1H, m, -CH=), 4 6 (2H, d, J = 7 Hz, -OCH<sub>2</sub>-), 3 90 (3H, s, OME-1), 3 94 (3H, s, OMe-1), 3 98 (3H, s, OMe-1), 6 48 (s, ArH-1), 7 0 (2H, d, J = 9 Hz), 7 48 (2H, d, Acid hydrolysis of 1 Compound 1 was hydrolysed with HOAc-HCl (25 1) for 2 hr and extracted with EtOAc The coned extract on crystallization from CHCl<sub>3</sub>-petrol (1 1) furnished the deprenylated derivative which was identical with tectorigenin (4), mp 224-226°,  $C_{16}H_{12}O_6$  (M<sup>+</sup> 300)

Acknowledgements—We are grateful to Dr G Srimannarayana, Osmania University, Hyderabad, India, for an authentic sample of 5 and to B.C K V, for financial assistance

## REFERENCES

- 1 Chopra, R N, Nayar, S L. and Chopra, I C (1956) Glossary of Indian Medicinal Plants p 167 C S I.R. Publications, New Delhi
- 2 Shabbir, M and Zaman, A. (1970) Tetrahedron 26, 5041
- 3 Minhaj, N, Khan, H, Kapoor, S K and Zaman, A. (1976) Tetrahedron 32, 749
- 4 Markham, K. R and Mabry, T J (1975) The Flavonoids (Harborne, J. B, Mabry, T J. and Mabry, H, eds) pp 58-66 Chapman & Hall, London
- 5 Ollis, W D, Rhodes, C. A and Sutherland, I O (1967) Tetrahedron 23, 4741
- 6 Baker, W, Downing, D. F, Floyd, A J, Gilbert, B, Ollis, W B and Russell, B. C (1970). J Chem Soc 1219
- 7 Subba Raju, K. V and Srimannarayana, G. (1978) Phytochemistry 17, 1065