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Advances in the techniques for oligosaccharide synthesis
have lagged behind those for other classes of biological
oligomers. For the preparation of oligopeptides and oligo-

Figure 4. Autoradiograms showing the binding of hybrid 5 to 32P-labeled
DNAs. Lanes 1 ± 6: T/CREhs, 5 : 0, 7.7, 19, 38, 58, 77 n� respectively;
Lanes 7 ± 11: T/CREhsm, 5 : 7.7, 19, 38, 58, 77 n� respectively; lanes 12 ± 14:
CREhs, 5 : 38, 77, 154 n� respectively. Binding reactions were performed
over 10 min at 4 �C using�1 n� labeled DNAs in a binding mixture (20 �L)
containing 20 m� tris(hydroxymethyl)aminomethane (pH 7.5), 100 m�
KCl, 2 m� MgCl2, 2 m� ethylenediaminetetraacetate, 10% glycerol,
0.3 mgmL�1 N,O-bovine serum albumin (BSA), and 2% NP-40. The
products were resolved by polyacrylamide gel electrophoresis using a 10%
nondenaturing acrylamide gel and 0.5X TBE (25 m� tris borate and 0.5 m�
EDTA) buffer.
CREhs: 5�-d(CGACGTCATCGGAGGTCCT)-3�

3�-d(GCTGCAGTAGCCTCCAGGA)-5�

makes non-specific electrostatic contacts to the phosphate
groups.[18]

In conclusion, appropriate linking of a b-ZIP basic region to
a minor groove binding tripyrrole allowed for specific binding
to its cognate DNA site. The hybrid compound 5 shows
considerably higher affinity for its designated target DNA
sequence than that of its isolated components for their
respective cognate subsites. Although further refinement of
the design is necessary to obtain compounds with higher
affinities and better specificities, the work described herein
confirms the viability of this new type of major ±minor groove
DNA-binding molecules.
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nucleotides, the automated synthesizer has become a routine
tool, in which polymer-support synthesis plays a key role.
Considering the structural diversity of glycoconjugate-

derived oligosaccharides,[1] the potential utility of oligosac-
charide synthesis on a polymer support is obvious.[2] This
technology would greatly facilitate glycoconjugate synthesis
and could possibly reap the benefits of automation.[3] How-
ever, several problems must be solved before this goal can be
reached: firstly, the difficulty in monitoring reaction progress;
secondly, the reduced reactivity of substrates bound to the
polymer support; and thirdly, the limitations in scaling up.
Addressing these issues, we recently developed a method-
ology for the monitorable synthesis of oligosaccharides on a
soluble polymer support based on the ™tag ± reporter∫ con-
cept.[4] It exploited lowmolecular weight poly(ethylene)glycol
(PEG),[5] which served both as a ™reporter∫ in the monitoring
of the reaction by matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry and as a
™tag∫ in the separation of support-bound materials from the
reaction mixture due to its high polarity.[6, 7]

Although syntheses on polymer supports can indeed be
monitored,[4, 8] the success of this method assumes all reac-
tions can be driven to near completion. This seems to be a
difficult requirement, considering that typical O-glycosyla-
tions proceed in 50 ± 80% yield.[9] Now, we wish to report a
refined strategy for the synthesis of PEG-tagged oligosac-
charides that circumvents this obstacle.
This new approach is based on the concept of resin-aided

capture ± release (Scheme 1).[10] It employs a glycosyl acceptor
bound to a low molecular weight PEG support (A1) in
combination with a chloroacetyl (CA) carrying donor (B), as
described before.[4] The PEG-bound component can be
recovered by filtration through a pad of silica gel. At this

stage, excess donor and side product(s) can be removed. The
coupled product (C), potentially contaminated with unreact-
ed acceptor A1, is then captured onto solid phase by a
chemoselective reaction between CA and a resin-bound thiol
group (D). After removal of Fmoc, the exposed amine
function should cyclize spontaneously to release a disacchar-
ide (A2), which is now ready for the next coupling. Repetition
of this cycle should provide facile access to correctly
assembled oligomers An.
To examine the adequacy of this strategy, we selected a

lactosamine repetition sequence as the target. It is well
recognized that polylactosamine [(Gal�1�4GlcNAc�1�3)n]
is an important structural motif of Asn-linked[11] and Ser/Thr-
linked[12] glycoproteins and of glycosphingolipids.[13]

PEG-supported monosaccharide 2, which carries the nitro-
modified Wang resin-type linker,[14] was prepared as depicted
in Scheme 2. Previously reported 1[4] was treated with PEG
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Scheme 2. Preparation of PEG-supported monosaccharide 2. a) PEG
monomethyl ether, DEAD, Ph3P, THF, RT, 18 h, 99%; b) acetylacetone,
Zn/Cu, THF, RT, 16 h, then Ac2O, Et3N; c) DDQ, ClCH2CH2Cl/H2O, RT,
4 h, 92% overall. DEAD� diethyl azodicarboxylate, DDQ� 2,3-dichloro-
5,6-dicyanobenzoquinone, MP� p-MeOC6H4, Phth� phthaloyl.

methyl ether (av Mw� 550) under Mitsunobu con-
ditions. Nearly quantitative carbohydrate incorpora-
tion was supported by 1H NMR spectroscopy and
confirmed by the cleavage experiment performed
under the conditions reported by Kusumoto et al. for
the removal of the nitrobenzyl group.[15] Namely, the
nitro group of 2 was first converted to the acetamido
group in 3, which was then treated with DDQ[16] to
afford compound 4 in high overall yield.
Galactosyl donor 9, which has a chloroacetyl

group, was prepared from phenylsulfanylgalactoside
5[17] via 6 ± 8 (Scheme 3). The coupling of 2 and 9 was
performed with dimethyl(methylsulfanyl)sulfonium
triflate (DMTST)[18] in CH2Cl2 (Scheme 4). To eval-
uate the efficacy of the capture ± release process only
a substoichiometric amount (0.9 equiv) of 9 was used
for this reaction. The reaction progress was moni-
tored by MALDI-TOF mass spectrometry as de-
scribed previously.[4, 19] The mixture was passed
through a pad of silica gel that was first washed with
AcOEt, and the PEG-bound component was eluted
with AcOEt/MeOH 3:1. Analysis of this fraction by
1H NMR spectroscopy revealed the presence of
disaccharide 10 and unreacted acceptor 2 in a ratio of
about 10:3 (Figure 1A). This indicates that the
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oligosaccharides An on a polymer support. Fmoc� 9-fluorenylmethoxycarbonyl.
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Scheme 3. Preparation of galactosyl donor 9. a) (MeO)2CMe2, CSA,
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RT, 15 h; c) 60% AcOH, RT, 13 h, 56% overall; d) benzyl bromide, NaH,
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glycosylation proceeded in a highly efficient manner (ca. 85%
based on donor 9) and that the entropic disadvantage inherent
to reactions on a polymer support was kept to a minimum
through the use of low molecular weight PEG. Additionally,
potential contamination by moisture due to the hygroscopic
nature of PEG was practically inconsequential.
The mixture of disaccharide 10 and unreacted 2 was then

subjected to the capture ± release cycle. According to our
expectations, thiol-containing resin 12 generated from com-
mercially available StBu-protected cysteine-loaded Wang
resin 11 efficiently captured the coupled product. This step
was monitored by chloroacetyl color test with p-nitrobenzyl-
pyridine ± piperidine.[4, 20] Subsequent release was effected by
treatment with 4-(aminomethyl)piperidine[21] to afford 14
with excellent purity. As apparent from 1H NMR analysis,
unreacted acceptor 2 was completely removed (Figure 1B).
At this stage, the coupled product was fully characterized as

disaccharide 15, which was obtained from 14
after cleavage from PEG (Scheme 4).
Further chain elongation was performed

according to Scheme 5. Namely, the second
glucosamine residue was incorporated by using
trichloroacetimidate 16. Crude trisaccharide 17
was then subjected to capture ± release to give
18. After final glycosylation with thioglycoside
9 and capture ± release, tetrasaccharide 20 was
cleaved from PEG to provide 21. Complete
deprotection was performed in a standard
manner to give the free tetrasaccharide
Gal�1�4GlcNAc�1�3Gal�1�4GlcNAc�1�
OMP.
We have developed a resin-aided capture ±

release strategy for oligosaccharide synthesis on
a polymer support. As an initial demonstration
of the strategy, we examined the construction of
an oligosaccharide consisting solely of syntheti-
cally straightforward 1,2-trans (�) glycosidic
linkages. More systematic studies should prove
the generality of this strategy to a wide range of
glycoconjugate-derived glycans.
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Figure 1. 1H NMR spectra of crude 10 before capture (A), released disaccharide 14 (B), PEG-
supported acceptor 2 (C), and disaccharide 15 after cleavage (D), and schematic reaction sequence.
The starred signals belong to unreacted 2.
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Scheme 5. Synthesis of tetrasaccharide 21. a) TMSOTf/CH2Cl2, �20 �C, 1 h,
95%; b) 12, iPr2EtN, MeCN/CH2Cl2, RT, then 4-(aminomethyl)pyridine, THF,
RT, 79% (18), 80% (20); c) 9, DMTST, MS 4ä, CH2Cl2, 0�10 �C, 5 h, 88%;
d) acetylacetone, Zn/Cu, THF, RT, 18 h, then Ac2O, Et3N; e) DDQ,
ClCH2CH2Cl/H2O, RT, 3 h, 72% overall. TMSOTf� trimethylsilyl triflate.


