Synthesis of Nucleoside Conjugates as Potential Inhibitors of Glycogen Phosphorylase

Keguang Cheng,^{a,b} Jun Liu,^c Hongbin Sun,^{*b} Juan Xie^{*a}

^a PPSM, ENS Cachan, Institut d'Alembert, CNRS, Universud, 61 av. Président Wilson, 94230 Cachan, France Fax +33(1)47402454; E-mail: joanne.xie@ens-cachan.fr

^b Center for Drug Discovery, College of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. of China Fax +86(25)83271198; E-mail: hbsun2000@yahoo.com

^c Jiangsu Center for Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. of China

Received 9 November 2009; revised 17 November 2009

Abstract: Click chemistry has been successfully used for the synthesis of novel nucleoside conjugates between uridine and *N*-acetyl-glucosamine or oleanolic acid derivatives. These molecules displayed micromolar inhibition towards glycogen phosphorylase.

Key words: bioorganic chemistry, carbohydrates, click chemistry, inhibitors, nucleosides

Nucleosides are components of nucleic acids. They also exist in other natural compounds like complex nucleoside antibiotics.¹ Synthesis of modified nucleosides as well as of their conjugates is of interest for medical, biochemical, and physiological applications. For example, nucleoside conjugates with sugars,² sterols,³ lipids,⁴ amino acids,⁵ and pleuromutilin⁶ have been designed and synthesized for various biological applications.

Glycogen phosphorylase (GP) is the enzyme responsible for glycogen breakdown to produce glucose and related metabolites to supply energy.⁷ Due to the key role of GP in the modulation of glycogen metabolism, inhibition of GP has been regarded as an effective therapeutic approach for the treatment of diseases caused by abnormalities in glycogen metabolism, such as type 2 diabetes, myocardial ischemia, and tumors. Most notably, GP inhibitors lower glucose in diabetic animal models, both acutely and chronically, and demonstrate potential for a beneficial effect on cardiovascular risk factors.8 This information has bolstered interest and promise in glycogen phosphorylase inhibitors as potential new hypoglycaemic agents for the treatment of type 2 diabetes mellitus. Several classes of GP inhibitor have been reported, including glucose and derivatives, iminosugars, hydantocidins, caffeine, flavopiridol, etc.9 We have recently reported that oleanolic acid and related pentacyclic triterpenes represented a new class of inhibitors of glycogen phosphorylases.¹⁰ GP is an allosteric enzyme that exists in two interconvertible forms, GPa (the phosphorylated form, high activity, high substrate affinity) and GPb (the nonphosphorylated form, low activity, low substrate affinity). Screening of our previously synthesized sugar-nucleoside conjugates¹¹ showed

SYNTHESIS 2010, No. 6, pp 1046–1052 Advanced online publication: 04.01.2010 DOI: 10.1055/s-0029-1218629; Art ID: Z24209SS © Georg Thieme Verlag Stuttgart · New York that compounds 1 and 2 displayed moderate inhibition towards GPa (Figure 1). To the best of our knowledge, uridine derivatives have not been reported as GP inhibitors. As an ongoing program on the research of novel GP inhibitors,¹² we decided to synthesize novel uridine conjugates with *N*-acetylglucosamine or oleanolic acid derivatives, by employing the very efficient click chemistry.¹³

Figure 1 Structure of sugar-nucleoside conjugates

To prepare uridine conjugates with click chemistry, we chose to introduce either an alkyne or an azide group at the 5'-position of uridine. Both isopropylidene- or benzyl-protected uridine derivatives have been used as starting materials. Compound **3** was prepared according to known procedures.¹⁴ The perbenzylated uridine 7^{15} was converted into 5'-O-propargyl derivative **8** by treatment with propargyl bromide and sodium hydride in 63% yield (Scheme 1). Click reaction of alkynes **3** or **8** with azido derivative of *N*-acetylglucosamine 4^{2b} led to the corresponding conjugates **5** and **9** in 75% and 60% yields, respectively. Deprotection of the isopropylidene group in **5** by trifluoroacetic acid in dichloromethane afforded com-

Scheme 1 Reagents and conditions: (a) sodium ascorbate, CuSO₄, CH₂Cl₂, H₂O; (b) TFA, CH₂Cl₂; (c) propargyl bromide, NaH, THF.

pound **6**. However, debenzylation of **5**, **6**, and **9** under catalytic hydrogenation conditions failed.

We have also prepared sugar–nucleoside conjugate 13 with an ester linkage (Scheme 2). For this synthesis, the known carboxylic acid 10^{11} was converted into propargyl ester 11 in 85% yield. Uridine 7 was transformed into its azido derivative 12 through activation as the mesylate followed by nucleophilic substitution with sodium azide. Copper(I)-catalyzed Huisgen cycloaddition between 11 and 12 led to the desired compound 13 in 42% yield. Once again, we failed to debenzylate the nucleoside conjugate 13.

For the synthesis of uridine–oleanolic acid conjugates, the azido derivative of oleanolic acid 14^{12} was reacted with alkyne **3** catalyzed by sodium ascorbate/copper sulfate to afford the conjugate **15** in 82% yield (Scheme 3). Deprotection under acidic condition led to the fully deprotected compound **16**. Click reaction of **14** with perbenzylated

alkyne 8 gave the conjugate 17. We have also prepared compound 19 with a shorter linker between uridine and oleanolic acid, by treating propargyl ester 18^{12} with azide 12. Reaction of 12 with 3-*O*-propargyloleanoate 20^{12} led to the conjugate 21 linked at the 3-position of oleanolic acid. The carbonate derivative of oleanolic acid 22^{12} has been converted into its azido derivative 23 with sodium azide. Cycloaddition reaction between 23 and 8 allowed the synthesis of the conjugate 24.

The above synthesized conjugates were evaluated in the enzyme inhibition assay against rabbit muscle glycogen phosphorylase a (RMGPa) (Table 1), which shared considerable sequence similarity with human liver GPa. As described previously,¹⁶ the activity of rabbit muscle GPa was measured through detecting the release of phosphate from glucose-1-phosphate in the direction of glycogen synthesis. Among the nucleoside derivatives **3**, **7**, **8**, and **12**, the isopropylidene-protected compound **3** exhibited a

Scheme 2 *Reagents and conditions:* (a) propargyl bromide, K₂CO₃, DMF; (b) MsCl, Et₃N, CH₂Cl₂; (c) NaN₃, DMF; (d) sodium ascorbate, CuSO₄, CH₂Cl₂, H₂O.

Synthesis 2010, No. 6, 1046–1052 © Thieme Stuttgart · New York

Scheme 3 Reagents and conditions: (a) sodium ascorbate, CuSO₄, CH₂Cl₂, H₂O; (b) TFA, CH₂Cl₂; (c) NaN₃, DMF.

micromolar inhibition of GPa. However, the corresponding glycoconjugate **5** was less active. Nevertheless, partially deprotected compound **6** was shown to be the most potent inhibitor, with an IC₅₀ value of 13.6 μ M. The glycoconjugates with ether **9** or ester **13** linkages showed similar inhibitory activities. For the nucleoside–oleanolic acid conjugates, the fully deprotected compound **16** was more potent (IC₅₀ = 15.5 μ M). No significant difference existed between different conjugates. With the exception

 Table 1
 IC₅₀ Values for RMGPa Inhibition Assay Results

Compd	$GPa \ IC_{50}{}^a \ (\mu M)$	Compd	GPa $IC_{50}^{a}(\mu M)$
3	55.1	13	48.7
5	120.3	15	35.7
6	13.6	16	15.5
7	na ^b	17	85.5
8	na ^b	19	65.1
9	55.6	21	70.2
11	na ^b	24	na ^b
12	na ^b	caffeine	98.5

^a Values are the mean of 3 experiments.

^b na = no activity.

of **24**, all these molecules inhibited GPa in the micromolar range.

In summary, sugar–nucleoside and oleanolic acid– nucleoside conjugates have been readily prepared with click chemistry. These novel molecules have been tested as potential glycogen phosphorylase inhibitors. Micromolar inhibition was obtained with most synthetic nucleoside conjugates. These results enlarge the application of nucleoside conjugates in molecular design.

All air-sensitive reactions were carried out under N₂. Column chromatography was performed on E. Merck Silica Gel 60 (230–400 mesh); petroleum ether = PE. Analytical TLC was performed on E. Merck aluminum percolated plates of Silica Gel 60F-254 with detection by UV and by spraying with 3 M H₂SO₄ and heating at 300 °C for ~2 min. NMR spectra were recorded on a Bruker AV-300 or Jeol DX 400 spectrometers in CDCl₃. IR spectra were recorded on Shimadzu FTIR-8400S spectrophotometer. Optical rotations were measured using a Jasco P-2000 polarimeter. HRMS were recorded on a MA1212 instrument using standard conditions (ESI, 70 eV).

Click Reaction; General Procedure

To a soln of alkyne (0.28 mmol) and azide (0.28 mmol) in CH_2Cl_2 (2 mL) and H_2O (2 mL) was added $CuSO_4$ ·5 H_2O (0.2 mmol) and sodium ascorbate (0.4 mmol). The resulting soln was stirred at r.t. for 8 h. The mixture was extracted with CH_2Cl_2 (3 ×). The combined organic layers were dried (MgSO₄), filtered, and concentrated. The residue was purified by column chromatography.

Sugar–Nucleoside Conjugate 5

Prepared from **3** (90 mg, 0.28 mmol) and **4** (150 mg, 0.28 mmol) according to the general procedure. The residue was purified by column chromatography (CH₂Cl₂–MeOH, 20:1) to afford **5** (180 mg, 75%) as a white solid; $R_f = 0.15$ (CH₂Cl₂–MeOH, 30:1).

 $[\alpha]_D^{22}$ –14.7 (*c* 0.29, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 1.29$ (s, 3 H, CH₃), 1.53 (s, 3 H, CH₃), 1.88 (s, 3 H, CH₃), 1.92–2.01 (m, 2 H, CH₂), 3.51 (t, *J* = 1.6 Hz, 1 H, H3"), 3.61–3.75 (m, 4 H, CH₂N, H5'), 3.90 (dd, *J* = 7.8, 10.1 Hz, 1 H, H4"), 3.95–3.98 (m, 1 H, H6"a), 4.18 (m, 1 H, H6"b), 4.28 (t, *J* = 6.9 Hz, 1 H, H4'), 4.38–4.62 (m, 11 H, H1", H2", H5", OCH₂, 3 PhCH₂), 4.78 (m, 2 H, H2', H3'), 5.55 (dd, *J* = 2.1, 8.0 Hz, 1 H, H5), 5.68 (d, *J* = 1.4 Hz, 1 H, H1'), 7.01 (d, *J* = 9.2 Hz, 1 H,

NH), 7.20–7.34 (m, 15 H, Ph), 7.43 (d, *J* = 8.2 Hz, 1 H, H6), 7.46 (s, 1 H, NCH-triazole), 9.61 (s, 1 H, NH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.3, 23.3, 25.3, 27.2, 32.2, 47.4, 48.0, 65.0, 66.1, 67.4, 70.5, 72.2, 72.3, 73.1, 73.5, 74.0, 74.8, 81.2, 85.5, 86.3, 94.6, 101.4, 113.8, 122.6, 127.7, 127.8, 128.0, 128.3, 128.5, 128.6, 128.7, 137.1, 137.5, 138.1, 141.4, 144.0, 150.1, 163.6, 170.7.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₄₆H₅₄N₆NaO₁₁: 889.3748; found: 889.3743.

Sugar-Nucleoside Conjugate 6

To a soln of **5** (0.12 g, 0.14 mmol) in CH₂Cl₂ (5 mL) was added dropwise TFA (0.1 mL, 1.4 mmol). After stirring at r.t. for 8 h, the mixture was concentrated. The residue was taken up in EtOAc (20 mL), and washed with H₂O and brine, dried (MgSO₄), filtered and concentrated. Purification by flash column chromatography (CH₂Cl₂–MeOH, 18:1) afforded **6** (97 mg, 85%) as a white solid; $R_f = 0.48$ (CH₂Cl₂–MeOH, 10:1).

 $[\alpha]_{\rm D}^{22}$ –3.1 (*c* 0.65, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 1.82$ (s, 3 H, CH₃), 1.97 (br s, 2 H, CH₂), 3.49 (br s, 1 H, H3"), 3.59–3.64 (m, 3 H, CH₂N, H5'a), 3.75 (d, J = 9.6 Hz, 1 H, H5'b), 3.85 (dd, J = 7.8, 10.1 Hz, 1 H, H4"), 3.92–3.93 (m, 1 H, H4'), 4.15–4.19 (m, 5 H, H2', H3', H2", H6"), 4.39–4.60 (m, 11 H, 3 PhCH₂, CH₂O, H1", H2", H5"), 5.53 (d, J = 6.9 Hz, 1 H, H5), 5.83 (s, 1 H, H1'), 6.90 (d, J = 8.2 Hz, 1 H, NH), 7.18–7.32 (m, 15 H, Ph), 7.58 (s, 1 H, NCH-triazole), 7.73 (d, J = 7.8 Hz, 1 H, H6), 10.1 (br s, 1 H, NH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 23.2, 29.8, 31.8, 47.2, 48.4, 64.4, 66.0, 67.6, 69.5, 71.0, 72.3, 72.4, 73.2, 73.6, 74.3, 74.7, 75.3, 84.1, 90.2, 102.2, 123.4, 127.8, 127.86, 127.91, 128.0, 128.1, 128.3, 128.5, 128.6, 128.7, 137.2, 137.5, 138.0, 140.9, 143.9, 151.3, 164.1, 171.0.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₄₃H₅₀N₆NaO₁₁: 849.3435; found: 849.3430.

3-Benzyl-2',3'-di-O-benzyl-5'-O-propargyluridine (8)

A soln of **7** (1.8 g, 3.5 mmol) in anhyd THF (5 mL) was added dropwise to a suspension of NaH (60%, 280 mg, 7.0 mmol) in anhyd THF (10 mL) at 0 °C. The mixture was stirred at 0 °C for 30 min and then propargyl bromide (0.58 mL, 5.0 mmol) was added and the mixture was stirred at r.t. for 12 h. MeOH (0.3 mL) was added at 0 °C. The mixture was concentrated and diluted with H₂O–EtOAc (1:2, 30 mL). After separation, the organic layer was washed with H₂O and brine, dried (MgSO₄), filtered, and concentrated. Purification by flash column chromatography (EtOAc–PE, 1:4) afforded **8** (1.2 g, 63%) as a yellow oil; $R_f = 0.74$ (EtOAc–PE, 1:1).

 $[\alpha]_{D}^{22}$ +122.1 (*c* 0.86, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 2.45$ (t, J = 2.3 Hz, 1 H, CH=C), 3.68 (dd, J = 1.8, 11.0 Hz, 1 H, H5'a), 3.88–3.91 (m, 2 H, H2', H5'b), 3.96 (dd, J = 4.6, 7.8 Hz, 1 H, H3'), 4.12 (d, J = 2.3 Hz, 2 H, CH₂O), 4.30–4.34 (m, 2 H, H4', PhCH), 4.45 (d, J = 11.5 Hz, 1 H, PhCH), 4.80 (d, J = 12.4 Hz, 2 H, PhCH₂), 5.12 (s, 2 H, PhCH₂), 5.67 (d, J = 8.3 Hz, 1 H, H5), 6.04 (d, J = 1.8 Hz, 1 H, H1'), 7.22– 7.52 (m, 15 H, Ph), 7.81 (d, J = 8.2 Hz, 1 H, H6).

¹³C NMR (100 MHz, CDCl₃): δ = 44.0 (NCH₂), 58.6 (OCH₂), 67.5 (C5'), 71.5 (OCH₂), 72.3 (OCH₂), 74.3 (C3'), 75.1 (CH=), 78.6 (C2'), 78.8 (=C), 81.0 (C4'), 89.0 (C1'), 101.4 (C5), 127.6, 127.7, 127.9, 128.0, 128.4, 128.7, 129.1 (CH-Ph), 136.8, 137.2, 137.3 (C_{ipso}-Ph), 137.8 (C6), 150.8 (C2), 162.7 (C4).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₃H₃₂N₂NaO₆: 575.2158; found: 575.2153.

Sugar-Nucleoside Conjugate 9

Prepared from **4** (100 mg, 0.18 mmol) and **8** (100 mg, 0.18 mmol) according to the general procedure. The residue was purified by column chromatography (CH₂Cl₂–MeOH, 40:1) to afford **9** (120 mg, 60%) as a light yellow solid; $R_f = 0.43$ (CH₂Cl₂–MeOH, 30:1).

$[\alpha]_{D}^{22}$ +79.0 (*c* 0.37, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ = 1.83 (s, 3 H, CH₃), 2.02–2.03 (m, 2 H, CH₂), 3.54 (t, *J* = 3.7 Hz, 1 H, H3"), 3.63–3.67 (m, 3 H, CH₂N, H5'a), 3.83–3.93 (m, 3 H, H2', H3', H5'b), 4.00 (m, 2 H, H4", H6"a), 4.22–4.32 (m, 3 H, H1", H2", H6"b), 4.38–4.63 (m, 12 H, H5", H4', OCH₂, 4 PhCH₂), 4.78 (d, *J* = 11.9 Hz, 1 H, PhCH), 4.81 (d, *J* = 12.4 Hz, 1 H, PhCH), 5.05 (d, *J* = 14.2 Hz, 1 H, PhCH), 5.08 (d, *J* = 13.8 Hz, 1 H, PhCH), 5.36 (d, *J* = 7.3 Hz, 1 H, H5), 6.00 (s, 1 H, H1'), 6.97 (d, *J* = 9.2 Hz, 1 H, NH), 7.20–7.47 (m, 31 H, NCH-triazole, Ph), 7.87 (d, *J* = 6.9 Hz, 1 H, H6).

 13 C NMR (100 MHz, CDCl₃): δ = 14.2, 21.0, 23.2, 31.5, 43.9, 48.6, 60.4, 66.6, 67.7, 67.8, 71.4, 72.1, 72.6, 72.7, 73.2, 74.2, 75.3, 78.5, 81.2, 89.1, 100.8, 127.5, 127.6, 127.65, 127.7, 127.8, 127.9, 127.92, 128.0, 128.1, 128.2, 128.4, 128.45, 128.5, 128.6, 128.7, 128.9, 136.6, 137.16, 137.19, 137.4, 137.5, 137.9, 138.3, 150.6, 162.8, 170.2, 171.1.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₆₄H₆₈N₆NaO₁₁: 1119.4844; found: 1119.4838.

Propargyl [2-(Acetylamino)-3,4,6-tri-*O*-benzyl-2-deoxy-α-D-glucopyranosyl]acetate (11)

To a soln of **10** (49 mg, 0.09 mmol) in DMF (0.5 mL) was added K_2CO_3 (27 mg, 0.19 mmol) and propargyl bromide (80% wt% in toluene, 0.22 mL) successively. The mixture was stirred at r.t. for 8 h, 1 M HCl (0.3 mL) was added, and it was diluted with EtOAc (30 mL) and washed successively with H_2O and brine. The organic layer was dried (MgSO₄), filtered, and concentrated and then it was purified by flash column chromatography (EtOAc–PE, 3:7) to give **11** (45 mg, 85%) as a light yellow oil; $R_f = 0.22$ (EtOAc–PE, 3:7).

$[\alpha]_{D}^{22}$ +5.4 (*c* 0.77, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 1.83$ (s, 3 H, CH₃), 2.39 (t, J = 2.3 Hz, 1 H, CH=), 2.50 (s, 1 H, H2a), 2.52 (d, J = 3.2 Hz, 1 H, H2b), 3.63–3.64 (m, 1 H, H3'), 3.68 (m, 1 H, H4'), 3.83–3.88 (m, 2 H, H6'), 4.23–4.26 (m, 2 H, H2', H5'), 4.60–4.67 (m, 9 H, 3 OCH₂, CO₂CH₂, H1'), 6.70 (d, J = 9.6 Hz, 1 H, NH), 7.24–7.36 (m, 15 H, Ph).

¹³C NMR (100 MHz, CDCl₃): δ = 23.4 (CH₃), 37.0 (C2), 47.2 (C2'), 52.2 (OCH₂), 65.3 (C1'), 67.9 (C6'), 71.8 (OCH₂), 72.0 (OCH₂), 72.8 (C3'), 73.5 (OCH₂), 74.1 (C4'), 75.0 (CH=), 75.2 (C5'), 77.7 (=C), 127.66, 127.7, 127.9, 128.0, 128.2, 128.5, 128.6, 128.7 (CH-Ph), 137.3, 137.5, 138.3 (C_{ipso}-Ph), 170.0 (CO), 170.3 (CO).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₄H₃₇NNaO₇: 594.2468; found: 594.2468.

5'-Azido-3-benzyl-2',3'-di-O-benzyl-5'-deoxyuridine (12)

MsCl (0.38 mL, 4.9 mmol) was added to a soln of **7** (1.8 g, 3.5 mmol) and Et_3N (0.88 mL, 6.3 mmol) in CH_2Cl_2 (30 mL) at 0 °C. The ice bath was removed and stirring was continued at r.t. for 14 h. After which MeOH (0.3 mL) was added, the soln was concentrated. The residue was dissolved in EtOAc (50 mL) and washed successively with H_2O , 5% NaHCO₃, and brine. The organic layer was dried (MgSO₄), filtered, and concentrated to give an oil that was used directly for next step without purification. This mesylate was dissolved in EtOAc (50 mL) was added. The mixture was stirred at 90 °C for 12 h and then concentrated. The residue was dissolved in EtOAc (50 mL) and washed successively with H_2O and brine, dried (MgSO₄), filtered, and concentrated. Purification by flash column chromatography (EtOAc–PE, 1:3) gave **12** (1.35 g, 71%) as a colorless oil; $R_f = 0.38$ (EtOAc–PE, 1:1).

$[\alpha]_{D}^{22}$ +127.9 (*c* 0.27, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 3.56$ (dd, J = 3.2, 13.7 Hz, 1 H, H5'a), 3.79–3.83 (m, 2 H, H3', H5'b), 3.92 (dd, J = 1.6, 5.3 Hz, 1 H, H2'), 4.26–4.30 (m, 2 H, H4', PhCH), 4.46 (d, J = 11.4 Hz, 1 H, PhCH), 4.78 (s, 2 H, PhCH₂), 5.12 (s, 2 H, PhCH₂), 5.74 (d, J = 8.3 Hz, 1 H, H5), 5.95 (d, J = 1.4 Hz, 1 H, H1'), 7.22–7.52 (m, 16 H, H6, Ph).

¹³C NMR (100 MHz, CDCl₃): δ = 44.2 (NCH₂), 50.9 (C5'), 71.8 (OCH₂), 72.5 (OCH₂), 75.1 (C3'), 78.1 (C2'), 79.7 (C4'), 90.1 (C1'), 102.1 (C5), 127.8, 127.9, 128.3, 128.5, 128.6, 128.8, 129.3 (CHPh), 136.7, 137.0, 137.1, 137.4 (C_{ipso}-Ph), 137.4 (C6), 150.7 (C2), 162.5 (C4).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₀H₂₉N₅NaO₅: 562.2066; found: 562.2061.

Sugar–Nucleoside Conjugate 13

Prepared from **11** (100 mg, 0.17 mmol) and **12** (90 mg, 0.17 mmol) according to the general procedure. The residue was purified by column chromatography (CH₂Cl₂–MeOH, 40:1) to afford **13** (80 mg, 42%) as a white solid; $R_f = 0.4$ (CH₂Cl₂–MeOH, 30:1).

 $[\alpha]_{D}^{22}$ +50.4 (*c* 0.35, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ = 1.76 (s, 3 H, CH₃), 2.40–2.53 (m, 2 H, CH₂CO₂), 3.56–3.57 (m, 1 H, H3"), 3.64–3.65 (m, 1 H, H4"), 3.75–3.82 (m, 3 H, H6", H3'), 3.91 (dd, *J* = 2.7, 5.5 Hz, 1 H, H2'), 4.19–4.24 (m, 2 H, H2", H5"), 4.36–4.70 (m, 14 H, H1", H4', H5', 5 PhCH₂), 5.02 (d, *J* = 13.7 Hz, 1 H, PhCH), 5.06 (d, *J* = 13.7 Hz, 1 H, PhCH), 5.18 (d, *J* = 12.8 Hz, 1 H, CO₂CH), 5.19 (d, *J* = 12.8 Hz, 1 H, CO₂CH), 5.63 (d, *J* = 8.3 Hz, 1 H, H5), 5.77 (d, *J* = 2.8 Hz, 1 H, H1'), 6.48 (d, *J* = 8.3 Hz, 1 H, H6), 6.72 (d, *J* = 9.6 Hz, 1 H, NH), 7.14–7.46 (m, 30 H, Ph), 7.54 (s, 1 H, NCH-triazole).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 23.3, 36.9, 44.2, 47.2, 50.4, 57.8, 65.2, 68.0, 71.9, 72.1, 72.2, 72.7, 72.9, 73.5, 74.0, 75.3, 76.1, 79.6, 91.6, 102.3, 125.5, 127.7, 127.8, 127.9, 128.0, 128.2, 128.4, 128.49, 128.54, 128.6, 128.7, 129.1, 129.8, 136.6, 136.9, 137.0, 137.3, 137.5, 137.9, 138.2, 143.2, 150.4, 162.2, 170.1, 170.8.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₆₄H₆₆N₆NaO₁₂: 1133.4636; found: 1133.4632.

Oleanolic Acid–Nucleoside Conjugate 15

Prepared from **3** (60 mg, 0.19 mmol) and **14** (110 mg, 0.19 mmol) according to the general procedure. The residue was purified by column chromatography (CH₂Cl₂–MeOH, 30:1) to afford **15** (140 mg, 82%) as a white solid; $R_f = 0.2$ (CH₂Cl₂–MeOH, 30:1).

 $[\alpha]_D^{22}$ +23.2 (*c* 0.29, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ = 0.69, 0.75, 0.89, 0.96, 1.10, 1.31, 1.55 (7 s, 21 H, 7 CH₃), 0.87 (s, 6 H, 2 CH₃), 0.69–1.98 (m, 30 H), 2.82–2.84 (m, 1 H, H18"), 3.18–3.21 (m, 1 H, H3"), 3.70–3.81 (m, 2 H, H5'), 3.98 (t, *J* = 6.4 Hz, 2 H, NCH₂), 4.31–4.36 (m, 3 H, H4', CO₂CH₂), 4.64 (s, 2 H, OCH₂), 4.76 (br s, 2 H, H2', H3'), 5.25 (br s, 1 H, H12"), 5.64 (d, *J* = 8.2 Hz, 1 H, H5), 5.85 (s, 1 H, H1'), 7.47 (s, 1 H, NCH-triazole), 7.53 (d, *J* = 8.2 Hz, 1 H, H6), 8.78 (br s, 1 H, NH).

 13 C NMR (100 MHz, CDCl₃): δ = 14.3, 15.4, 15.7, 17.1, 18.4, 23.1, 23.5, 23.7, 25.4, 25.9, 26.3, 27.2, 27.3, 27.7, 28.2, 28.5, 30.3, 30.8, 32.6, 32.8, 33.2, 33.9, 37.1, 38.5, 38.8, 39.4, 41.4, 41.8, 45.9, 46.8, 47.7, 50.4, 55.3, 60.5, 64.0, 64.7, 70.5, 79.1, 81.0, 85.0, 85.7, 93.1, 102.2, 114.3, 122.4, 141.5, 143.9, 150.1, 163.1, 177.8.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₅₁H₇₇N₅NaO₉: 926.5619; found: 926.5614.

Oleanolic Acid–Nucleoside Conjugate 16

To a soln of **15** (90 mg, 0.10 mmol) in CH_2Cl_2 (3 mL) was added TFA (0.07 mL, 0.9 mmol). The mixture was stirred at r.t. for 8 h and

Synthesis of Nucleoside Conjugates 1051

then concentrated. The residue was taken up in EtOAc (20 mL), and washed with H₂O and brine, dried (MgSO₄), filtered, and concentrated. Purification by flash column chromatography (CH₂Cl₂–MeOH, 18:1) afforded **16** (50 mg, 58%) as a white solid; $R_f = 0.3$ (CH₂Cl₂–MeOH, 10:1).

 $[\alpha]_D^{22}$ +28.9 (*c* 0.28, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 0.69$, 0.75, 0.86, 0.88, 0.90, 0.96, 1.10 (7 s, 21 H, 7 CH₃), 0.69–1.98 (m, 30 H), 2.82 (dd, J = 4.1, 13.7 Hz, 1 H, H18"), 3.18 (dd, J = 4.6, 10.5 Hz, 1 H, H3"), 3.72 (d, J = 9.2 Hz, 1 H, H5'a), 3.85 (d, J = 9.2 Hz, 1 H, H5'b), 2.97 (t, J = 6.4 Hz, 2 H, NCH₂), 4.19–4.22 (m, 3 H, H2', H3', H4'), 4.35 (t, J = 7.3 Hz, 2 H, CO₂CH₂), 4.67 (s, 2 H, OCH₂), 5.25 (br s, 1 H, H12"), 5.60 (d, J = 7.8 Hz, 1 H, H5), 5.87 (s, 1 H, H1'), 7.55 (s, 1 H, NCH-triazole), 7.83 (d, J = 8.2 Hz, 1 H, H6), 10.03 (br s, 1 H, NH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 15.4, 15.7, 17.1, 18.4, 23.1, 23.5, 23.7, 25.6, 26.0, 26.3, 27.2, 27.7, 28.2, 28.5, 30.3, 30.8, 32.6, 32.8, 33.2, 33.9, 37.1, 38.5, 38.8, 39.4, 41.4, 41.8, 45.9, 46.8, 47.6, 50.5, 55.3, 64.0, 64.5, 69.4, 70.5, 75.3, 79.1, 83.8, 90.2, 102.3, 122.4, 122.6, 140.8, 143.9, 144.1, 151.3, 163.9, 178.0.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₄₈H₇₃N₅NaO₉: 886.5306; found: 886.5301.

Oleanolic Acid–Nucleoside Conjugate 17

Prepared from **8** (120 mg, 0.21 mmol) and **14** (130 mg, 0.21 mmol) according to the general procedure. The residue was purified by column chromatography (EtOAc–PE, 2:1) to afford **17** (150 mg, 60%) as a white solid; $R_f = 0.13$ (EtOAc–PE, 1:1).

 $[\alpha]_{D}^{22}$ +89.9 (*c* 0.69, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 0.70$, 0.76, 0.90, 0.97, 1.11 (5 s, 15 H, 5 CH₃), 0.88 (s, 6 H, 2 CH₃), 0.70–1.98 (m, 30 H), 2.84 (dd, J = 3.9, 14.0 Hz, 1 H, H18"), 3.19 (dd, J = 4.6, 11.0 Hz, 1 H, H3"), 3.68 (dd, J = 2.1, 11.2 Hz, 1 H, H5'a), 3.87 (dd, J = 1.6, 4.8 Hz, 1 H, H2'), 3.91–3.99 (m, 4 H, H4', H5'b, NCH₂), 4.23–4.32 (m, 4 H, H3', CO₂CH₂, OCH), 4.40 (d, J = 11.5 Hz, 1 H, OCH), 4.59 (d, J = 11.5 Hz, 1 H, PhCH), 4.61 (d, J = 12.4 Hz, 1 H, PhCH), 4.78 (d, J = 11.9 Hz, 1 H, PhCH), 4.80 (d, J = 12.4 Hz, 1 H, PhCH), 5.10 (s, 2 H, PhCH₂), 5.26 (t, J = 3.4 Hz, 1 H, H12"), 5.48 (d, J = 8.2 Hz, 1 H, H5), 6.01 (d, J = 1.4 Hz, 1 H, Ph), 7.30 (d, J = 8.2 Hz, 1 H, H6).

¹³C NMR (100 MHz, CDCl₃): δ = 15.4, 15.7, 17.1, 18.4, 23.1, 23.5, 23.7, 25.6, 25.9, 26.3, 27.3, 27.7, 28.2, 28.5, 30.3, 30.8, 32.6, 32.8, 33.2, 34.0, 37.1, 38.5, 38.8, 39.4, 41.4, 41.8, 44.1, 45.9, 46.8, 47.7, 50.4, 55.3, 64.0, 64.7, 68.0, 71.5, 72.2, 74.4, 78.6, 79.1, 81.2, 89.2, 101.4, 122.1, 122.4, 127.7, 127.9, 128.1, 128.5, 128.8, 129.3, 136.9, 137.3, 137.5, 138.0, 143.9, 144.2, 150.8, 162.6, 177.8.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₆₉H₉₁N₅NaO₉: 1156.6715; found: 1156.6709.

Oleanolic Acid–Nucleoside Conjugate 19

Prepared from **12** (130 mg, 0.24 mmol) and **18** (120 mg, 0.24 mmol) according to the general procedure. The residue was purified by column chromatography (EtOAc–PE, 1:1) to afford **19** (200 mg, 80%) as a white solid; $R_f = 0.10$ (EtOAc–PE, 1:2).

$$[\alpha]_{D}^{22}$$
 +85.4 (*c* 0.46, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 0.54$, 0.74, 0.83, 0.84, 0.85, 0.96, 1.08 (7s, 21 H, 7 CH₃), 0.54–1.92 (m, 22 H), 2.78 (dd, J = 3.6, 13.7 Hz, 1 H, H18"), 3.18 (dd, J = 4.6, 11.0 Hz, 1 H, H3"), 3.74 (dd, J = 5.3, 7.6 Hz, 1 H, H3'), 3.93 (dd, J = 2.3, 5.0 Hz, 1 H, H2'), 4.36–4.72 (m, 7 H, H4', H5', 2 PhCH₂), 5.05 (d, J = 14.2 Hz, 1 H, PhCH), 5.06 (d, J = 14.2 Hz, 1 H, PhCH), 5.09 (s, 2 H, CO₂CH₂), 5.24 (t, J = 3.4 Hz, 1 H, H12"), 5.62 (d, J = 8.2 Hz, 1 H, H5), 5.77 (d,

J = 2.3 Hz, 1 H, H1'), 6.49 (d, J = 8.2 Hz, 1 H, H6), 7.23–7.46 (m, 15 H, Ph), 7.49 (s, 1 H, NCH-triazole).

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ = 15.4, 15.7, 16.8, 18.4, 23.0, 23.4, 23.7, 25.9, 27.2, 27.7, 28.2, 30.7, 32.4, 32.7, 33.1, 33.8, 37.1, 38.5, 38.8, 39.4, 41.4, 41.8, 44.2, 45.9, 46.8, 47.6, 50.4, 55.2, 57.3, 72.2, 72.7, 76.3, 79.0, 79.5, 91.9, 102.4, 122.5, 125.7, 127.9, 128.2, 128.4, 128.6, 128.66, 128.70, 128.71, 129.2, 136.6, 136.8, 136.9, 137.8, 143.5, 143.6, 150.4, 162.2, 177.7.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₆₃H₇₉N₅NaO₈: 1056.5826; found: 1056.5824.

Oleanolic Acid–Nucleoside Conjugate 21

Prepared from **12** (130 mg, 0.24 mmol) and **20** (140 mg, 0.24 mmol) according to the general procedure. The residue was purified by column chromatography (EtOAc–PE, 1:1) to afford **21** (230 mg, 85%) as a white solid; $R_f = 0.10$ (EtOAc–PE, 1:2).

 $[\alpha]_{D}^{22}$ +94.9 (*c* 0.63, CHCl₃).

¹H NMR (400 MHz, CDCl₃): δ = 0.59, 0.73, 0.87, 0.88, 0.90, 0.92, 1.11 (7 s, 21 H, 7 CH₃), 0.59–1.98 (m, 22 H), 2.88–2.97 (m, 2 H, H3", H18"), 3.79 (dd, J = 5.5, 7.3 Hz, 1 H, H3'), 3.88 (dd, J = 2.7, 5.5 Hz, 1 H, H2'), 4.40–4.52 (m, 4 H, H4', H5'a, OCH₂), 4.58–4.74 (m, 5 H, H5'b, 2 PhCH₂), 5.06 (m, 4 H, 2 PhCH₂), 5.29 (t, J = 3.4 Hz, 1 H, H12"), 5.59 (d, J = 8.2 Hz, 1 H, H5), 5.82 (d, J = 2.7 Hz, 1 H, H1'), 6.38 (d, J = 8.2 Hz, 1 H, H6), 7.24–7.37 (m, 18 H, Ph), 7.43 (s, 1 H, NCH-triazole), 7.46–7.48 (m, 2 H, Ph).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 15.3, 16.5, 16.9, 18.2, 22.7, 23.0, 23.4, 23.7, 25.9, 26.9, 27.6, 28.2, 30.7, 32.4, 32.7, 33.1, 33.9, 37.0, 38.3, 38.7, 39.3, 41.4, 41.7, 44.1, 45.9, 46.7, 47.6, 50.1, 55.6, 63.1, 65.9, 72.1, 72.7, 76.1, 79.5, 86.9, 91.3, 102.3, 122.5, 124.0, 127.7, 127.9, 128.0, 128.1, 128.3, 128.40, 128.44, 128.5, 128.6, 129.1, 136.4, 136.5, 136.8, 136.9, 137.5, 143.7, 146.7, 150.4, 162.1, 177.5.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₇₀H₈₅N₅NaO₈: 1146.6296; found: 1146.6293.

Benzyl 3β-O-[(2-Azidoethoxy)carbonyl]olean-12-en-28-oate (23)

To a soln of **22** (260 mg, 0.4 mmol) in DMF (2 mL), was added NaN₃ (250 mg, 4 mmol). The mixture was stirred at 80 °C for 8 h and then it was diluted with H₂O (20 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with H₂O and brine, dried (Na₂SO₄), filtered, and concentrated. The residue was purified by flash column chromatography (EtOAc–PE, 1:60) to give **23** (230 mg, 85%) as a white solid; $R_f = 0.36$ (EtOAc–PE, 1:20).

IR (KBr): 3439, 2943, 2103, 1738, 1258 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 0.60, 0.87, 0.92, 0.94, 1.13 (5 s, 15 H, 5 CH₃), 0.90 (s, 6 H, 2 CH₃), 0.60–1.98 (m, 22 H), 2.91 (dd, *J* = 3.7, 13.5 Hz, 1 H, H18), 3.52 (t, *J* = 5.2 Hz, 2 H, N₃CH₂), 4.28 (t, *J* = 5.2 Hz, 2 H, CO₂CH₂), 4.35 (t, *J* = 8.1 Hz, 1 H, H3), 5.06 (d, *J* = 12.5 Hz, 1 H, PhCH₂), 5.08 (d, *J* = 12.5 Hz, 1 H, PhCH₂), 5.29 (t, *J* = 3.2 Hz, 1 H, H12), 7.30–7.35 (m, 5 H, Ph).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 15.3, 16.5, 16.9, 18.1, 23.0, 23.4, 23.5, 23.6, 25.8, 27.6, 27.9, 30.7, 32.3, 32.6, 33.1, 33.8, 36.9, 37.9, 38.1, 39.3, 41.4, 41.7, 45.9, 46.7, 47.5, 49.7, 55.3, 65.7, 65.9, 86.0, 122.3, 127.9, 128.0, 128.4, 136.4, 143.7, 154.9, 177.3.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₄₀H₅₇N₃NaO₅: 682.4196; found: 682.4190.

Oleanolic Acid–Nucleoside Conjugate 24

Prepared from **8** (120 g, 0.21 mmol) and **23** (140 mg, 0.21 mmol) according to the general procedure. The residue was purified by column chromatography (EtOAc–PE, 1:1) to afford **24** (120 mg, 46%) as a white solid; $R_f = 0.18$ (EtOAc–PE, 1:1).

 $[\alpha]_{D}^{22}$ +89.7 (*c* 0.64, CHCl₃).

¹H NMR (400 MHz, CDCl₃): $\delta = 0.58$, 0.80, 0.89, 0.91, 1.10 (5 s, 15 H, 5 CH₃), 0.86 (s, 6 H, 2 CH₃), 0.58–1.96 (m, 22 H), 2.89 (dd, J = 3.9, 13.5 Hz, 1 H, H18"), 3.67 (dd, J = 2.1, 11.2 Hz, 1 H, H5'a), 3.87–3.97 (m, 3 H, H5'b, H2', H3"), 4.23 (d, J = 11.9 Hz, 1 H, OCH), 4.28–4.32 (m, 2 H, H3', H4'), 4.40 (d, J = 11.4 Hz, 1 H, OCH), 4.47 (t, J = 5.3 Hz, 2 H, CO₂CH₂), 4.55–4.64 (m, 4 H, PhCH₂, NCH₂), 4.79 (d, J = 12.4 Hz, 1 H, PhCH), 4.80 (d, J = 11.4 Hz, 1 H, H12"), 5.53 (d, J = 12.4 Hz, 1 H, PhCH), 5.07 (d, J = 12.4 Hz, 1 H, PhCH), 5.07 (d, J = 12.4 Hz, 1 H, PhCH), 5.03 (d, J = 8.2 Hz, 1 H, H5), 6.02 (d, J = 1.8 Hz, 1 H, H1'), 7.20–7.35 (m, 18 H, Ph), 7.47 (s, 1 H, NCH-triazole), 7.48–7.50 (m, 2 H, Ph), 7.80 (d, J = 7.8 Hz, 1 H, H6).

 13 C NMR (100 MHz, CDCl₃): δ = 15.4, 16.7, 16.9, 18.2, 23.1, 23.5, 23.7, 25.9, 27.7, 28.0, 30.8, 32.4, 32.7, 33.2, 33.9, 36.9, 38.0, 38.1, 39.4, 41.5, 41.8, 44.1, 45.9, 46.8, 47.6, 49.2, 55.3, 64.6, 65.4, 66.0, 68.0, 71.5, 72.2, 74.4, 78.6, 81.2, 86.4, 89.2, 101.4, 122.4, 123.2, 127.7, 127.8, 128.0, 128.1, 128.5, 128.7, 129.2, 136.5, 136.9, 137.3, 137.5, 138.0, 143.8, 144.4, 150.9, 154.6, 162.7, 177.5.

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{73}H_{89}N_5NaO_{11}$: 1234.6456; found: 1234.6454.

Acknowledgment

K.C. thanks the French Embassy in China for a co-tutor Doctorate fellowship. This work is supported by a grant from Region Ile-de-France.

References

- (1) Knapp, S. Chem. Rev. 1995, 95, 1859.
- (2) (a) Grugier, J.; Xie, J.; Duarte, I.; Valéry, J. M. J. Org. Chem.
 2000, 65, 979. (b) Xie, J.; Thellend, A.; Becker, H.; Vidal-Cros, A. Carbohydr. Res. 2001, 334, 177. (c) Mei, H.; Xing, L.; Cai, L.; Jin, H.-W.; Zhao, P.; Yang, Z.-J.; Zhang, L.-R.; Zhang, L.-H. Bioorg. Med. Chem. Lett. 2008, 18, 5355. (d) Rowan, A. S.; Nicely, N. I.; Cochrane, N.; Wlassoff, V. A.; Claiborne, A.; Hamilton, C. J. Org. Biomol. Chem. 2009, 7, 4029.
- (3) (a) Wu, D.; Ji, S.; Wu, Y.; Ju, Y.; Zhao, Y. *Bioorg. Med. Chem. Lett.* 2007, *17*, 2983. (b) Ma, L.; Harrell, W. A.; Davis, J. T. Org. Lett. 2009, *11*, 1599.

- (4) Godeau, G.; Staedel, C.; Barthélémy, P. J. Med. Chem. 2008, 51, 4374.
- (5) Gurba, P.; Vallinayagam, R.; Schmitt, F.; Furrer, J.; Juillerat-Jeanneret, L. Synthesis 2008, 3957.
- (6) Lolk, L.; Pøhlsgaard, J.; Jepsen, A. S.; Hansen, L. H.; Nielsen, H.; Steffansen, S. I.; Sparving, L.; Nielsen, A. B.; Vester, B.; Nielsen, P. J. Med. Chem. 2008, 51, 4957.
- (7) Kristiansen, M.; Andersen, B.; Iversen, L. F.; Westergaard, N. J. Med. Chem. 2004, 47, 3537.
- (8) (a) Hoover, D.; Lefkowitz-Snow, S.; Burgess-Henry, J.; Martin, W.; Armento, S.; Stock, I.; McPherson, R.; Genereux, P.; Gibbs, M.; Treadway, J. J. Med. Chem. 1998, 41, 2934. (b) Baker, D. J.; Timmons, J. A.; Greenhaff, P. L. Diabetes 2005, 54, 2453.
- (9) (a) Oikonomakos, N. G. *Curr. Protein Pept. Sci.* 2002, *3*, 561. (b) Somsák, L.; Czifrák, K.; Tóth, M.; Bokor, É.; Chrysina, E. D.; Alexacou, K.-M.; Hayes, J. M.; Tiraidis, C.; Lazoura, E.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos, N. G. *Curr. Med. Chem.* 2008, *15*, 2933. (c) Oikonomakos, N. G.; Somsák, L. *Curr. Opin. Investig. Drugs* 2008, *9*, 379.
- (10) (a) Chen, J.; Liu, J.; Zhang, L. Y.; Wu, G. Z.; Hua, W. Y.; Wu, X. M.; Sun, H. B. *Bioorg. Med. Chem. Lett.* 2006, 16, 2915. (b) Hao, J.; Zhang, P.; Wen, X. A.; Sun, H. B. J. Org. Chem. 2008, 73, 7405. (c) Cheng, K. G.; Zhang, P.; Liu, J.; Xie, J.; Sun, H. B. J. Nat. Prod. 2008, 71, 1877. (d) Wen, X. A.; Sun, H. B.; Liu, J.; Cheng, K. G.; Zhang, P.; Zhang, L. Y.; Hao, J.; Zhang, L. Y.; Ni, P. Z.; Zographos, S. E.; Leonidas, D. D.; Alexacou, K. M.; Gimisis, T.; Hayes, J. M.; Oikonomakos, N. G. J. Med. Chem. 2008, 51, 3540.
- (11) Xie, J. Eur. J. Org. Chem. 2002, 3411.
- (12) Cheng, K.; Liu, J.; Liu, X.; Li, H.; Sun, H.; Xie, J. Carbohydr. Res. 2009, 344, 841.
- (13) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004. (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128.
- (14) Tjarks, W.; Anisuzzaman, A. K. M.; Liu, L.; Soloway, A. H.; Barth, R. F.; Perkins, D. J.; Adams, D. M. *J. Med. Chem.* **1992**, *35*, 1628.
- (15) Johnson, D. C. II; Widlanski, T. S. Org. Lett. 2004, 6, 4643.
- (16) Martin, W. H.; Hoover, D. J.; Armento, S. J.; Stock, I. A.; McPherson, R. K.; Danley, D. E.; Stevenson, R. W.; Barrett, E. J.; Treadway, J. L. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 1776.