

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: A. Kamal, N. Reddy, S. malasala, D. Chandrasekhar, J. B. Nanubolu, K. K. Singarapu and R. A. Maurya, *Chem. Commun.*, 2015, DOI: 10.1039/C5CC00815H.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Published on 26 May 2015. Downloaded by California Institute of Technology on 26/05/2015 13:39:06.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Cu(OAc)₂/Et₃N mediated oxidative coupling of α-azido ketones with pyridinium ylides: Utilizing in situ generated imines for regioselective synthesis of imidazo[1,2-a]pyridines

Ahmed Kamal, *a,b Chada Narsimha Reddy, Malasala Satyaveni, D. Chandrasekhar, Jagadeesh Babu s Nanubolu,^c Kiran Kumar Singarapu^d and Ram Awatar Maurya*^a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Phenacyl azides were reacted with pyridinium ylides in the presence of Cu(OAc)₂ (2 mol%) and Et₃N utilizing molecular 10 oxygen as a green oxidant to yield imidazo[1,2-a]pyridines in exclusive regioselectivity. Following the optimized protocol, 28 different fused heterocycles were synthesized in high yields (71-92%). In order to get mechanistic insight of the reaction, a few control experiments were carried out and the role of 15 copper salt was discussed.

α-Azido ketones I are very important building blocks in organic chemistry.1 In contrast to simple alkyl or aryl azides, these organic synthons exhibit many peculiar chemical behaviours which originate mainly from the increased acidity of the α-20 hydrogen due to the presence of oxo functionality. The synthetic potential of these reactive species has been utilized in various inter and intra-molecular fashions to build numerous fine chemicals, pharmaceuticals and natural products.² These base sensitive compounds have long been known to decompose readily 25 after deprotonation yielding highly reactive imines II (Scheme 1). Depending on the reaction conditions and structure of the α azido ketones, the initially formed azomethine anions are hydrolyzed, polymerized, or trapped with various electrophiles. Despite long history, the potential of these reactive imines and 30 therefore of α-azido ketones for organic transformations has not been explored much.

Scheme 1. Base mediated decomposition of α -azido ketones I into imines 35 **II**

Formation of the imine II from α -azido ketones under basic medium was proposed first time by Boyer and Canter.^{3a} Characterization of such imines under photochemical and acid catalyzed decomposition of α-azido ketones has also been 40 reported.3b Although generation of such imines from phenyl glyoxal and ammonium salts are reported, their synthetic utility is largely hampered by aqueous reaction medium where water

sensitive reagents may not be used and the inconvenient access of aryl glyoxals. A careful survey of the literature revealed that the 45 application of these reactive imines in organic synthesis is largely unexplored. Only a few scattered examples mentioning their dimerization, inter and intramolecular cyclization in several ways leading to the formation of pyroles, imidazoles, and pyridines are reported.⁵ Exploring the reactivity of these imines towards 1,3-50 dipoles, which to the best of our knowledge is not investigated so far, might open a new window for diverse valuable heterocycles. We envisioned that the *in situ* generated imines **II** (from readily available phenacyl azides) might be trapped by 1,3-dipoles to yield numerous heterocycles III (Scheme 2).

Scheme 2. Proposed synthesis of heterocyclic molecules III through 1,3dipolar cycloaddition reaction of the imines II (generated in situ) with 1,3-dipoles

60 For the proof of the concept, pyridinium ylides were taken as typical 1,3-dipoles. Herein, we disclose the results of Cu(OAc)2/base mediated coupling of pyridinium ylides, generated from pyridine and phenacyl bromides, with phenacyl azides. Imines II were generated in situ and reacted with 65 pyridinium ylides to form cycloadducts which underwent facile air oxidation yielding pharmaceutically valuable imidazo[1,2a]pyridines.⁶ Due to their significant medicinal importance, numerous synthetic protocols for imidazo[1,2-a]pyridines have been developed. Most of these methods rely on the annulations 70 of 2-aminopyridines with various reagents, therefore both nitrogen atoms of the imidazo[1,2-a]pyridine come from 2aminopyridines. It is notable that the synthetic route described herein utilizes coupling of pyridines and phenacyl azides to yield imidazo[1,2-a]pyridines, hence the nitrogen atoms of the product 75 come from two different coupling partners. The current study not only provides a convenient access to the imidazo[1,2-a]pyridines but also opens up the possibilities of reacting phenacyl azides with many other 1,3-dipoles for the synthesis of valuable intermediates and heterocyclic motifs.

At the onset, an ylide of 3-acetylpyridine was taken as the model 1,3-dipole to test the feasibility of the concept. The pyridinium salt 1a was prepared by refluxing equimolar mixture of 3-acetylpyridine 4a and 2-bromo-4'-chloroacetophenone 5a in 5 EtOAc. Next the crude salt 1a was reacted with phenacyl azide 2a under various conditions to optimize the formation of imidazo[1,2-a]pyridine **3a** (Table 1).

Table 1. Optimization of the formation of imidazo[1,2-a]pyridine 3a via 10 the reaction phenacyl azide 2a with pyridinium salt 1a

Entry	Base (loading)	Additive (loading)	Solvent	Time (h)	Yield of 3a (%) ^b
1			EtOAc	24	0
2 ^c			EtOAc	24	0
3	NaOH (2 eq.)		EtOAc	24	0
4	K_2CO_3 (2 eq.)		EtOAc	24	0
5	DIPEA (2 eq.)		EtOAc	24	0
6	Et ₃ N (2 eq.)		EtOAc	24	0
7	Et ₃ N (2 eq.)	Cu(OAc) ₂ (5 mol%)	EtOAc	6	(61)
8	Et₃N (3 eq.)	Cu(OAc) ₂ (5 mol%)	EtOAc	6	(72)
9	Et ₃ N (3 eq.)	Cu(OAc) ₂ (5 mol%)	THF	2	(55)
10	Et ₃ N (3 eq.)	Cu(OAc) ₂ (5 mol%)	CH ₂ Cl ₂	2	(83)
11	Et₃N (3 eq.)	Cu(OAc) ₂ (2 mol%)	CH ₂ Cl ₂	2	(83)
12 ^d	Et ₃ N (3 eq.)	Cu(OAc) ₂ (2 mol%)	CH ₂ Cl ₂	2	(82)
13 ^e	Et₃N (3 eq.)	Cu(OAc) ₂ (5 mol%)	CH ₂ Cl ₂	2	10
14	Et ₃ N (2 eq.)	AgOAc (5 mol%)	CH ₂ Cl ₂	6	0
15	Et₃N (2 eq.)	AuCl ₃ (5 mol%)	CH ₂ Cl ₂	6	0
16	Et ₃ N (3 eq.)	In(OTf) ₃ (5 mol%)	CH ₂ Cl ₂	2	0
17	Et₃N (3 eq.)	Cu(OTf) ₂ (5 mol%)	CH ₂ Cl ₂	2	30
18	Et ₃ N (3 eq.)	CuSO ₄ .5H ₂ O (5 mol%)	CH ₂ Cl ₂	2	8
19	K ₂ CO ₃ (3 eq.)	Cu(OAc) ₂ (5 mol%)	CH ₂ Cl ₂	2	34
20	NaOH (3 eq.)	Cu(OAc) ₂ (5 mol%)	CH ₂ Cl ₂	2	64

 a Reaction conditions: Pyridinium salt 1a (1 mmol), azide 2a (1.1 mmol), solvent 15 mL, base, additive, rt, stir, open atmosphere. b Yields were determined by 1 H NMR analysis of the crude reaction product using anisole as internal standard, Values in parentheses represent isolated yields. $^{\circ}$ Reaction was done under reflux condition. d The reaction was done under oxygen atmosphere. reaction was done under nitrogen atmosphere.

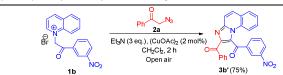
No reaction between the pyridinium salt 1a and azide 2a was observed in absence of a base either at ambient temperature or 15 reflux conditions (Table 1, entry 1, 2). Inorganic bases (NaOH

and K₂CO₃) decomposed the azide 2a but the desired product 3a was not obtained. The azido ketone remained largely un-reacted in the presence of organic bases (DIPEA and Et₃N) even after 24 h at ambient temperature. However, we were pleased to achieve 20 good yields of 3a using 5 mol% Cu(OAc)2 as an additive and 2 eq. of Et₃N as base (Table 1, entry 7). Better yield of 3a was obtained by using 3 eq. of Et₃N as a base (Table 1, entry 8). Furthermore, the loading of Cu(OAc)2 could be reduced to 2 mol% without affecting the product yield and reaction time 25 significantly (Table 1, entry 11). Among several solvents screened, CH₂Cl₂ was found the best in terms of product yield and purity. The yield of 3a was not much improved when the reaction was carried out under oxygen atmosphere (Table 1, entry 12). However, the yield of 3a was drastically decreased when the 30 reaction was performed under nitrogen atmosphere (Table 1, entry 13). Under nitrogen atmosphere, formation of 3a in very low yields can be explained by considering oxidation by Cu(OAc)₂ or residual oxygen. AgOAc, AuCl₃ and In(OTf)₃ were also attempted for the reaction but the desired product 3a was not 35 formed in these cases (Table 1, entry 14-16). Cu(OTf)2 and CuSO₄.5H₂O were also screened for the reaction but the desired product 3a was formed in poor yields (Table 1, entry 17-18). The combination of inorganic bases and Cu(OAc)₂ were also attempted but the yields of 3a were not satisfactory (Table 1, 40 entry 19-20). These results indicated that presence of the copper salt is crucial for the formation of the fused heterocyclic compound 3a. Furthermore, formation of the only regioisomer 3a confirmed the exclusive regioselective nature of the reaction.

Et₃N/Cu(OAc)₂ mediated annulations of **1a** with phenacyl 45 azide 2a were better in CH₂Cl₂ than the same in EtOAc (Table 1). The pyridinium salt 1a prepared from pyridine and phenacyl bromide in EtOAc was sufficiently pure for next step reaction. Therefore, after the formation of 1a was complete the solvent (EtOAc) was removed under reduced pressure and the same 50 reaction vessel was charged with CH₂Cl₂, Cu(OAc)₂ and phenacyl azide 2a for further transformations. Thus, a pseudo three-component, one-pot strategy for the formation of imidazo[1,2-a]pyridine 3a could be achieved. The same strategy was further utilised for the synthesis of a series of imidazo[1,2- $_{55}$ appridines (Table 2). The protocol worked well with a series of phenacyl azides bearing halogen and electron withdrawing as well as electron donating groups in their aryl part leading to the formation of imidazo[1,2-a]pyridines in high yields (75-85%). The reaction was not successful with ethyl azidoacetate. It can be 60 attributed to the difference in the acidity of α -hydrogen atoms of ketones and esters, which might influence the mode of the decomposition of corresponding azides. The difference in the reactivity patterns of α -azido ketones and α -azido esters has already been reported by many researchers.1a The reaction also 65 worked well with aliphatic α-azido ketone giving a good yield (71%) of the corresponding imidazo[1,2-a]pyridine 3a' (Table 2, entry 27).

A number of pyridinium ylides prepared from 3-acetyl pyridine, 3-ethoxycarbonyl pyridine, 4-acetyl pyridine and 70 phenacyl bromides bearing halogen and electron withdrawing as well as electron releasing groups in their aryl part gave high yields of desired imidazo[1,2-a]pyridines (Table 2, entry 1-24 & 27). Furthermore, pyridinium ylides derived from 3-acetyl

Published on 26 May 2015. Downloaded by California Institute of Technology on 26/05/2015 13:39:06


pyridine and aliphatic α-bromo ketones such as 1-adamantyl bromomethyl ketone and 1-bromopinacolone were also successfully utilised for the formation of corresponding imidazo[1,2-a]pyridines (Table 2, entry 25-26).

The reaction was not successful with pyridine, 3bromopyridine or electron donating pyridines dimethylaminopyridine) and yielded a complex mixture. However, the corresponding reaction with quinolinium ylide 1b gave a clean product 3b' in 75% yield (Scheme 3).

Table 2. Scope of the one-pot synthesis of imidazo[1,2-a]pyridines via the reaction of pyridines, α -bromo ketones and α -azido ketones '

En try	R	R ¹	R²	Produ ct	Yield (%) ^b
1	3-COCH ₃	4-CI-C ₆ H ₄	C ₆ H ₅	3a	83
2	3-COCH ₃	4-CI-C ₆ H ₄	4-CI-C ₆ H ₄	3b	80
3	3-COCH ₃	4-CI-C ₆ H ₄	4-CH ₃ -C ₆ H ₄	3с	84
4	3-COCH ₃	C ₆ H ₅	C ₆ H ₅	3d	77
5	3-COCH ₃	C ₆ H ₅	4-CI-C ₆ H ₄	3e	79
6	3-COCH ₃	4-Ph-C ₆ H ₄	C ₆ H ₅	3f	85
7	3-COCH₃	4-NO ₂ -C ₆ H ₄	C_6H_5	3g	82
8	3-COCH ₃	4-NO ₂ -C ₆ H ₄	4-CI-C ₆ H ₄	3h	75
9	3-COCH ₃	3-NO ₂ -C ₆ H ₄	C ₆ H ₅	3i	77
10	3-COCH₃	3-NO ₂ -C ₆ H ₄	4-CI-C ₆ H ₄	3j	83
11	3-COCH ₃	3-NO ₂ -C ₆ H ₄	3-CH ₃ O-C ₆ H ₄	3k	76
12	3-COCH₃	4-CH ₃ -C ₆ H ₄	C_6H_5	31	82
13	3-COCH₃	4-F-C ₆ H ₄	4-CI-C ₆ H ₄	3m	85
14	3-COCH ₃	2-Naphthyl	4-CI-C ₆ H ₄	3n	83
15	3-COCH₃	4 -CN-C $_6$ H $_4$	4-CI-C ₆ H ₄	30	83
16	3-COCH ₃	4-CH ₃ -C ₆ H ₄	4-CI-C ₆ H ₄	3р	80
17	3-COOEt	4-NO ₂ -C ₆ H ₄	C ₆ H ₅	3q	77
18	3-COOEt	3-NO ₂ -C ₆ H ₄	C_6H_5	3r	79
19	3-COOEt	4-Ph-C ₆ H ₄	C ₆ H ₅	3s	81
20	4- COCH₃	3-NO ₂ -C ₆ H ₄	4-CI-C ₆ H ₄	3t	85
21	4- COCH ₃	4-CN-C ₆ H ₄	4-CI-C ₆ H ₄	3u	79
22	4- COCH₃	4-Ph-C ₆ H ₄	4-CI-C ₆ H ₄	3v	82
23	3-COCH₃	C ₆ H ₅	4-CN-C ₆ H ₄	3w	75
24	3-COCH₃	4-CI-C ₆ H ₄	4-CN-C ₆ H ₄	3x	79
25	3-COCH ₃	1-adamantyl	4-Ph-C ₆ H ₄	3у	77
26	3-COCH₃	(CH ₃) ₃ C	4-CH ₃ -C ₆ H ₄	3z	80
27	3-COCH₃	3-NO ₂ -C ₆ H ₄	(CH₃)₃C	3a'	71

^a Reaction conditions: i) Pyridine 4 (1 mmol), α-bromo ketones 5 (1 mmol), EtOAc (20 mL), reflux, 24 h, then evaporate the solvent under reduced pressure, next- ii) azide 2 (1.1 mmol), CH₂Cl₂ 15 mL, Et₃N (3 mmol), Cu(OAc)₂ (2 mol%), stir, open atmosphere. b Isolated yields.

Scheme 3. Reaction of phenacyl azides 2a with quinolinium ylide 1b

The structure of the products 3a-3b' was confirmed by MS/HRMS, IR, ¹H and ¹³C NMR spectra. Further confirmation of the regioselectivity was done by 2D NOESY of compound 3a and 20 single crystal X-ray analysis of compound 3d (For details of 2D NMR and X-ray analysis, see supporting information).

In order to expand the synthetic competence of our strategy, a gram-scale synthesis of 3a was performed under the standard conditions. The desired imidazo[1,2-a]pyridine 3a was isolated in 25 92% yield which indicates there is a potential industrial application (Scheme 4).

Scheme 4. Synthetic application: Gram scale reaction

In order to get a better understanding of the annulations process, 30 we planned to study the role of copper salt by taking the reaction of pyridinium salt 1c with phenacyl azide 2b as a model reaction (Scheme 5). We were particularly interested in characterizing the product of copper-free reaction. After screening several conditions, a good yield of enaminone 6 was obtained by 35 refluxing the reaction mixture in THF using 3 eq. of K₂CO₃.

Scheme 5. Control experiment: Formation of enaminone 6 under copperfree conditions

Formation of the enaminone 6 in copper-free reaction and 40 imidazo[1,2-a]pyridine 3 in copper mediated reaction might be explained by a plausible mechanism depicted in Scheme 6. In copper-free reaction, imine 7 is generated from the decomposition of phenacyl azide 2 by potassium carbonate. Next it is attacked by pyridinium ylide 8 leading to the formation of an 45 intermediate 9. In the intermediate 9, intramolecular attack of the amine (hard base) to the pyridinium imine (soft acid) is disfavored. Such reactions are generally reversible and to the best of our knowledge, they are not known to proceed under basic conditions. Therefore under basic and reflux conditions, the 50 pyridyl group is eliminated yielding a thermodynamically stable enaminone 6.

In the presence of Et₃N and Cu(OAc)₂, the phenacyl azide 2 decomposes to yield a chelated imine 10. The chelated imine is attacked by pyridinium ylide 8 yielding an intermediate 11 which 55 rapidly isomerizes to another intermediate 12. Due to the chelation, amine group (NH) of the intermediate 12 behaves as a soft base and attacks the pyrinium imine (soft acid) to yield another intermediate 13. Although Scheme 6 shows the formation of 13 by step-wise process, a concerted [3+2] dipolar 60 cycloaddition process for the same cannot be discounted. In the presence of atmospheric oxygen, the intermediate 13 rapidly aromatizes to imidazo[1,2-a]pyridine 3.

June Memore Accepted Manuscrip

Scheme 6. Proposed mechanism for the formation of imidazo[1,2-a]pyridines **3** via copper mediated reaction and enaminone **6** in copper-5 free condition

Conclusions

Published on 26 May 2015. Downloaded by California Institute of Technology on 26/05/2015 13:39:06

In conclusion, the reactivity of a class of α -azido ketones towards pyridinium ylides for the formation of pharmaceutically important fused heterocycles has been explored for the first time. 10 Et₃N/Cu(OAc)₂ mediated one-pot strategy for the synthesis of valuable imidazo[1,2-a]pyridines was developed and 28 different chemical entities were synthesized in high yields (71-92%). The experimental results revealed that copper salt plays an important role for controlling the reactivity of in situ generated imines 15 towards pyridinium ylides. The reaction and the one-pot protocol we developed has the potential for scale-up production of imidazo[1,2-a]pyridines. This novel reactivity pattern of α -azido ketones towards 1,3-dipoles opens up the possibilities of synthesizing numerous valuable heterocycles as well as fine 20 chemicals in a manner that is atom economical, convenient and scalable. Coupling of the phenacyl azides with other 1,3-dipoles is currently under investigation and the results will be communicated in near future.

25 Acknowledgment

R.A.M. is thankful to Department of Science & Technology, India for financial support (GAP 0378 & GAP 0470). Financial support in part from 12th Five Year Plan Project "Affordable Cancer Therapeutics (ACT-CSC-0301)" is also acknowledged. ³⁰ C.N.R. acknowledges CSIR- New Delhi, and M. S. acknowledges NIPER India for financial support.

Notes and references

 Department of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India, E-mail:
 ramaurya@iict.res.in (RA Maurya); ahmedkamal@iict.res.in (A Kamal)

- ^b Catalytic Chemistry Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- ^c Centre for X-Ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- ⁴⁰ Centre for Nuclear Magnetic Resonance, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India † Electronic Supplementary Information (ESI) available: [general experimental procedures, NMR data, and single crystal X-ray data]. See DOI: 10.1039/b000000x/
- 4s 1 a) T. Patonay, K. Konya and E. J. Toth, *Chem. Soc. Rev.*, 2011, 40, 2797; b) S. Brase, C. Gil, K. Knepper and V. Zimmermann, *Angew. Chem. Int. Ed.*, 2005, 44, 5188.
- For selected recent publications, see: a) R. A. Maurya, P. R. Adiyala, D. Chandrasekhar, C. N. Reddy, J. S. Kapure and A. Kamal, ACS Comb. Sci., 2014, 16, 466; b) E. J. Toth, G. Favi, O. A. Attanasi, A. C. Benyei and T. Patonay, Synlett, 2014, 25, 2001; c) J. S. Dickschat, H. Reichenbach, I. Wagner-Dobler and S. Schulz, Eur. J. Org. Chem., 2005, 4141; d) A. Martinez-Castaneda, K. Kedziora, I. Lavandera, H. Rodriguez-Solla, C. Concellon and V. del Amo, Chem. Commun., 2014, 50, 2598; e) A. Cuetos, F. R. Bisogno, I. Lavandera, and V. Gotor, Chem. Commun., 2013, 49, 2625; f) S. Liu, Y.-M. Cui and F.-J. Nan, Org. Lett., 2008, 10, 3765.
- a) J. H. Boyer and F. C. Canter, Chem. Rev., 1954, 54, 1; b) O. E. Edwards and K. K. Purushothaman, Canadian J. Chem., 1964, 42, 712; c) T. Patonay, E. Juhasz-Toth and A. Benyei, Eur. J. Org. Chem., 2002, 285.
- P. A. Grieco, S. D. Larsen and W. F. Fobare, *Tetrahedron Lett.*, 1986, 27, 1975.
- a) X. Fan and Y. Zhang, Tetrahedron Lett., 2002, 43, 1863; b) B.
 Batanero, J. Escudero and F. Barba, Org. Lett., 1999, 1, 1521; c) J. H.
 Boyer and D. Straw, J. Am. Chem. Soc., 1952, 74, 4506; d) J. Chen,
 W. Chen, Y. Yu and G. Zhang, Tetrahedron Lett., 2013, 54, 1572; c)
 J. Chen, H. Ni, W. Chen, G. Zhang and Y. Yu, Tetrahedron, 2013, 69, 8069.
- 70 6) For selected recent publications over various biological activities of imidazo[1,2-a]pyridines, see: a) Y. B. Kim, C. W. Kang, S. Ranatunga, H. Yang, S. M. Sebti and J. R. Del Valle, Bioorganic Med. Chem. Lett., 2014, 24, 4650; b) G. C. Moraski, A. G. Oliver, L. D. Markley, S. Cho, S. G. Franzblau and M. J. Miller, Bioorganic Med. Chem. Lett., 2014, 24, 3493; c) S. Kang, R. Y. Kim, M. J. Seo, S. Lee, Y. M. Kim, M. Seo, J. J. Seo, Y. Ko, I. Choi, J. Jang, J. Nam, S. Park, H. Kang, H. J. Kim, J. Kim, S. Ahn, K. Pethe, K. Nam, Z. No and J. Kim, J. Med. Chem., 2014, 57, 5293; d) Y. Terao, H. Suzuki, M. Yoshikawa, H. Yashiro, S. Takekawa, Y. Fujitani, K. Okada, Y. Inoue, Y. Yamamoto, H. Nakagawa, S. Yao, T. Kawamoto and O. Uchikawa, Bioorganic Med. Chem. Lett., 2012, 22, 7326; e) P. K. Dubey, R. V. Kumar, A. Naidu and S. M. Kulkarni, Asian J. Chem., 2002, 14, 1129.
- 7) a) H. Cao, X. Liu, J. Liao, J. Huang, H. Qiu, Q. Chen and Y. Chen, J. Org. Chem., 2014, 79, 11209; b) R. R. Donthiri, V. Pappula, N. N. K. Reddy, D. Bairagi and S. Adimurthy, J. Org. Chem., 2014, 79, 11277; c) H. Cao, X. Liu, L. Zhao, J. Cen, J. Lin, Q. Zhu and M. Fu, Org. Lett., 2014, 16, 146; d) H. Huang, X. Ji, X. Tang, M. Zhang, X. Li and H. Jiang, Org. Lett., 2013, 15, 6254; e) W. Ge, X. Zhu, Y. Wei, Eur. J. Org. Chem., 2013, 6015; f) D. C. Mohan, S. N. Rao and S. Adimurthy, J. Org. Chem., 2013, 78, 1266; g) K. Pericherla, P. Khedar, B. Khungar and A. Kumar, Chem. Commun., 2013, 49, 2924; h) D. C. Mohan, R. R. Donthiri, S. N. Rao and S. Adimurthy, Adv. Synth. Catal., 2013, 355, 2217; i) A. M. Sajith and A. Mularidharan, Tetrahedron Lett., 2012, 53, 1036; j) Y. M. Yutilov and L. I. Shcherbina, Chem. Heterocylcl. Comp., 1987, 23, 529; k) A. K. Bagdi, S. Santra, K. Monir and A. Hajra, Chem. Commun., 2015, 51, 1555; l) K. Pericherla, P. Kaswan, K. Pandey and A. Kumar, Synthesis, 2015, 47, 887.
- 8) Although the observed reactivity was explained by Hard and Soft Acid Base concept, HSAB theory was recently criticized, see: H. Mayr, M. Breugst and A. R. Ofial, *Angew. Chem. Int. Ed.*, 2011, 50, 6470.