75. New Triterpenoid N-Acetylglycosides with Molluscicidal Activity from *Tetrapleura tetraptera* TAUB.

by Marc Maillard^a), Clement O. Adewunmi^b), and Kurt Hostettmann^a)*

^a) Institut de Pharmacognosie et Phytochimie, Ecole de Pharmacie, Université de Lausanne, 2, rue Vuillermet, CH-1005 Lausanne

b) Drug Research & Production Unit, Faculty of Pharmacy, University of Ife, Ile-Ife, Nigeria

(13.III.89)

Activity-guided fractionation of the MeOH extract of the fruits of *Tetrapleura tetraptera* TAUB. (Mimosaceae) afforded 4 saponins 1–4, which exhibited strong molluscicidal properties against the schistosomiasis-transmitting snails *Biomphalaria glabrata*. Chemical, enzymatic, and spectral methods (DCI-MS, ¹H-NMR, ¹³C-NMR) showed that they were *N*-acetylglycosides of oleanolic acid and of echinocystic acid. Apart from saponin 1 (aridanin), previously isolated from this plant, glycosides 2–4 are new naturally occurring compounds.

Introduction. – There is still an urgent need for highly potent plant molluscicides in order to avoid the transmission of the parasitic disease schistosomiasis [1]. *Tetrapleura tetraptera* TAUB. (Mimosaceae), locally known as Aridan, is a large tree growing throughout the rain forest belt of West Africa. The plant has many traditional uses, mainly in the management of convulsions, leprosy, inflammation, and rheumatic pains [2]. Molluscicidal activity of this plant was reported by *Adewunni* and *Marquis* [3]. The activity seemed to be linked to triterpenoid saponins and coumarinic compounds. Because of the strong molluscicidal properties of the fruits of *Tetrapleura tetraptera*, field trials have been carried out, and this tree is now considered to be a promising plant in the local control of schistosomiasis [4]. Only one active compound, a mono-*N*-acetylglycoside of oleanolic acid ($= 3\beta$ -hydroxyolean-12-en-28-oic acid), aridanin (1), has been isolated and identified from this species [5]. Thus, further phytochemical investigation is required. The present paper deals with the identification of additional saponins from the fruits of *Tetrapleura tetraptera*.

Results. – Dried fruit pulp of *Tetrapleura tetraptera* (200 g) collected in Nigeria was extracted successively with CH_2Cl_2 , MeOH, and H_2O . The MeOH extract (80 g) which is molluscicidal at 25 ppm was then partitioned between H_2O and BuOH. Fractionation of 20 g of the BuOH extract by column chromatography on silica gel was monitored by TLC. Several of the 17 fractions collected presented a strong molluscicidal activity (< 20 ppm), namely *Fractions 7, 9, 10, 11,* and *12* (1150, 500, 450, 500, and 1100 mg, resp.). These fractions were further separated by reversed-phase chromatography on *RP-8* or liquid-liquid chromatography [6] (see *Exper. Part*) to afford four saponins 1–4. Compound 1 (995 mg) was obtained from *Fraction 7, 2* (60 mg) from *Fraction 9, 3* (220 mg) from *Fractions 11* and *12*, and 4 (90 mg) from *Fraction 12*.

Acidic hydrolysis with 4N HCl of saponins 1, 3, and 4 afforded oleanolic acid, identified by comparison with an authentic sample (TLC, HPLC). The aglycone of

saponin 2 could not be obtained under the same conditions as decomposition occurred. Attempts with different kinds of enzymatic hydrolysis using galactosidase, glucosidase, and glucuronidase failed. Finally, acidic hydrolysis with $2N H_2SO_4$ yielded an aglycone with lower R_f value on silica-gel TLC than oleanolic acid (see below). TLC analysis of the four saponin hydrolysates showed the presence of one ninhydrin-positive sugar in all cases, together with galactose for saponin 3 and glucose for saponin 4. This sugar was identified as glucosamine hydrochloride [7] by comparison on cellulose TLC and silica-gel TLC with an authentic sample. DCI-MS (NH₃, positive-ion mode) and NMR spectra of the saponins 1–4 confirmed the presence of the 2-acetamido-2-deoxy- β -D-glucopyranose moiety and established the structure of 1 as 3-[(2-acetamido-2-deoxy- β -D-glucopyranosyl)oxy]olean-12-en-28-oic acid, a compound previously isolated from *Pithecellobium sp.* (Leguminosae) [8] and from the fruit of *Tetrapleura tetraptera* [5]. The compound was named aridanin, and the spectral data of 1 are in accordance with those reported [5] [8].

The presence of a N-containing monosaccharide in all four saponins 1-4 was confirmed by DCI-MS which showed quasimolecular ion peaks $[M + H]^+$ at m/z 660, 676, 822, and 822, thus indicating molecular weights of 659, 675, 821, and 821, respectively. Furthermore, a typical NH signal at *ca*. 9.0 ppm (d, J = 9, 1 H) in the ¹H-NMR spectra of 1-4 was observed. The presence in all ¹³C-NMR spectra of a CH₃ signal at 23.7 ppm, a C=O signal at *ca*. 170 ppm, and a characteristic signal at 58 ppm due to C(2') of an acetylated N-glucosamine indicated clearly the presence of the 2-acetamido-2-deoxy- β -D-glucopyranose moiety. The β -D-configuration was confirmed by ¹H-NMR data (H-C(1') at 5.0 ppm (J = 8 Hz)).

The aglycone of 2 could be identified as echinocystic acid ($= 3\beta$, 16 α -dihydroxyolean-12-en-28-oic acid) by comparison with an authentic sample showing the same EI-MS fragmentation pattern and HPLC retention time and co-migration on TLC.

The DCI-MS and NMR spectra of **2** showed that it is $3-[(2-acetamido-2-deoxy-<math>\beta$ -D-glucopyranosyl)oxy]-16 α -hydroxyolean-12-en-28-oic acid. This saponin has previously been reported as a prosapogenin obtained after partial hydrolysis of Entada saponin III, a product isolated from the bark of *Entada phaseolides* (Leguminosae). All the spectroscopic data are in good agreement with published values [10].

The DCI-MS of 2 showed a quasimolecular ion at m/z 676 ($[M + H]^{++}$), 16 amu above the one of 1. Since the sugar moieties are identical in 1 and 2, the aglycone of 2 must have an additional O-atom. In fact, EI-MS of the product obtained after acidic hydrolysis of 2 showed clearly a molecular peak at m/z 472 ($[M]^{++}$) and a typical retro-Diels-Alder fragmentation with peaks at m/z 264 ($[M - C_{14}H_{24}O]^{++}$), 246 ($[264 - H_2O]^{++}$), and 208

 $([C_{14}H_{24}O]^+)$, indicating the presence of an OH group at ring C, D, or E of the triterpene. Chemical shifts of the triterpenoid moiety in the ¹³C-NMR spectrum of **2** were in good agreement with a 16 α -OH substitution pattern [9].

In addition, the ¹³C-NMR spectrum of **2** was very similar to that of commercially available echinocystic acid 3-O-glucoside; the signal at 89.0 ppm indicated the substitution at C(3) of the terpenoid moiety.

Enzymatic hydrolysis of saponin 3 with galactosidase afforded a prosapogenin (m/z 660 $[M + H]^+$) identified as aridanin (1; ¹H-NMR, ¹³C-NMR). Thus, galactose is the terminal sugar. The interglycosidic linkage was determined by comparison of the ¹H-NMR spectra (CDCl₃) of the peracetylated derivatives **1a** and **3a** of saponins **1** and **3**, respectively, and by the ¹³C-NMR spectrum of **3**.

Thus, the structure of **3** is established as $3-\{[O-\beta-D-\text{galactopyranosyl-}(1\rightarrow 4)-(2-\text{acet-amido-}2-\text{deoxy-}\beta-D-\text{glucopyranosyl})]oxy\}$ olean-12-en-28-oic acid which is a new natural product.

The DCI-MS of 3 exhibited quasimolecular ions at m/z 839 ([M + NH₄]⁺) and 822 ([M + H]⁺). A peak at m/z 660 ([(M + H) - 162]⁺), resulting from the elimination of a hexosyl moiety, could be observed.

Sugar moiety ^b)		1a		3a	
Peracetylated	H-C(1')	4.72	<i>d</i> , <i>J</i> = 8	4.46	d, J = 8.1
GlcNAc	H-C(2')	3.77	ddd, J = 8, 9, 9.5	4.00	$m \approx ddd$
	H-C(3')	5.32	dd, J = 9.5, 9.5	5.10	dd, J = 9, 9
	H-C(4')	5.00	dd, J = 9.5, 9.5	3.72	dd, J = 9, 9
	H-C(5')	3.6-3.7	m	3.59	т
	H-C(6')	4.06	dd, J = 12, 2	4.0-4.20	unres.
	H'-C(6')	4.24	dd, J = 12, 2	4.4-4.50	unres.
	NH-C(2')	6.00	d, J = 9	5.60	d, J = 9
Peracetylated	H-C(1")			4.50	d, J = 8
Gal	H-C(2")			5.12	dd, J = 8, 10
	H-C(3")			4.96	dd, J = 10, 3
	H-C(4")			5.35	dd, J = 3, < 1
	H-C(5″)			3.87	dd, J = 7, < 1
	H–C(6″) H′–C(6″)			4.0-4.20	unres.

Table 1. ¹H-NMR Chemical Shifts of the Glycosidic Moieties of Peracetates 1a and 3a^a)

In the peracetates **1a** and **3a**, the ¹H-NMR signals of the sugar moieties appeared in the region 3.5–5.5 ppm, and the use of homonuclear COSY experiment allowed the attribution of all these protons (see *Table 1*). The signal at 5.00 ppm for H–C(4') of peracetate **1a** was shifted upfield to 3.72 ppm in the ¹H-NMR spectrum of **3a**, in accordance with a 4'-O substitution. Indeed, osidic protons appear at two different ranges of chemical shifts, from 3.0 to 4.5 ppm for CH₂OAc, CH₂OR, and CHOR and from 4.5 to 5.5 for CHOAc [11]. Further evidence for the 4'-O substitution of the inner N-acetyl- β -D-glucosamine moiety was observed in the ¹³C-NMR of **3**. The C(4') signal was shifted downfield by 11.0 ppm to 83.5 ppm, the C(3') and C(5') signals being shifted upfield by 2.5 and 1.9 ppm, respectively, whereas the other C-atoms remained almost unaffected, as compared to 1 (see *Table 2*). These results are in good accordance with the glycosylation rules established by *Konishi et al.* [12].

The β -conformation of the galactose moiety was deduced from the ¹H-NMR spectrum, where the anomeric proton appeared as *d* at 5.00 ppm (J = 8.5, H–C(1")).

The DCI-MS of $4 (m/z 822 ([M + H]^+))$, 660 (cleavage of a hexosyl moiety)) indicated that the glucosyl moiety was in the terminal position, and the interglycosidic linkage was determined by means of ¹³C-NMR spectroscopy (downfield shift of C(6') by 7.4 ppm as

	1	2	3	4
C(1)	38.5 (<i>t</i>)	38.5	38.5	38.5
C(2)	26.2(t)	26.3	26.3	26.5
C(3)	89.2 (d)	89.0	89.3	89.1
C(4)	39.2 (s)	39.2	39.2	39.2
C(5)	55.7 (d)	55.7	55.7	55.6
C(6)	18.5 (<i>t</i>)	18.5	18.5	18.4
C(7)	33.2(t)	33.4	33.3	33.1
C(8)	39.7 (s)	39.8	39.7	39.6
C(9)	48.0(d)	47.1	48.0	47.9
C(10)	36.9 (s)	36.9	36.9	36.9
C(11)	23.6(t)	23.7	23.7	23.7
C(12)	122.5(d)	122.1	122.4	122.6
C(13)	144.8(s)	145.2	144.9	144.6
C(14)	42.0(s)	42.0	42.0	41.8
C(15)	28.3(t)	36.1	28.3	28.2
C(16)	23.7(t)	74.8(d)	23.7	23.7
$\dot{C}(17)$	46.7(s)	49.0	46.7	46.5
C(18)	42.1(d)	41.5	42.1	42.0
C(19)	46.5(t)	47.3	46.5	46.6
C(20)	30.9 (s)	31.0	30.9	30.9
C(21)	34.1(t)	36.1	34.2	34.1
C(22)	33.2(t)	32.5	33.2	33.1
C(23)	28.3(q)	28.0	28.0	28.0
C(24)	16.9(a)	16.9	16.9	16.9
C(25)	15.4(a)	15.5	15.3	15.3
C(26)	17.3(a)	17.5	17.4	17.3
C(27)	26.1(q)	27.2	26.1	26.1
C(28)	180.3(s)	180.0	180.5	180.2
C(29)	33.2(a)	33.4	33.2	33 3
C(30)	23.7(q)	24.9	23.7	23.7
C(1)	104.5(d)	104.8	104.4	104.9
C(2')	58.0(d)	57.8	57.4	57.7
C(3')	76.1(d)	76.2	73.6	75.9
C(4')	72.5(d)	72.5	83.5	72.5
C(5')	78.1(d)	78.2	76.2	76.9
C(6')	62.9(t)	62.8	62.5	70.3
COCH	170.2(s)	170.2	169.9	170.1
COCH ₃	23.7(q)	23.7	23.7	23.7
C(1″)			105.9	105.3
C(2")			72.5	75.2
C(3″)			75.1	78.4
C(4")			70.0	71.6
C(5")			77.2	78.4
C(6")			61.9	62.7

Table 2. ¹³C-NMR Data of 1-4^a)

compared to 1, see *Table 2*). Thus, 4 is $3-\{[O-\beta-D-glucopyranosyl-(1\rightarrow 6)-(2-acetamido-2-deoxy-\beta-D-glucopyranosyl)]oxy\}$ olean-12-en-28-oic acid, a new glucoside of aridanin.

Discussion. – In spite of several reports on the molluscicidal activity of *Tetrapleura tetraptera* and aridanin [13–17], this is the first time that other active saponins have been

isolated from this plant. The three isolated saponins **2–4** kill *Biomphalaria glabrata* snails within 24 h at concentrations of 20, 2.5, and 5 ppm, respectively, and were still active within 48 h at concentrations of 10, 1.25, and 2.5 ppm. In the same bioassay, aridanin (1) was active only at a concentration of 20 ppm. It is interesting to notice that glycosylation of **1** increases the toxicity of the saponins to *Biomphalaria glabrata* snails.

Saponins from *Tetrapleura tetraptera* are among the most powerful natural molluscicides and have similar potencies to those isolated from *Phytolacca dodecandra* [18] and *Swartzia madagascariensis* [19], two plants with potential for use in the local control of schistosomiasis. In view of these activities, further phytochemical investigation of the complex saponin extract of *Tetrapleura tetraptera* is underway in order to discover other highly potent molluscicidal compounds.

Financial support has been provided by the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases and by the Swiss National Science Foundation.

Experimental Part

General. Echinocystic acid from Carl Roth, Karlsruhe, echinocystic acid 3-O-glucoside from Sarsyntex, Bordeaux, and N-acetyl-β-D-glucosamine from Eastman Kodak Co., Rochester. Normal-phase column chromatography: silica gel 60 (40-63 µm, Merck, Darmstadt). Reversed-phase chromatography: Büchi B 681 MPLC system with a 2.6 \times 46-cm column packed with *RP*-8 material (15–25 μ m, *Merck* No. 9324). TLC: silica-gel-precoated Al sheets (Merck) with AcOEt/MeOH/H2O 17:2:1 (syst. I) and petroleum ether/AcOEt 1:1 (syst. II), precoated RP-8 nanoplates (Merck) with MeOH/H₂O 7:3, detection with Godin reagent [20], or cellulose-precoated Al sheets (Merck) with AcOEt/pyridine/AcOH/H₂O 5:5:1:3 (syst. III). Anal. HPLC: Nucleosil 120-5 C-8 column (Macherey-Nagel), Spectra-Physics-8700 pump, detection at 206 nm with a LKB-2151 detector. Liquid-liquid chromatography: DCCC-Büchi-670 chromatograph equipped with 294 tubes (40 cm, i.d. 2.7 mm). Final purification of saponins was achieved on a 2.5×45 cm Sephadex-LH-20 column (Pharmacia) with MeOH or CH₂Cl₂/MeOH 1:2. M.p.: Mettler FP 80/82 hot stage apparatus; uncorrected. IR spectra: Philips PU 9700 spectrophotometer; in KBr. ¹H-NMR and ¹³C-NMR spectra: Varian VXR-200 equipped with switchable 5-mm probe at 200 and 50.1 MHz, resp., (D₅)pyridine solns. for saponins 1-4 (30 mg/0.8 ml), and CDCl₃ solns. for peracetates 1a and 3a (15 mg/0.8 ml); chemical shifts in δ values (ppm) relative to TMS as internal standard; multiplicities determined by DEPT experiments. EI- and DCI-MS (NH₃, positive-ion mode): Nermag R1030 spectrometer. Molluscicidal tests were carried out as previously described in [21].

Extraction and Isolation. The dried pulp of the fruit (200 g), collected near Ile-Ife, Nigeria, was extracted at r.t. successively with CH₂Cl₂ (3×500 ml), MeOH (3×500 ml), and H₂O (3×500 ml). The McOH extract (80 g) was partitioned between H₂O (500 ml) and BuOH (500 ml) and the BuOH extract (20 g) separated on a silica-gel column with CHCl₃/MeOH/H₂O 85:11:1 \rightarrow 70:30:5 \rightarrow 50:50:0 (monitoring by TLC) to afford 17 fractions. Purification of *Fraction* 7 (1150 mg) by filtration on a *Sephadex-LH-20* column with CH₂Cl₂/MeOH 1:2 afforded 1 (995 mg). Reversed-phase chromatography of *Fractions* 9 (500 mg) and 11 (500 mg) by medium-pressure liquid-chromatography (MPLC) on *RP*-8 using MeOH/H₂O 7:3 afforded 2 (60 mg) and 3 (170 mg). Droplet counter-current chromatography (DCCC) of *Fraction* 12 (1000 mg) with CHCl₃/MeOH/H₂O 7:13:8 (ascending mode) yielded 3 (50 mg) and 4 (90 mg).

Acidic Hydrolysis. Saponins 1, 3, and 4 (2 mg) were refluxed with 4N HCl (2 ml) for 2 h. The mixtures were then extracted with AcOEt. The org. layers were checked by TLC (silica gel, syst. II), HPLC (*RP-8*, CH₃CN/H₂O, 65:35), and EI-MS for aglycones. The aq. phases were neutralized with NaHCO₃ and the sugars extracted with pyridine and analyzed by TLC on silica gel with AcOEt/MeOH/H₂O/AcOH 65:15:15:20 (detection with *p*-anisidine phthalate) and on cellulose with syst. III (detection with ninhydrin). Saponin 2 (2 mg) was refluxed with $P_{2}SO_{4}$ (2 ml) for 1 h, and then the mixture was treated as above.

Enzymatic Hydrolysis. Saponin **3** (40 mg) and β -D-galactosidase (40 mg) from *Helix pomatia* (*G*-7138, Sigma, St-Louis) were dissolved in acetate buffer, pH 5.5 (40 ml). The mixture was kept at 37° and the reaction periodically checked by TLC (silica gel, syst. I). After 7 days, the mixture was extracted with 2 × 40 ml of BuOH and the org.

residue purified by silica-gel column chromatography using CHCl₃/MeOH 95:5: 15 mg of aridanin (1; TLC, HPLC, ¹H-NMR, ¹³C-NMR).

Acetylation. Compounds 1 and 3 (15 mg each) were dissolved in Ac₂O/pyridine 1:1 and stirred at r.t. for 48 h. The mixtures were then poured into ice/H₂O and the precipitates purified on a *Sephadex-LH-20* column (CH₂Cl₂/MeOH 1:2) to afford peracetates **1a** (15 mg) and **3a** (17 mg), resp.

Aridanin (= 3-f(2-Acetamido-2-deoxy-β-D-glucopyranosyl)oxy]olean-12-en-28-oic Acid; 1). White amorphous powder. M.p. 270–275° (dec.). IR: 3400–3200 (OH), 2920, 1650, 1540 (CONH). ¹H-NMR (200 MHz): 0.78, 0.97, 1.00, 1.02, 1.21, 1.31 (21 H, 7 CH₃); 2.17 (NHCOCH₃); 3.8–5.10 (carbohydrate protons); 5.00 (d, J = 8, H–C(1')); 5.5 (br. t, H–C(12)); 8.94 (d, J = 9, NH). ¹³C-NMR (50.1 MHz): Table 2. DCI-MS: 660 ([M + H]⁺), 457 ([(M + H) – 203]⁺), 204 ([203 + H]⁺⁺).

Acid hydrolysis of 1 afforded oleanolic acid and β -D-glucosamine HCl.

Peracetyl Derivative **1a**. White amorphous powder. M.p. 258–260° (dec.). ¹H-NMR (200 MHz; see also *Table 1*): 0.72, 0.73, 0.89, 0.91, 1.10, 1.24, (21 H, 7 CH₃); 1.91, 2.00, 2.02, 2.05 (4 COCH₃); 3.8–5.50 (carbohydrate protons); 4.72 (*d*, J = 8, H–C(1')); 5.25 (br. *t*, H–C(12)); 5.98 (*d*, J = 9, NH). DCI-MS: 803 ([$M + NH_4$]⁺⁺), 786 ([M + H]⁺⁻).

3-[(2-Acetamido-2-deoxy-β-D-glucopyranosyl)oxy]-16α-hydroxyolean-12-en-28-oic Acid (2). White amorphous powder. M.p. 265–270° (dec.). IR: 3400–3200 (OH), 2900, 1650, 1535 (CONH). ¹H-NMR (200 MHz): 0.82, 0.99, 1.02, 1.07, 1.19, 1.83 (21 H, 7 CH₃); 2.15 (NHCOCH₃); 3.8–5.10 (carbohydrate protons); 5.05 (d, J = 8.2, H–C(1')); 5.23 (br. t, H–C(12)); 8.95 (d, J = 9, NH). ¹³C-NMR (50.1 MHz): Table 2. DCI-MS: 676 ([M + H]⁺), 490 ([472 + NH₄]⁺⁺), 455 ([(472 + H) - 18]⁺⁺), 204 ([203 + H]⁺⁺).

Acidic hydrolysis of **2** afforded β-D-glucosamine · HCl and echinocystic acid. Echinocystic acid: EI-MS: 472 ($[M]^+$), 264 ($[M - C_{14}H_{24}O]^+$), 246 ($[264 - H_2O]^+$), 231 ($[246 - CH_3]^+$), 219 ($[264 - COOH]^+$), 208 ($[C_{14}H_{24}O]^+$), 201 ($[246 - COOH]^+$).

3- {[O-β-D-Galactopyranosyl-(1→4)-(2-acetamido-2-deoxy-β-D-glucopyranosyl)]oxy}olean-12-en-28-oic Acid (3). White amorphous powder. M.p. 255-258° (dec.). IR: 3400-3200 (OH), 2900, 1650, 1540 (CONH). ¹H-NMR (200 MHz): 0.79, 0.95, 0.98, 1.02, 1.18, 1.31 (21 H, 7 CH₃); 2.17 (NHCOCH₃); 3.8-5.10 (carbohydrate protons); 5.00 (unres., H-C(1'), H-C(1'')); 5.47 (br. t, H-C(12)); 8.98 (d, J = 9, NH). ¹³C-NMR (50.1 MHz): Table 2. DCI-MS: 822 ([M + H]⁺), 660 ([(M + H) - 162]⁺), 457 ([(M + H) - 162 - 203]⁺), 204 ([203 + H]⁺). Acidic hydrolysis of 3 afforded oleanolic acid, β-D-glucosamine · HCl, and galactose.

Enzymatic hydrolysis of 3 with galactosidase afforded a compound whose physical data were identical to 1.

Peracetyl Derivative **3a.** White amorphous powder. M.p. $225-230^{\circ}$ (dec.). ¹H-NMR (200 MHz; see also *Table 1*): 0.72, 0.73, 0.89, 0.90, 1.10, 1.20, (21 H, 7 CH₃); 1.91, 1.97, 2.03, 2.08, 2.09, 2.14 (8 COCH₃); 3.5–5.50 (carbohydrate protons); 4.46 (d, J = 8, H-C(1')); 4.48 (d, J = 8, H-C(1'')); 5.23 (br. t, H-C(12)); 5.69 (d, J = 9, NH). DCI-MS: 1074 ($[M + H]^{+}$), 1042 ($[(M + H) - 42]^{+}$).

3-{[O-β-D-glucopyranosyl-(1→6)-(2-acetamido-2-deoxy-β-D-glucopyranosyl)]} oxyolean-12-en-28-oic Acid (4). White amorphous powder. M.p. 228–230° (dec.). IR: 3400–3200 (OH), 2900, 1650, 1535 (CONH). ¹H-NMR (200 MHz): 0.79, 0.95, 0.98, 1.00, 1.12, 1.29 (21 H, 7 CH₃); 2.17 (NHCOCH₃); 3.8–5.10 (carbohydrate protons); 5.00 (d, J = 8, H–C(1')); 5.16 (d, J = 8, H–C(1")); 5.42 (br. t, H–C(12)); 8.97 (d, J = 9, NH). ¹³C-NMR (50.1 MHz): Table 2. DCI-MS: 822 ([M + H]⁺), 660 ([(M + H) – 162]⁺⁻), 457 ([(M + H) – 162 – 203]⁺⁻), 204 ([203 + H]⁺⁻).

Acid hydrolysis of **4** afforded oleanolic acid, β -D-glucosamine · HCl, and glucose.

REFERENCES

- [1] K.E. Mott, 'Plant Molluscicides', J. Wiley & Sons, Chichester, 1987.
- [2] J.A. Ojewole, S.K. Adesina, Planta Med. 1983, 49, 99.
- [3] C.O. Adewunmi, V.O. Marquis, J. Parasitol. 1981, 67, 713.
- [4] K. Hostettmann, in 'Economic and Medicinal Plant Research', Eds. H. Wagner, H. Hikino, and N.R. Farnsworth, Academic Press, London, 1989, Vol. 3, pp. 73–102.
- [5] S.K. Adesina, J. Reisch, Phytochemistry 1985, 24, 3003.
- [6] K. Hostettmann, M. Hostettmann, A. Marston, 'Preparative Chromatography Techniques', Springer Verlag, Berlin, 1986.

- [7] S. Gardell, Acta Chem. Scand. 1953, 7, 207.
- [8] H. Ripperger, A. Preiss, J. Schmidt, Phytochemistry 1981, 20, 2434.
- [9] F.W. Wehrli, T. Nishida, Prog. Chem. Org. Nat. Prod. 1979, 36, 1.
- [10] Y. Okada, S. Shibata, T. Ikekawa, A. M. Javellana, O. Kamo, Phytochemistry 1987, 26, 2789.
- [11] G. Massiot, C. Lavaud, L. Le Men-Olivier, G. Van Bist, S. P. Miller, H. M. Fales, J. Chem. Soc., Perkin Trans. 1 1988, 3071.
- [12] T. Konishi, A. Tada, J. Shoji, R. Kasai, O. Tanaka, Chem. Pharm. Bull. 1978, 26, 668.
- [13] C.O. Adewunmi, J. Anim. Prod. Res. 1984, 4, 73.
- [14] C.O. Adewunmi, Int. J. Crude Drug Res. 1984, 22, 161.
- [15] C.O. Adewunmi, W. Becker, G. Dörfler, J. Ethnopharmacol. 1987, 24, 107.
- [16] C.O. Adewunmi, V.O. Marquis, Phytother. Res. 1987, 1, 69.
- [17] C.O. Adewunmi, S.O. Awe, S.K. Adesina, Planta Med. 1988, 54, 550.
- [18] A.-C. Dorsaz, K. Hostettmann, Helv. Chim. Acta 1986, 69, 2038.
- [19] C. Borel, K. Hostettmann, Helv. Chim. Acta 1987, 70, 570.
- [20] P. Godin, Nature (London) 1954, 174, 134.
- [21] K. Hostettmann, H. Kizu, T. Tomimori, Planta Med. 1982, 44, 34.