2-methoxyethanol. After 19 hr at room temperature, the solution was diluted to about 300 ml with water and acidified to pH 2.9 by gradual addition of 1 N HCl. After cooling, the solid was collected and washed with water, to yield 1.26 g (76%) of XX, mp 232–236° dec. A sample was recrystallized from ethanol to give pale yellow flakelets, mp 228–229° dec.

Anal. Calcd for $C_{15}H_{17}CIN_6O_4S$: C, 43.64; II, 4.15; Cl, 8.59; N, 20.36. Found: C, 43.57; II, 4.44; Cl, 8.66; N, 20.47.

Acknowledgments.—The authors wish to express their appreciation to Dr. Arnold Brossi for helpful suggestions and continued interest. We wish to thank Dr. V. Toome for the determination of the ultraviolet spectra and the pK_a values, Dr. Al Steyermark for the microanalyses, and Dr. L. O. Randall and his staff for the pharmacology.

Synthetic Schistosomicides. VIII. N-Mono- and N,N-Dialkyl-N'-(4-arylazo-1-naphthyl)alkylenediamines and Related Compounds¹

EDWARD F. ELSLAGER, DAVID B. CAPPS, DIANNE H. KURTZ, FRANKLIN W. SHORT, LESLIE M. WERBEL, AND DONALD F. WORTH

Research Laboratories, Parke, Davis and Company, Ann Arbor, Michigan

Received November 11, 1965

Several hundred N-mono- and N,N-dialkyl-N'-(4-arylazo-1-naphthyl)alkylenediamines (III) were synthesized by (1) coupling a diazotized arylamine with the appropriate 1-(aminoalkyl)naphthylamine, (2) amination of a N-(\(\text{a-haloalkyl}\))-4-(arylazo)-1-naphthylamine, and (3) hydrolysis of N-(aminoalkyl)-N-[4-(arylazo)-1-naphthyl]-2,2,2-trifluoroacetamides or formamides. Schistosomicidal activity among the N,N-dialkyl-N'-(4-arylazo-1-naphthyl)alkylenediamines is widespread, and twenty-nine compounds cured Schistosoma mansoni infections in mice at doses ranging from 78 to 734 mg/kg per day for 14 days. Six compounds were evaluated against S. mansoni infections in rhesus monkeys and each showed significant antischistosomal activity in this host. Structure-activity relationships are discussed.

During the course of continuing efforts in these laboratories to develop novel schistosomicidal agents, it was discovered that various [4-(dialkylaminoalkylamino)-1-naphthylazo]heterocyclic compounds (I) possess strong therapeutic activity against Schistosoma

1-diethylamino-3-(1-naphthylamino)-2-propanol was reported. 9

Three major routes (Chart I) were utilized in the preparation of the N-mono- and N,N-dialkyl-N'-(4-arylazo-1-naphthyl)alkylenediamines (III) (Tables

$$X \longrightarrow_{N=N-Het}^{NHYNR_1R_2}$$

mansoni in experimental animals.^{2,3} We have been actively engaged in extending this work to other series.^{1,4–8} and now wish to report the synthesis of a group of N-mono- and N,N-dialkyl-N'-(4-arylazo-1-naphthyl)alkylenediamines (III, where R, R₁, and R₂ represent a hydrogen atom or an alkyl group, Y an alkylene radical, X a hydrogen or halogen atom or a hydroxy or alkoxy group, and Ar a phenyl or naphthyl radical), many of which exhibit remarkable schistosomicidal activity in mice. After the completion of this work, the synthesis of several azo derivatives of

I-V): (1) coupling a diazotized arylamine with the appropriate 1-(aminoalkyl)naphthylamine (II)¹⁰ (route A) (procedures I-IV); (2) amination of a N-(ω-haloalkyl)-4-(arylazo)-1-naphthylamine (IV) with the appropriate amine (route B) (procedure VI); and (3) hydrolysis of an N-(aminoalkyl)-N-[4-(arylazo)-1-naph-

⁽¹⁾ Previous paper: E. F. Elslager and D. B. Capps, J. Med. Chem., 7, 663 (1964).

⁽²⁾ E. F. Elslager, D. B. Capps, L. M. Werbel, D. F. Worth, J. E. Meisenhelder, H. Najarian, and P. E. Thompson, ibid., 6, 217 (1963).

⁽³⁾ E. F. Elslager, D. B. Capps, D. H. Kurtz, L. M. Werbel, and D. F. Worth, ibid., 6, 646 (1963).

⁽⁴⁾ E. F. Elslager, D. B. Capps, L. M. Werbel, D. F. Worth, J. E. Meisenhelder, and P. E. Thompson, ibid., 7, 487 (1964).

⁽⁵⁾ E. F. Elslager, D. B. Capps, and L. M. Werbel, *ibid.*, **7**, 658 (1964).

⁽⁶⁾ E. F. Elslager, A. M. Anders, M. W. Fisher, Z. B. Gavrilis, and L. M. Werbel, *Nature*, in preparation.

⁽⁷⁾ L. M. Werbel, A. M. Anders, E. F. Elslager, M. W. Fisher, and Z. B. Gavrilis, J. Med. Chem., in preparation.

⁽⁸⁾ E. F. Elslager, D. B. Capps, and L. M. Werbel, ibid., in preparation.

⁽⁹⁾ K. Matsui, T. Sunaga, and K. Kasai, Yuki Gosei Kagaku Kyokai Shi, 20, 453 (1962); Chem. Abstr., 57, 6069i (1962).

⁽¹⁰⁾ L. M. Werbel, D. B. Capps, E. F. Elslager, W. Pearlman, F. W. Short, E. A. Weinstein, and D. F. Worth, J. Med. Chem., 6, 637 (1963).

thyl]-2,2,2-trifluoroacetamide or formamide (V) (route C) (procedures V, VII, and VIII). Among them, route A proved to be the most useful because of the ready availability of a variety of diazo components and 1-(aminoalkyl)naphthylamines (II).¹⁰ Route B was especially applicable for the preparation of groups of 4-arylazo-1-naphthylalkylenediamines in which only the aliphatic amine portion was varied.

The action of nitrous acid on various aromatic diamines and hydroxyamines leads to the formation of undesirable by-products, 11 thereby limiting the usefulness of route A for the preparation of certain 4-arylazo-1-naphthylalkylenediamines with amino or hydroxy substituents in the aryl function. Efforts were made, therefore, to develop a more versatile synthetic route to such compounds utilizing N-(dialkylaminoalkyl)-1,4-naphthalenediamine derivatives as diazo components (route C).

As anticipated, 11 attempts to use N-(2-diethylamino-ethyl)-1,4-naphthalenediamine (VIIa)4 in diazotization-coupling procedures with aromatic amines and phenols under a variety of experimental conditions were unsuccessful, presumably because compounds of type VIIa undergo rapid oxidative decomposition both in basic and acidic media. 4 However, N-(4-amino-1-naphthyl)-N-(2-diethylaminoethyl) acetamide

A
$$N(CH_2)_2 N(C_2H_5)_2$$

N=NC₆H₅

VI

A $N(CH_2)_2 N(C_2H_5)_2$
 NH_2

VII

A $N(CH_2)_2 N(C_2H_5)_2$

a, A = H
b, A = COCH₃
c, A = COCC₂H₅
d, A = COCF₃
e, A = CHO

NH(CH₂)₂N(C₂H₅)₂

VIII

(VIIb), 4-amino-N-(2-diethylaminoethyl)-1-naphthalenecarbamic acid ethyl ester (VIIc), N-(4-amino-1naphthyl)-N-(2-diethylaminoethyl)-2,2,2-trifluoroacetamide (VIId), and N-(4-amino-1-naphthyl)-N-(2-diethylaminoethyl)formamide (VIIe) diazotized normally and coupled readily with 1-(2-diethylaminoethylamino)naphthalene¹⁰ in acidic media to give the azo compounds VIIIb-e (procedures V, VII, and VIII). Compounds VIIb-e were prepared by acylation of N, N-diethyl-N'-(4-phenylazo-1-naphthyl) ethylenediamine (VIa, 17) with acetic anhydride, ethyl chloroformate, trifluoroacetic anhydride, and formic-acetic anhydride, respectively, followed by reductive scission of the intermediate N'-acyl-N, N-diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamines (VIb-e) with hydrogen over Raney nickel.

(11) For a brief review, see K. H. Saunders, "The Aromatic Diazocompounds and Their Technical Applications," Edward Arnold and Co., London, 1949, pp 21, 30.

Surprisingly, attempts to hydrolyze VIIIb and c to N,N''-(azodi-1,4-naphthylene)bis(N',N'-diethylethylenediamine) (VIIIa, 209) under a variety of experimental conditions failed. However, N-(2-diethylaminoethyl)-N-{4-[4-(2-diethylaminoethylamino)-1naphthylazo]-1-naphthyl}-2,2,2-trifluoroacetamide (VIIId) hydrolyzed readily when treated with 2 N methanolic sodium hydroxide at room temperature to give VIIIa in 52% over-all yield from VIId (procedure V). Compounds 27, 61, 84, and IXb (203) were prepared by alkaline hydrolysis of the corresponding trifluoroacetamides in a similar manner (procedures V and VII). On the other hand formamide derivatives such as N-(2-diethylaminoethyl)-N-{4-[4-(2-diethylaminoethylamino)-1-naphthylazo]-1-naphthyl}formamide (VIIIe) and N-(2-diethylaminoethyl)-N-[4-(2-hydroxy-1-naphthylazo)-1-naphthyl]formamide (IXa) especially susceptible to acid hydrolysis yielding VIIIa and 1-[4-(2-diethylaminoethylamino)-1-naphthylazo]-2-naphthol (IXb), respectively (procedure VIII).

The hypothetical mode of action of several of the N,N-dialkyl-N'-(4-arylazo-1-naphthyl)alkylenediamines is worthy of special comment. Assuming that the azo function of N,N"-(azodi-1,4-naphthylene)bis-(N',N'-diethylethylenediamine) (VIIIa, 209) undergoes reductive scission in vivo, 4 2 moles of N-(2-diethylaminoethyl)-1,4-naphthalenediamine (VIIa) would be formed. The diamine VIIa has been postulated to be a metabolite of 5-[4-(2-diethylaminoethylamino)-1naphthylazo luracil and related azo compounds^{2,3} and has been shown to have potent antischistosome activity in vitro and in mice.4 By analogy, the cleavage of $bis(p-aminophenyl) \{p-[4-(2-diethylaminoethyl$ amino)-1-naphthylazo]phenyl{methanol (X, 93) or N-(5-p-[4-(2-diethylaminoethylamino)-1-naphthylazolphenoxy{pentyl)phthalimide (XI, 94) would simultaneously release two different active moieties, namely VIIa and tris(p-aminophenyl)methanol¹² or N-[5-(p-aminophenoxy)pentyl]phthalimide,¹³ tively. An alternate approach to hybrids that might possess a dual mode of action⁵ involved the linkage of two active moieties through the side chain. Thus, certain structural features of both the (4-arylazo-1naphthyl)alkylenediamines and the p-tolylpiperazines¹⁴⁻¹⁶ were incorporated in 1-(3-chloro-p-tolyl-

⁽¹²⁾ E. F. Elslager, F. W. Short, D. F. Worth, J. E. Meisenhelder, H. Najarian, and P. E. Thompson, *Nature*, **190**, 628 (1961).

⁽¹³⁾ R. F. Collins, M. David, N. D. Edge, J. Hill, H. W. Reading, and E. R. Turnbull, *Brit. J. Pharmacol.*, **14**, 467 (1959).

⁽¹⁴⁾ G. Lämmler, Z. Tropenmed. Parasitol., $\mathbf{9}$, 294 (1958).

⁽¹⁵⁾ H. Ruschig, D. Schmidt-Barbo, H. Leditschke, and G. Lämmler, U. S. Patent 2,830,056 (April 8, 1958).

 $\dot{N}H(CH_2)_2N(C_2H_5)_2$

924	Caled Found	2.19 12.36	11.11 11.00	13.49 13.50	10.67 10.80	13.17 13.05	12.11 12.18				11.71 14.88	13.98 13.92	15.37 15.30	15.37 15.19		17.89 17.95		16.17 16.25		13,81						11.26 11.26	13, 14 13, 08	14.66 14.41	16.46 16.63	9.89 9.91	11.09 10.97	18.85 18.99	11,53 11,12				15.54 15.67						12, 10 12, 14
gen, % Eamol	Found	5.34	1.93	5.85		5.78	6.22	6.33			6.70								6.95					6,35					6.39			6.82			6,75		13						8
Hydro	Called	5.26	08.1	5.82	5, 76	5.92	6.10	6.38	6.62	6.62	6.62	6.54	6.91	6.91	6.41	6.41	6.4	7.57	6.58	6.82	6.35	6.30	9.H	6.15	6.32	80.9	6.38	6.75	6.40	1.63	5, 78	87.9	6.33	6.71	6.9	6.45	7.83	6.57	83.7	6.38	1.1.7	1	2
Carbon, %	r ound	57.37	52.62	63.38	50.04	61.82	56.77	53.45	69.41	69.03	68.78	66.65	72.38	72.12	67.38	67.30	67.50	76.20	59.72	66.25	57,39	60.11	58.60	61.79	55.27	53,43	61.29	55.31	62.16	18.91	51,49	74, 19	56.68	50.99	68.01	67.88	76.95	62.80	76.87	61.23	55.76	0 1	0.00
Card	r aned	57.46	52.40	63.61	50.30	62.12	57.09	53.94	78,99	58.69	28.69	65.90	72.50	72.50	67.49	67.49	67.49	76.26	59.46	66.23	57.39	60.05	58.26	61,95	55.21	53, 12	61.96	55.29	62.09	48.78	54.65	74.36	56.85	70.74	67.62	67.96	76.63	63.03	76.63	61.25	55.87	15	0.00
Товтина	rocmens.	C22 H24 BrClN4	CartabraNg	$C_{22}H_{24}Cl_2N_4^d$	C22H28BrN+2HC4+1.5H2O	Carlis BrN4	$C_{22}H_{25}CJN_4 \cdot 2MCl \cdot 0.5H_2O^7$	CaHaCIN-2HCL2HaOsh	CmIl26CIN4	Callas CIN4	$(\cdot_2 \cdot \mathbf{H}_{28}\mathrm{C1N_4}^i)$	C22H26FN4+HC17	Carlish FN4	C22H25FN4	Con Hos NoOn	(?:: H25 N5O2	CallsoNsO2	$C_xH_{s6}N_4$	$C_{22}\Pi_{26}N_4O\cdot 2HCI\cdot 0.5\Pi_2O^{k,l}$	$C_{22}H_{26}N_4O \cdot JfCl^{m,n}$	C22H26N4O9+2JFCl+0.5JI2O7577	C22 H26N4O3S - 0.75 H2O9	$C_{22}\Pi_{26}N_4O_3S \cdot 1.51\Gamma_2O^r$	CzzHz6N4OaS	$C_{22} H_{26} N_4 O_4 S \cdot 2 H_2 O^8$	$C_{22}H_{27}A_8N_4O_3\cdot 1.511_9O^4$	Callar N4OsP	$C_{22}H_{27}N_{5}\cdot 2.6H(1\cdot 1.2H_{2}O^{n_{5}})$	C2H27N5O2S	CgaHgaBrFaN4·2HCl	$C_{23}H_{25}F_3N_4 \cdot 2)TC4 \cdot H_2O'''\cdot r'$	Callab Ns	$C_{23}H_{26}N_4O_2 \cdot 2 HCl \cdot 1.25H_2O''$	C23 H96N4O2	$C_{23}H_{26}N_4O_2 \cdot H_2O^2$	C23H26N4O2	CstHssN4	C23H2SN4+C6HSOran	C23 If 28 N4	$C_{23}\Pi_{28}N_4O\cdot C_6\Pi_8O_7'''$	C3.H28N4O-2HCI-2.5H5O#6c	SOUTH NEW OTHER OFFICE	Collection Differ Obots in the
Purifi- eation ⁶	sorvent	Y	۲.	۲.	<u>-</u>	<u>1</u>	<u>'</u> -	22	B	Ü	1	٧.	Y	۲,	<u>=</u>	~	==	خد	2	۲.	Ü	_	П	Ξ	Ξ	Η	Ħ	 -	7	_	5	۲.	Υ.	r.	Ľ	Ι.	<u>-</u>	<u>'</u> ∠	1	Ж	E		÷
Pro-	eedure	Ι	_	_	=	_	=	=	_	_	_	=	-		Ξ	III	Ш	I	Ξ	П	11	11	IV	11	1		17.	`~	Т	=	=	_	<u>.</u>	ΙΛ	11.	ΛΙ		Ξ	_	=	Ξ	11	11
Yield purified,	o/.	45	18	69	#G	퓼	20	40	92	62	70	15	8 89	11	98	5.6 9.6	17	28	65	193	35	œ	93	65	9/	æ	80	62	87	23	34	62		1 9	8	2	22	92	1.4	87	85	600	26
o de	Mp, "C	89-91	110-112	107-108	171-172	82-86	168-170 dec	163-165	99–100	63-64	94-95	94-96	89-99	70-72	92. 93	117-118	137-138	57-59	179-180	215-216	194-195 dec	185 dec	197 -198 dec	2.13-2.1.1	205 dec	158 dec	225-226 dec	200 dec	170-172	150-152	152-154 dec	111-112	162	202-203 dec	146-149	220 dec	92~93	102-107	62-82	145-148 dec	164-165	601 001	100-102
	2	2-Cl, 4-Br	3,5-Br ₂	3,5-(1]2	3-Br	4-Br	н	Ħ	2-CI	3-(3)	4-01	2-F	3-F	4-Ji	$2-NO_2$	3-NO:	4-NO.	П	3-OH	4-OII	3,5-011	$2-SO_3\Pi$	3-SO ₃ H	4-SO ₃ H	4-SO ₃ II	$4-AsO_3II_2$	4-PO(O1f);	$4-NH_2$	$4-8O_2NH_2$	2-Br, 5-CF;	3-CF_3	4-CN	2-COOH	3-C001I	4-C00H	3-OH, 4-COOH	2 -CH $_3$	3-CH3	4-CH3		: 11	1100	
×	Ž.	П	11	=	Ξ	Ξ	1-Cl	8-CI	П	11	Ш	H	11	11	н	=	11	Ш	Н	11	H	=	=	Н	7-0H	=	==	=	H	H	H	11	Н	П	ı	Н	н		Ш	6-0CH3	7-0CH3		===
ž	ċ	_	21	က	4	ıç	9	1~	œ	s.	10	11	12	13	7	15	16	17	18	19	20	21	55	23	54	25	56	27	28	58	30	31	32	33	75	35	36	37	38	30	40	;	41

n, % Found	12.88	14.34	11 75	12.80	14.32	14.65	13.63	17.62	16.23	13.72	11.61	14.59	11.94	13.93	13.85	13.75 10.79	16.15	14.20	12.71		19.51	14.03	13.43	13.67	10.67	10.22	16.50	16.87	18.91	18.30	12.97 14.55 11.76 12.54 18.73 11.92
Nitrogen, % Caled Fou	13.06	14.27	20.97	12.90	14.42	14.42	13.85	17.36	16 97	13.63	11.65	14.35	12.09	13.78	13.78	14.01 10.93	16.52	13.92	13.03		19.47	13.99	13.45	13.39	10.74	10.40	16.54	16.72	18.94	18.37	13.01 14.67 11.81 12.32 18.65 11.71
Hydrogen, % Jaled Found	68.9	7.40	6. 6 81 81	6.30	7.25	7.15	7.16	0.40 7.30	7.50	7.61	7.12	7.58	68.9	7.21	7.55	7.03 5.03	5.57	7.64	4.84		5.77	7.73	7.99	8.32	7.85	5.94	6.82	5.99	6.30	5.72	7.95 7.46 7.55 6.70 6.56 7.88
Hydro Caled	6.81	7.19	6.5	6.03	7.25	7.26	6.98	0.40 7.94	7.41	7.60	7.19	7.74	96.9	7.41	7.44	6.87	5.55	7.51	5.06		5.80	8.05	7.74	8.19	7.60	5.80	6.90	6.02	6.04	5.85	7.96 7.39 7.48 6.65 6.71 7.58
n, % Found	64.57	88.69	62.69	66.16	74.11	74.16	71.21	95.75 71.45	07.T/	00.00	58.79	73.78	62.36	71.02	71.28	57.40 58.61	59.00	74.30	58.06		62.21	77.65	74.75	74.82	59.58	60.85	76.51	64.60	62.53	60.72	75.45 67.79 54.60 73.67 74.54 56.47
Carbon, % Caled Fou	64.39	70.37	59.08	66.34	74.19	74.19	71.26	71.43	66.05	20.33	58.77	73.81	62.20	70.91	70.91	57.77	59.03	74.59	58.08		62.00	77.96	74.96	74.60	59.87	60.22	99.92	64.52	62.64	92.09	75.31 67.90 54.68 73.97 74.63 56.23
Formula	$\mathrm{C}_{23}\mathrm{H}_{28}\mathrm{N}_4\mathrm{S}\cdot\mathrm{HCl}$	C23IL28N4S	Cealles N. O.S.	Cost Los Na O.	C24 IL28 N4O	C24H28N4O	C24 If 28 N4 O2	Cattaina O.s.	Collegns C	Catterns C. Louis C. Han, V. HCIAA	$C_{24}H_{20}N_4O$, $2HCl$, $1.5H_2O^{15}t^{j}$	Carling No Okk	C24 II 30 N4O · 21 [C]	$C_{24}H_{30}N_4O_2$	$C_{24}11_{39}N_4O_2$	C24H31N6 - 3 HCl C34 H3cFcN4O	Cas Has No Os Sa	C_{25} H_{30} N ₄ O	C-6.H27N6O4S2		$\mathrm{C}_{26}\mathrm{H}_{29}\mathrm{N}_7\mathrm{O}_5\mathrm{S}$	C26IIz2N4	C26H22N4O C24H2N1-9HC1-9 5H3-O <i>ll,mm</i>	Colla N4O	$C_{26}H_{34}N_4O \cdot 2HCl \cdot 1.67H_2O^{nn}$	$\mathrm{C}_{Z}\mathrm{H}_{18}\mathrm{N}_{4}\mathrm{OS}\cdot 2\mathrm{HCl}\cdot 0.5\mathrm{H}_{2}\mathrm{O}^{99,pp}$	$C_{21}I_{29}N_6$	$C_{gr}H_{sa}N_6O_3S$	C_{7} H_3 N_i O_2 S	C_{27} Hai N $_7$ OaS	C ₂ r H ₂₄ N ₄ O C ₂ r H ₃₁ N ₆ O ₃ C ₂ r H ₃₁ N ₆ O · 3 HCl · 2 H ₂ Oqq,r C ₂ s H ₂₀ N ₄ S C ₂ s H ₃₀ N ₆ C ₃ s H ₃₀ N ₆
Purification ^b	L	≏ .	-(-	< - -	~ ₹:	Α	Μ.	- <	£ :	E 4	₫ ⊨	Z	0	Ъ	Ъ	그 보 보	, w	A	<		ී	¥ i	<u> </u>	= <	M	ŭ	¥	ī	÷	ī.	B 4 0 8 4 H
Pro- cedure	П			. 1		Ι	ч.	- -	- -		, =		Η	1	_	> _	1	1	I		-	н	_	I I	Ξ	11	н	-	-	П	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Yiekd purified, %	52	40	3 8	g <u>e</u>	20	53	64	9 9	0 0	6 8	3	92	41	33	52	22 90	72	æ	Ξ		18	48	62	31	40	30	45	84	81	77	66 20 32 97 19 68
Mp, °C	203-205	76-78	89-90	190 dee	26-96	102-103	187–189	168-160	174 169	180-182	221 SS1 178–179	90–92	170-172	82-89	99-101	150-153 125-127	220-222	113-114	173-175		215–217	108-110	89-91 140 dec	149 dec 110-112	147-149	171-172	94-96	164–165	192-194	202-204	93-91 173-174 181-184 dec 129-130 120-122 170-172
×	2-SCH ₃	4-SCH ₃	3.5-CE3	3,4-C00H	3-COCIEs	4-COCH ₃	4-CH ₂ COOII	S-NHCOCH,	4-NHCOCH.	3.4-CHs	4-CH ₂ CH ₂ OH	3-CHOHCHs	4.OC ₂ II ₅	3,4-OCH ₃	4-0CH ₂ CH ₂ OII	4-N(CH3) ₂ 4-C(CF ₃) ₂ OII	N - 4 - SO ₂ NH	4-COC ₂ H ₅		4-SO ₂ S NO ₂	N 4-SO ₂ NH N	2,3-(CII₂)←	4-CO(CH ₂) ₂ CH ₃ 3-C/CH->-	Z-C(CH3)3 4-OCH-CH(CH3)•	4-0CHCH3C2H6	3-CO	4	4-SO ₂ NH	4-SO ₂ NH CH ₃	4-SO ₂ NH N*N	4-CO(CH ₂) ₂ CH ₃ 4-CHOHCH(NHCOCH ₃)CH ₂ OH] 3-CH ₂ N(C ₂ H ₃), 4-OH 2-SC ₄ H ₄ 4-N=NC ₆ H ₆ H
×	= :	= =	= =	: =	Н	н:	II 1	==	т	= =	: H	Н	П	Н	Н	= #	н	Н	Н		н	н	ш	= =	11	Н	н	н	н	н	H II H H G-O(CH ₃) ₂ N(C ₃ H ₃) ₂
No.	44	45	47	48	49	50	25	7 22	3 2	£ 75	26	57	28	29	09	61 62	63	64	65		99	29	80 g	20	71	72	73	4	75	92	77 78 79 80 81 82

Table 1 (Continued)

Nitrogen, %	Found	10.91	27, 22	10.58	12.26	12.47	11.01	15.70	11.82	80.11	11.77	15,37	12.10
Nitrog	Caled	11.29	13.87	10.70	12.38	12.22	13.85	15.21	11.76	11.36	11.51	15.01	51 51
Hydrogen, %	Caled Found	7.79	8.11	6.17	7.09	8.39	27.7	5.15	6.71	6.41	8.71	2.00	2919
Hydros	Caled	7.79	7.83	91.9	7.13	8.35	11.11	5.47	6.77	6.37	8.70	98.9	9.80
n, %	Caled Found	53.85	55,74	66.30	77.21	75.61	69.14	56.40	77.95	60.35	89.92	75.40	72.82
Carbon, %	Caled	51.19	55.48	66.53	96.92	75.91	88.89	55.89	78.11	60.38	76.50	75.24	72.76
	Formula	C28H39NsO - 311Cl - 2.5H2Ouv	C38H40N6 - 3HCl - 2H2Ovv	ww(C)11C+O*V(s).	C29H32N4O	C ₂₉ H ₃₈ N ₄ O	C29 H39 N5O3	$C_{30}\Pi_{31}N_{7}O_{5}S\cdot 2\Pi CI\cdot \Pi_{2}Oxx,uu$	C31H32N4O	Car Har NoO2S · 2 HCl	Cal Hal N4O	Cas H 28 NoO	Cas HayNaO2
Purifi- $\operatorname{cation}^{h}$	solvent	-	٦		٧	В	13	H	Ь	Ш	В	<u>-</u>	В
Pro-	eedure	11	Λ	Ξ	I	T	-	=	_	11	I	_	
Yield purified,	%	56	58	55	30	58	20	83	28	15	09	56	ā
	Mp, °C	170-173	160-163	160 dec	104-106	82-84	8289	181–183	116-117	175-178	29-80	142-146	94-198
	Z	4 O(CH ₂) ₂ N(C ₂ H ₅) ₂	4-NII(CJI ₂) ₂ N(C ₂ H ₄) ₂	4-COC ₆ Hs	$4 ext{-} ext{OCH}_2 ext{C}_6 ext{H}_5$	4-CO(CH ₂) ₆ CH ₃	3-OH, 4-('OO(CH2) ₂ N(C ₂ H ₅) ₂	N HN.OS-1	4 COCH. =CHC ₆ H ₆	3-SO2NC21I5C614s, 4-C1f3	$4-\mathrm{CO}(\mathrm{CH}_3)_7\mathrm{CH}_3$	$4\text{-COH}(p ext{-NH}_2 ext{C}_6\Pi4)_2$	4-O(CH ₂),N
	/	Н	H	Н	Н	П	н	Ħ	И	Н	Н	H	=
	No.	 83	84	85	98	87	88	68	06	16	35	£	3

bydrogen chloride; BB, dinethylfornamide-cthyl acctate-water; CC, 2-propanol-cthyl acctante; DD, acctonitrile; EE, cyclohexane; FE, n-heptane; GG, ethyl acctate. HH, 2-propanol-thyl acctante. Cl. 15.04. * Anal. Calcd. Cl. 15.0 Caled: Cl, 15.32. Found: Cl, 15.33. " Anal. Caled: H.O. 2.92. Found: H.O. 3.03. "Anal. Caled: U.O. 2.87. Found: H.O. 2.26. " Anal. Caled: volatile loss at 100", 5.59. Found: ** Anal. Caled: Cl. 8.63. Found: Cl. 8.71. ** Anal. Caled: Cl. 14.46. Found: Cl. 14.25. ** Anal. Caled: H.O. 5.51. Found: H.O. 4.80. ** Dihydrochloride salt, monohydrate, mp 150- monohydrochloride salf, mp 167-168° "Anal. Calcd: Cl, 13.62. Found: Cl, 14.00. "" Anal. Calcd: H.O. 5.55. Found: H.O. 5.47. " Anal. Calcd: H.O. 5.77. Found: H.O. 5.50. "Anal. Calcd: Cl, 13.47. Found: Cl, 13.55. Foun ter: D, 2-propanol water: E, L, methanol 2-propanol; M, N, ether: O, ethanol-acetone: P, methanol: Q, dimethylacetamide; B, ethanol-2-propanol; S, methanol-ethyl acetate; T, chloroform-petroleun ether (bp 30-60°); U. chloroform; V. ethanol-ether-HCl: W. acetone; X. chloroform-2-propanol; Y. dimethylformamide-ethyl acetate; Z. dimethylformamide-water; AA, methanol-2-propanol-^b A, ethanol; B, 2-propanol; C, methanol water; D, H, not crystallized: I, 2-propanol-ethanolic IICl; J, dimethylacetamide-water: K, ethanol-ether; The free bases range from orange to purple in color: the acid addition safts range from orange to black in color. ditute HCl: F, ethanol-water; G, ethanol-ethanolic HCl; dimethylacetamide-2-propanol; 5.66.

$$NH(CH_2)_2N(C_2H_5)_2$$

$$OH$$

$$C$$

$$NH_2$$

$$NH_2$$

$$X$$

$$NH(CH_2)_2N(C_2H_5)_2$$

$$N=N-O(CH_2)_5N$$

$$XI$$

and 3,4-xylyl)-4-{2-[(4-phenylazo-1-naphthyl)amino]-ethyl}piperazine (XIIa, 154, and XIIb, 156). How-

$$NH(CH_2)_2N$$

$$N=NC_6H_5$$

$$XIIa, R = Cl$$

$$b, R = CH_3$$

ever, no evidence has been obtained (*infra*) that would suggest any superiority of compounds VIIIa, X, and XI over other highly active members of the series (III), and compounds XIIa and b proved to be ineffective against S. mansoni in mice.

Among related compounds, N,N-diethyl-N'-(1-phenylazo-2-naphthyl)ethylenediamine (XIII) was prepared by coupling diazotized aniline with 2-(2-diethylaminoethylamino)naphthalene¹⁰ and 2-(4-phenylazo-1-naphthyloxy)triethylamine (XIV) was obtained by alkylation of the sodium salt of 4-phenylazo-1-naphthol with 2-chlorotriethylamine. Oxidation of N,N-diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine

$$NH(CH_2)_2N(C_2H_5)_2$$

$$N=NC_6H_5$$

$$XIII$$

$$XIV$$

$$O(CH_2)_2N(C_2H_5)_2$$

$$N=NC_6H_5$$

$$XIV$$

(VIa, 17) with perbenzoic acid in chloroform gave the corresponding N-oxide (XV), while treatment of VIa with methyl iodide afforded diethylmethyl [2-(4-phenylazo-1-naphthylamino)ethyl]ammonium iodide (XVI).

The N-mono- and N,N-dialky[-N'-(4-arylazo-1-naph-

$$NH(CH_2)_2 \overset{+}{N}(C_2H_5)_2 \qquad NH(CH_2)_2 \overset{+}{N}(C_2H_5)_2 \cdot I^{-1}$$

$$N=NC_6H_5 \qquad N=NC_6H_5 \qquad XV \qquad XVI$$

thyl)alkylenediamines and related compounds described in the present communication were tested in mice against a Puerto Rican strain of Schistosoma mansoni^{2,17} by Dr. Paul E. Thompson and co-workers of these laboratories. Drugs were given in a powdered diet for 14 days or by gavage in 10 ml/kg of aqueous 1% hydroxyethyl- or carboxymethylcellulose for 10 days. Drug amounts are expressed as free base. Schistosomicidal activity among the N,N-dialkyl-N'-(4-arvlazo-1-naphthyl)alkylenediamines of structure III is widespread. Compounds 2, 8, 13, 22, 23, 29, 30, 34, 41-43, 48, 50, 55, 57, 69, 83, 92-94, 99, 103, 104, 114, 177, 188, 196, 201, and 206 (Tables I-III and V), which are representative of the more promising members of the series, completely eliminated live schistosomes from infected mice at doses ranging from 78 to 734 mg/kg per day when administered orally in the diet for 14 days.18 These compounds were, therefore, distinctly more promising in mice than lucanthone hydrochloride, 17,19 the tris(p-aminophenyl)carbonium salts, 12,17 4,4'-(heptamethylenedioxy)dianiline dihydrochloride, 20,21 N-[5-(p-aminophenoxy)pentyl]phthalimide, 13 or 3-[4-(3-chloro-p-tolyl)-1-piperazinylcarbonyl]acrylic acid14 when tested under comparable experimental conditions.

Several representative naphthylazo compounds were selected for trial against the Puerto Rican strain of S. mansoni in rhesus monkeys^{2,17} and each substance tested showed significant antischistosomal activity in this host. 18 Drugs were given orally by gavage twice daily 5 days a week for 1-4 weeks. Among various [4-(dialkylaminoalkylamino)-1-naphthylazo]benzenesulfonic acid derivatives tested, p-[4-(2-diethylaminoethylamino)-1-naphthylazo|benzenesulfonic acid monohydrochloride (23) at tolerated doses of 25-100 mg/kg/day for 10 days caused a moderate to strong suppression of egg production but was not curative. Doses of 100 mg/kg/day for 15 or 20 days usually effected a cure and were tolerated well except for transient weight loss and some mucoid diarrhea. No improvement in activity was observed with the 7-methoxy derivative (43) and it was more toxic for monkeys. The most potent sulfonic acid derivative in monkeys was p-{4-[2-(isopropylmethylamino)ethylamino]-1-naphthylazo benzenesulfonic acid monohydrochloride (114). Doses of 25 mg/kg per day for 10 days usually effected a cure and were tolerated well. However, doses in the range of 50-100 mg/kg per day for either 5 or 10 days produced gastrointestinal side effects such as emesis, weight loss, inappetence, and mucoid diarrhea. The unusually high therapeutic index noted with p-

⁽¹⁷⁾ For a description of test methods, see P. E. Thompson, J. E. Meisenhelder, and H. Najarian, Am. J. Trop. Med. Hyg., 11, 31 (1962).

⁽¹⁸⁾ P. E. Thompson, J. E. Meisenhelder, and H. Najarian, unpublished results, Parke, Davis and Company, Ann Arbor, Mich.

⁽¹⁹⁾ W. Kikuth and R. Gönnert, Ann. Trop. Med. Parasitol., 42, 256 (1948).

⁽²⁰⁾ C. G. Raison and O. D. Standen, Brit. J. Pharmacol., 10, 191 (1955).

⁽²¹⁾ R. F. Collins, M. Davis, N. D. Edge, and J. Hill, *ibid.*, **13**, 238 (1958).

Table II: N-Mono- and N,N-Dialkye-N'-(4-phenylazo-1-vaphybyl)efhylgnediamines a

ŅH(CH2)2NR,R2

					.		\mathbf{z}						
ž	8	N.B.B.		Yield purified,	Pro-	Purifi- cation ^b	Economical	Carb	Carbon, %	Hydro	Hydrogen, %	Nitrogen, %	. ا % ا
<u>;</u> ;	3		o. 'dw	<i>y</i> /	centure	SOLVERE		Caled	ronner	Caled	ronna	Caled	Found
<u>s</u> 8		N(CH3)3 NHCH3	164-166	∓ 5	Ξ:	<u>i</u>	Collis NsO	66.10	66.22 21.23	£ 8 10 €	9. i 1. 20.	19.27	19.34
0.50	11 11	NECESTS NECESTS	150-157	ē ŝ	ΞΞ	3 1	Carlana-zhi i-sizaliso Carlana-o-romo e estrodo	26. 55 26. 53 26. 53	99.00 20.00	2 - 2 2 - 3 2 - 3	- 1	12.45 12.45	12.32
86	H-SO ₂ H	NHCH	211-213	3 5	2	- <u></u>	Callando Linguista	60.28	20.00 20.00 20.00 20.00	2 10	5 . 5 65. 5	1 2 2	14.40
66	4-SO ₃ H	N(CHs);	198 dec	6	<u>\</u>	: =	Call 2012 - 11 Cl - 2.33 II - O'	50.36	50.71	100 100	25.0	11 25	25. 17
100	4-SO ₃ H	NH(CH ₂) ₂ OH	199-200	69	λſ	2	C'96 H22 N4O4S - HCJ	53.27	53.31	- 1°	7.5	12.43	12.38
101	Н	NCH ₈ C ₂ H ₈	150 dec	93	11	Œ	$C_{21}H_{24}N_4 \cdot 2 \Pi C \Omega \cdot 0.25 \Pi_2 O^{g,h}$	61.54	61.62	6.52	6.73	13.67	13.76
102	Н	NCH ₂ (CH ₂) ₂ OH	190-192	8.1	11	L,	$C_{21}H_{24}N_4O \cdot 2HCl \cdot 0.5H_2O^{i,j}$	58.60	58.35	6.32	6.45	13.02	13.15
103	4-SO ₃ II	$ m NCH_3C_2H_5$	189-205	26	ΙΛ	H	$C_{21}\Pi_{22}N_4O_3S \cdot \Pi CI \cdot 3.5 \Pi_2O^k$	49.26	19.31	6.30	6,22	10.94	11.02
104	4-('=-NHNH ₂	N(CH ₃) ₂	210	06	=	ü	$C_{21}H_{24}N_6 \cdot 3 \coprod Cl \cdot 2 H_2O^\ell$	19.86	19.52	6.18	6, 10		
105	Ξ	Z	93-95	Ę	VI	~	$C_{22}\Pi_{22}N_4$	77.16	77.13	6.48	6.70	16.36	16.44
]											
106	=	N(CHe),	82-83	7.1	-	Т	C22 H24N4	76.71	76.81	7.02	7.14	16.27	16.23
101	i-mil	N{(CII ₂) ₂] ₂ O	173-174	66 6	_		CgHatN4O	73.30	73.39	6.71	6,53	15.51	15.61
108	4-SO ₃ H	N(CH2)4	207-210	91	<u>``</u>	2	C22H24N4O3S+HCl+2.5H2O"	52.2	52.21	5.98	5.88	11.07	11.06
109	I	N (CIE): ;NH	218 - 220	65	Ξ	Ü	C22 H25 N6 · HC 1"	66.73	66.94	6.62	6.34	17.69	17.75
110	Н	NCHaCH(CHs) ₂	77-80	22	-	Υ.	$C_{22}H_{26}N_4$	76.26	76.33	7.57	7.54	16.17	16.37
111	HO-F	$NCH_3CH(CH_3)_{\underline{2}}$	204-206 dee	358	Ξ	5	C22H26N4O · HCJ*	66.23	66.30	6.82	98.9	1.4.05	14.29
112	=	$\mathrm{NC_2H_6(CH_2)_2OH}$	178-180	Ε.	11	у.	C21126N4O+211Cl+0.67112OP4	59.05	58.49	6.61	6.65	12.52	12.82
113	П	NI(CH ₂) ₂ OHJ ₂	155-156	9	=	T	C22 II26N4Oy - 21ICl - 0.25 II2O v *	57.96	57.90	6.30	6.33	12.29	12.21
1	$_{4-\mathrm{SO_3H}}$	NCH ₃ CH(CH ₃).	200 dec	65	λſ	н	C22H26N4O3S+JIC3+1,75H4O4	53,43	53,32	6.22	61.9	11.33	11.02
115	4-7-C3.H	N [(CIE) ₂ OH) ₂	186–188	85	ΔĪ	<u>~</u>	C22Lt36N4O5S+HCl+0.5H5O"	52.43	52.10	5.60	5.83	11.12	11.27
911		NC2H6CH2CH= -CH5	62-63	<u>~</u>	_	-	C3 H26N4	77.06	77.20	1.31	7.38	15.63	15.74
117	H	N(CII ₂) ₈	180 dec	ž	Ξ	H	C ₂₅ H ₂₆ N ₄₊₂ HCl+4H ₂ O"	54.87	55.36	7.21	7.58	11.13	91.11
2			?	î	-		3 3 3	Î	î	1	i	:	
e I			##T Q Z	70	_	-	Calleano	13.11	78.52	9	30.7	96. ±1	50.08 80.08
		НО											
119	11	N[(CH ₂) ₂] ₂ CHOH	166-167	92	-	4:	C ₂₃ H ₂₆ N ₄ O	13.51	18.81	00.7	88.9	11.96	15.08
120	4-503H	$N(CII_2)_b$	198 dec	98	~	_	$C_{23}JI_{26}N_4O_3 \cdot 11C1 \cdot 4 H_2O'''$	50.49	50.16	6.45	6.61	10.24	10.42
121	Н	NICH®zieNCHs	153-155	26 26	=	2	C28H27N5+3HCl+1.5H2O***	54.17	54.12	6,52	6, 75	13.71	13.70
122	ج = -	NCH3(CH2)3CH3	62-69	£ 3		- , :	CastlesN4	9.92 19.63	76.20	∯ ; 1- :	86.	15.54	15.62
; <u>e</u>		NICOTANGED CONTROLLANDON	100-101	î î	- =	<u> </u>	C24HegCain5O	[6:00]	60.04 0.04	- : - :	6.59	F (2)	15.80 5.61
125	= =	NICHOLINE NICHOUS	104-105	÷	= _	ب ب	Cartesina Cortaco Ost Hook	27 . 13	12.02	9 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70.1	12.35 12.95	13.30
126	=	N(CII ₂) ₆	200 dec	82	. =		Cs4 Hs8N4+2 HCl+3,75 HsO art Pb	56.19	56.07	- 1-	1 69	10.63	98 5
127	П	N(CH2CHCH3)20	167-168	61	_	<u>-</u>	C24H28N4O	71.19	74.48	7.26	1 33	11.12	2 Kg
128	4-SO ₃ H	N(CIE)6	185-190	96	7.1	Н	C24H28N4O3S · HCT · 2.5H2Ocr	53.97	53.89	6.42	6.41	10.49	10.51
129	3-CHOHCH3	NCH ₃ CH(CH ₃) ₂	101-66	61	_	£	Czd IlmN4O	73.81	73.90	15.15	7.69	14.35	11.45
130	4-S0 ₃ H	N (CH (CH3) ₂ ₂	201-203	22	Λ	=	$C_{24}H_{30}N_4O_3S \cdot HC1 \cdot 1.5H_2O^{dd}$	55.64	55.77	6.62	98.9	10.82	11.05
131	= :	NH(CHe)2N(CHe)2	165-167	,	= :	> 3	C4H31Ns+3HCl+2H5O**//	53.88	53.27	7.16	7.16	13.09	12.80
192	1 1	N (CH2)2 2N COOC 2H5 NOOL CH4 CH3	06-78	2 5	7 5	<u>.</u>	C35H29N5Og	86.98	69.47	6.77	6.90	16.23	96° (2
2 2	T T		208-209	2 %	= =	: (Captanna HC100	86.02 20.08	10.15 10.15	20 C C	1.25	50 S	13.25
1351	3.CHOHCH,	N(CHCH3CH3)SCH2 NCH3(CHIACHE	222-223	87	= -	ე :	CSHSNA-HCF	85.01	11.16	F 1		13, 25	13.95
ù-:	O*C.1157115 413	INVOLUCION TREPANCITA	Pat Lifet	1	-	-	C. 25 TL322N & C.	14.22	7.7.7.	16.1	ê.	15.80	£.

14.07	12.34	12.44	11.46 11.28 10.45 13.24	19.23	13.11 12.19	13.73	13.46	16.34	13.22	12.00	11.20	16.10	10.22	14.47	11.40	15.32	11.19 14.10 13.72 10.74 13.52 13.32 10.06 8.12
14.06	12.16	12.37	11.46 10.92 10.09 13.07	19.34	12.59 12.23	13.58	13.43	16.38	13.50	12.33	11.22	15.86	10.05	14.47	11.65	15.11	11.19 14.02 13.58 10.67 13.63 13.31 9.97 8.28
7.43	7.86	7.13	7.64 8.04 7.23 7.63	6.35	6.54 7.66	7.75	7.93	7.71	7.08	7.83	7.33	7.79	7.26	6.28	7.65	6.90	7.85 8.16 7.65 7.37 8.33 7.71 8.66 7.65
7.59	7.88	7.34	7.73 8.05 7.08 7.62	6.03	6.57	7.82	7.85	7.78	7.00	7.63	7.27	7.99	7.35	6.25	7.38	7.17	7.89 8.27 8.01 7.84 8.44 7.66 8.79
78.03	73.03	69.07	64.24 68.03 56.23 58.40	74.67	73.13 70.83	78.64	77.64	75.85	62.75	56.72	67.15	76.63	60.21	72.02	58.40	77.84	57.64 74.95 72.50 56.74 75.30 52.33 72.65 60.00
78.35	73.01	68.93	63.86 67.88 56.25 58.28	74.69	72.87 70.80	78.60	77.75	75.84	62.52	57.09	67.32	76.15	60.31	71.96	57.95	77.72	57.55 74.51 72.27 56.74 74.81 52.17 72.69
CzeHzaN4	$C_{26}H_{82}N_4 \cdot C_2H_4O_2^z$	C26H22N±O·HC1	C ₂₆ H ₂₄ N ₄ -21(Cl·0,75H ₂ O ¹⁴ C ₂₆ H ₂₄ N ₄ O·C ₅ H ₆ O·HCl ³ /s ¹ sk C ₂₆ H ₂₄ N ₄ O ₃ S·HCl·2H ₂ O ¹⁴ ,mm C ₂₆ H ₃ N ₆ ·2.5HCl·1.5H ₂ O ^{m1,oo}	$\mathbf{C}_{27}\mathbf{H}_{26}\mathbf{N_6}$	$C_{zt}\Pi_{zs}N_4\cdot HCl^{pp}$ $C_{zt}H_{zs}N_4\cdot HCl\cdot 0.5\Pi_zO$	$\mathrm{C}_{n}\mathrm{H}_{n}\mathrm{N}_{4}$	CrH2N4 • 0.25H20 º º	$\mathbf{C}_{27}\Pi_{33}\mathbf{N_{6}}$	$\mathrm{C}_{27}\mathrm{H_{35}N_5O_{3S}\cdot0.51I_2O^{77}}$	$\mathrm{C}_{21}\Pi_{27}\mathrm{N}_{8}\cdot 3\mathrm{HCl}\cdot 1.5\mathrm{H}_{2}\mathrm{O}^{ss,tt}$	$\mathrm{C}_{28}\mathrm{H}_{24}\mathrm{N}_4$ -2 IIC_1	$\mathrm{C_{28}H_{36}N_6}$	$C_{28}L_{138}N_4O_3 \cdot 2HC! \cdot 0.33II_2O^{uu_1vv}$	$\mathrm{C}_{29}\mathrm{H}_{30}\mathrm{ClN}_{6}$	$\mathrm{C_{29}H_{39}N_5O\cdot 3HCI\cdot II_2O}$ we	C ₃₀ H ₅₃ N ₆	Con H42NbO · 3HCl · 1.5HpOzz CaH4lNbO CaH4lNbO · CaH4lNbO · CaH4sNbO · 3HCl · 2.5HpOvv,zz CaH4sNbO · 3HCl · 2.5HpOvv,zz CaH4sNbO · 4HCl · 2.5HpOza CaH5NbO · 0.5ChpOzbb CaH5sNbO · 0.5ChpOzbb
×	A	*	нн≼в	<	K B	В	ď	z	J.	AA	AA	BB	CC	DD	н	DD	H EEE B H DD V III
VI	11	11	= A =	ī	пп	VI	н	VI	IV	П	VI	VI	11	-	11	VI	
78	09	36	68 36 93 80	31	17	29	75	33	50	10	62	48	89	28	2.2	52	78 78 78 68 88 88 54
164–166	175-177	215–216	157–159 108–110 200–205 82–85	212-215	$192 - 194 \\ 215 - 216$	105-107	70 dec	162-164	213-215	169-171	204 dec	136-138	144-146	142-144	168 dec	144–145	120 dec 120–123 143–145 95 dec 125–127 89 dec 157–158
(v)	NHCH(CH ₂) . C ₂ H ₃	S E	N [CH ₂ CH(CH ₃) ₂] ₂ N [CH(CH ₃) ₂] ₃ N [(CH ₂) ₃ CH ₃] ₂ N C ₂ H ₆ (CH ₃) ₂ N (C ₂ H ₆) ₂	$N(CH_3)_2$	$\begin{array}{c} \mathrm{NCH_5C_2H_6} \\ \mathrm{NCH_2CH} = \mathrm{CH_2CH}(\mathrm{CH_2})_6 \\ \end{array}$	$\langle s \rangle_s$	S S S		$\left(\begin{array}{c} \left(\begin{array}{c} \left(\mathbf{z}\right) \\ \left(\mathbf{z}\right) \end{array}\right)$	$(CH_2)_2N(CH_3)_2 \ NCH_3(CH_2)_2N[CH(CH_3)_2]_2$	\sqrt{s}	$\langle S \rangle - \langle S \rangle$	N(CH ₂ CH ₂ OC ₂ H ₅) ₂	$N \underset{S}{\text{S}} \text{N} \leftarrow CH_3$	$N\left[\!\!\left[\mathrm{CH}_2\right]_2\!\!\right]_2\!\!\mathrm{CH}(\mathrm{CH}_2)_2\!N(\mathrm{CH}_3)_2$	$N \le N \longrightarrow CH_s$	N CH(CH ₃) ₂ ₂ N (CH ₅) ₂ ₃ CH(CH ₅) ₂ N(CH ₅) ₄ N (CH ₂) ₂ ₃ CH(CH ₅) ₂ N(CH ₅) ₂ ₂ O N (CH ₂) ₂ ₃ CH(CH ₂) ₂ N(CH ₃) ₂ N (CH ₅) ₂ ₃ CH(CH ₅) ₂ N(CH ₃) ₃ N (CH ₅) ₂ N(C ₅ H ₅) ₂ N CH ₅ (CH ₅) ₁ CH ₅ N (CH ₅) ₇ CH ₅ ₂
н	11	4-ОН	П 3-СНОНСН ₃ 4-SO ₃ II Н		3-C ₆ H ₈ II	H	H	н	$_{ m 4-SO_3H}$	11	н	н	3-СНОНСИ8	Ξ	3-СНОНСИ3	н	4-0(CH ₂) ₂ N(C ₂ H ₄) ₂ 3-CHOHCH ₃ 3-CHOHCH ₄ 3-CHOHCH ₅ 3-CHOHCH ₅ 3-NHCOCH ₅ 3-NHCOCH ₅ H
136	137	138	139 140 141 142	143	144 145	146	147	148	149	150	. 51	152	153	154	155	156	157 158 159 160 161 162 163

Table II (Continued)

Found: H20, 12.25.

Frontic: H20, 12.25.

Fr a Anal. Calcd: Cl, 17.30. Found: Caled: H₂O, 1.10. Found: H₂O, 0.94. 'Anal. Caled: Cl, 16.48. Found: Cl, 16.47. 'Anal. Caled: H₂O, 2.09. Found: H₂O, 1.75. * Anal. Caled: H₂O, 12.30. 'Anal. Caled: H₂O, 7.12. Found: H₂O, 7.31. "Anal. Caled: H₂O, 8.82. "Anal. Caled: Cl, 8.96. Found: Cl, 8.74. "Anal. Caled: Cl, 8.88. Calcd: H₂O, 6.49. Found: H₂O, 7.00. if Acetone of crystallization. ** Anal. Caled: Cl, 6.91. Found: Cl, 6.96. "Anal. Caled: Cl, 6.39. Found: Cl, 6.13. ** Anal. Caled: H₂O, 5.04. Found: H₂O, 4.30. ** Anal. Caled: Cl, 7.97. Found: Cl, 8.18. ** Anal. Caled: H₂O, 1.08. Found: H₂O, 4.30. ** Anal. Caled: Cl, 7.97. Found: Cl, 8.18. ** Anal. Caled: H₂O, 1.08. Found: H₂O, 4.30. ** Anal. Caled: Cl, 6.44. Found: Cl, 6.44. Fou Gardet, C.J. 19.39. Found: Cal. 19.30. Scalar Ageneration and Caled: Ch. 18.73. Found: Caled: Ch. 18.73. Found: Caled: H.O. 4.75. Found: Caled: Ch. 18.73. Found: Caled: H.O. 4.75. Found: Caled: Ch. 16.99. Found: Caled: Ch. 16.90. Found: H₂O, Cl. 12.68. ** Anal. Caled: H₂O, 1.68. Found: H₂O, 1.42. ** Anal. Caled: H₂O, 2.99. Found: H₂O, 2.96. ** Anal. Caled: Cl. 16.99. Found: Cl. 16.92. ** Anal. Caled: H₂O, 6.86. Found: H₂O, 6.86. Found: Caled: H₂O, 6.02. ** Anal. Caled: H₂O, 6.03. ** Anal. Caled: H₂O, 6.03. ** Anal. Caled: H₂O, 6.03. ** Anal. Caled: Caled: H₂O, 6.03. ** Anal. Caled: Caled: H₂O, 6.03. ** Anal. Caled: Cale Found: H₂O, 9.13. ⁷ Anal. Caled: H₂O, 8.80. Found: H₂O, 9.06. b See footnote b, Table I. • The free bases range from orange to green in color; the acid addition salts range from orange to black in color. * Anal. Caled: H₂O, 9.05. Cl, 17.20. * Anal. Caled: B₂O, 1.10. Found: H₂O, 0.94.
Found: H₂O, 12.28. * Anal. Caled: H₂O, 7.12. Found: H₂O, Found: Cl, 15.78. d Anal. Caled: Cl. 15.83. nn Anal. Caled: Cl, 16.54.

Table III: N-Mono- and N,N-Dialkyl-N'-(4-phenylazo-1-naphthyl)alkylenediamines a

NHYNR, R.

11.3.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Yield parified, Pro-	YNR ₁ R ₂ Mp, °C % cedure solvent Formula Caled Found Caled Found Caled Found	$^{4}(CH_{3})_{2}$ 108–110 83 II H $C_{21}H_{3}N_{4}$ -2 HCl - $2H_{3}O^{-d}$ 57.14 57.51 6.85 6.98 12.69 12.79	$196-199$ 75 II T $C_{21}H_{23}N_{4}$ ·HCl* 68.37 68.49 6.83 6.86 15.19	$220-222 \qquad 91 \text{IV} \text{II} \text{C}_{21}\text{H}_{24}\text{N}_{4}\text{O}_{3}\text{S} \cdot \text{HCl} \cdot 2\text{H}_{3}\text{O}^{f} \qquad 52.00 52.50 6.03 6.40 11.55 .$	$127-129$ 63 I FF $C_{22}H_{36}N_4$ 76.26 75.95 7.57 7.49	215-217 77 1V E $C_{22}H_{36}N_{4}O_{48} \cdot \Pi CA^{-}\Pi_{5}O^{p}$ 54.93 55.18 6.08 6.15 11.65	212 48 II C $C_{22}H_{a5}N_{6}\cdot 3HCl\cdot \Pi_{3}O^{4}$ 52.65 52.76 6.23 6.07	165 166 49 I GG $C_{23}H_{28}Cl_{3}N_{4}$ 59.55 59.56 5.43	104.105 97 J A $C_{22}H_{26}N_4$ 77.06 77.09 7.31 7.27 15.63	$154-156$ 82 I A $C_{23}H_{26}N_4O$	$131-134$ 47 I B $C_{23}H_{35}N_4S$ 70.73	90-92 87 1 A C ₂₁ H ₃₅ N ₄ 76.63 76.46 7.83	186 dec 40 II E $C_{24}H_{25}N_4 \cdot 2\Pi C I \cdot 2\Pi_2 O^{\dagger}$ 59.87 60.04 7.12	$2 H_2 h$ 112 dec 83 VI F $C_{24} H_{28} N_4 O \cdot H_3 O^7$ 70.91 71.09	195-197 42 IV D	$211-213$ 64 I J $C_{24}H_{29}N_{6}O_{7}S$ 63.83 63.50 6.47	100 dec 23 II II $C_{24}H_{30}N_4O \cdot 1.67HCI \cdot 0.5H_2O^{m,n}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3-118 53 II B $C_{24}H_{50}N_4S \cdot HCl^q$ 65.06 65.25 7.05	$218.219 \ \mathrm{dec} 57 \mathrm{IV} \mathbf{Z} \mathbf{C_{2a}H_{2i}N_iO_3 \cdot 0.5H_2O'} 68.01 68.08 6.62 6.89 12.69$	$180-182$ 54 II II $C_{23}H_{23}N_{1}\cdot 2HCl\cdot 0.25H_{3}O^{*,t}$ 64.44 64.51 7.46 7.43 12.02	120–125 dec 62 II AA $C_{23}H_{32}N_4 \cdot 1.67HCl \cdot H_3O^{*,v}$ 64.23 64.56 7.69 7.73 11.99	$100-102$ 20 I P $C_{28}H_{28}N_4O$ 74.22 74.20 7.97 8.06 13.85	
	Yield purified,	Mp, °C %	$(CH_2)_3N(CH_3)_2$ 108–110 83 II	CHCH ₃ CH ₂ N(CH ₃) ₂ 196-199 75 II	$(CH_2)_3N(CH_3)_2$ 220–222 91 IV	_						₹#		186 dec	M ₂), 112 dec 83	42	211-213	33	195–198 61	33	57		62	50	53

4	55	<u>6</u>	68	œ	9,	7 .		<u>સ</u>		55	
9.74	13.52	11.8	13.3	10.7	15.7	15.84		15.92		9.85	
98.6	13.45	11.96	13.45	68.01	15.51	15.84		15.90		10.10	
7.02	7.80	6.74	8.94	68.2	6.68	5.71		6.05		7.62	
6.83	7.74	6.67	8.71	7.64	6.47	5.70		6.18		7.81	
52.85	75.23	69.42	77.95	63.31	74.96	63.46		65.70		65.33	
52.83	74.96	69.21	77.84	63.02	74.47	63.37		65.88		64.97	
$C_{25}H_{22}N_4O_3S \cdot 1.5IICI \cdot 2.5H_2O^{w,x}$	$C_{26}H_{32}N_4O$	$\mathrm{C}_{27}\mathrm{H}_{31}\mathrm{F}_{3}\mathrm{N}_{4}$	$\mathrm{C}_{27}\mathrm{H}_{36}\mathrm{N}_4$	$C_{27}H_{36}N_4O \cdot 2HCl \cdot 0.5H_2O^{\nu,z}$	$\mathrm{C_{28}H_{29}N_{5}O}$	$\mathrm{C}_{28}\mathrm{H_{30}N_6O_3S}$		$\mathrm{C_{29}H_{32}N_6O_2S}$		$\mathrm{C_{30}H_{40}N_4O\cdot 2HCl\cdot 0.5H_2O^{aa,bb}}$	
Н	В	В	В	>	8	X		ප		AA	
IV	Ι	I	Ι	II	_	ĭ		Ţ		II	
94	65	75	02	19	25	61		83		85	
$200 \mathrm{dec}$	101 - 103	132 - 134	78-79	$125 \mathrm{dec}$	156 - 160	240-241		190-192		$163 \ \mathrm{dec}$	
$\mathrm{CH_2C}(\mathrm{CH_3})_2\mathrm{CH_3N}(\mathrm{C_2H_5})_2$	$\mathrm{CH_2C}(\mathrm{CH_3})_2\mathrm{CH_2N}(\mathrm{CH_2})_4$	$\mathrm{CH}_2\mathrm{C}(\mathrm{CH}_3)_2\mathrm{CH}_2\mathrm{N}(\mathrm{CH}_2)_5$	$(CII_2)_3NH(CII_2)_7CII_3$	$\mathrm{CH_2C}(\mathrm{CH_3})_2\mathrm{CH_2N}(\mathrm{C_2H_5})_2$	$\mathrm{CHCH_3CH_2N}(\mathrm{CH_3})_2$	$(\mathrm{CH}_2)_3\mathrm{N}[(\mathrm{CH}_2)_2]_2\mathrm{O}$		$(\mathrm{CH}_2)_3\mathrm{N}(\mathrm{CH}_2)_5$	-CIL, CH2N(C,H3),	Xo	(°)
$_{4-\mathrm{SO_3H}}$	$3-\text{CH}_2\text{OH}$	3-CF_3	II	3 -CHOIICH $_3$	$4\text{-COMHC}_6 \text{II}_5$	4-SO ₂ NH	(4-SO,NH		3 -CHOHCH $_3$	
188	189	190	161	192	193	194		195		961	

The free bases ranged from orange to reddish brown in color; the acid addition salts ranged from orange to blue-black in color.
 Found: H₂O, 8.03. ^d Anal. Calcd: Cl, 16.07. Found: Cl, 16.41. ^e Anal. Calcd: Cl, 9.61. Found: Cl, 9.32. ^f Anal. Calcd: Cl, 7.31. Found: Cl, 7.32. ^f Anal. Calcd: H₂O, 3.35. ^h Anal. Calcd: H₂O, 3.31. ^f Anal. Calcd: Cl, 12.86. Found: Cl, 12.95. ⁿ Anal. Calcd: H₂O, 1.95. Found: Calcd: Cl, 12.97. ⁿ Anal. Calcd: H₂O, 1.95. Found: Cl, 0.95. Found: Calcd: Cl, 12.80. ⁿ Anal. Calcd: Cl, 12.80. ⁿ Anal. Calcd: Cl, 12.80. ⁿ Anal. Calcd: Cl, 12.81. ⁿ Anal. Calcd: H₂O, 1.95. Found: Calcd: Cl, 12.82. Found: Cl, 8.00. Found: Cl, 7.80. ^r Anal. Calcd: H₂O, 1.47. ^s Anal. Calcd: Cl, 9.36. Found: Cl, 9.35. Found: Calcd: Cl, 9.36. Found: Cl, 9.370. ^s Anal. Calcd: Cl, 12.79. Found: Cl, 9.38. ^s Anal. Calcd: H₂O, 1.75. Found: Cl, 9.30. ^s Anal. Calcd: Cl, 12.79. Found: Cl, 13.78. ^s Anal. Calcd: Cl, 13.78. Found: Calcd: Cl, 13.78. Found: Calcd: Cl, 13.79. Found: Cl, 13.79. Foun

[4-(3-diethylamino-2,2-dimethylpropylamino)-1-naphthylazo|benzenesulfonic acid hydrochloride (188) in mice was not duplicated in the monkey. N'-{4-[p-(2-Diethylaminoethoxy)phenylazol-1-naphthyl}-N.Ndiethylethylenediamine trihydrochloride (83) caused strong permanent suppression of eggs or was curvative in monkeys at a dose of 100 mg/kg per day for 5 days or 50 mg/kg per day for 10 days, but was essentially ineffective in doses of 12.5 or 25 mg/kg daily for 10 days. The effects of m-[4-(2-diethylaminoethylamino)-1-naphthylazo]- α -methylbenzyl alcohol dihydrochloride (57) were particularly noteworthy because the compound cured or strongly suppressed S. mansoni infections in the monkey following a single dose of 400 mg/ kg or single doses of 200 mg/kg per day on two successive days.

The antischistosome properties of compounds of structure III are abolished or drastically reduced when alkyl substituents at R₁ and/or R₂ are replaced by hydrogen (compounds 96-98, 100, 124, 137, 169, and 191) or when R is methyl or ethyl (197-199). Among compounds having a structural relationship to N,Ndiethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine (VIa), the position isomer N,N-diethyl-N'-(1-phenylazo-2-naphthyl)ethylenediamine (XIII), the oxygen 2-(4-phenylazo-1-naphthyloxy)triethylamine (XIV), and the quaternary salt diethylmethyl[2-(4phenylazo-1-naphthylamino)ethyl lammonium iodide (XVI) lacked appreciable effect. Activity was also diminished by conversion to the N-oxide XV, an interesting and unexpected result in view of the beneficial effects of N-oxidation on the antimalarial properties of the 4-aminoquinolines and 9-aminoacridines. 22-24 A variety of N,N-dialkyl-N'-(4-azophenyl)alkylenediamines^{6,7,25} and N-mono- and N,Ndialkyl-N'-[4-azo(5,6,7,8-tetrahydro-1-naphthyl)]alkylenediamines were also prepared^{6,7} but none of these showed promising antischistosome activity.

Experimental Section 26

Preparation of N-Mono- and N,N-Dialkyl-N'-(4-arylazo-1naphthyl)alkylenediamines (III) (Tables I-V). Procedure I.-To a solution of 12.7 g (0.1 mole) of o-chloroaniline in 25 ml of concentrated HCl, 100 ml of water, and 100 g of crushed ice, there was added at 0-5° a solution of 6.9 g (0.1 mole) of NaNO₂ in 100 ml of cold water. After diazotization was complete, the diazonium salt solution was added with stirring at 0-5° to a cold solution of 24.2 g (0.1 mole) of 1-(2-diethylaminoethylamino)naphthalene¹⁰ in 17 ml of concentrated HCl and 250 ml of water. The mixture was stirred for 3 hr at 0-5° and allowed to warm to room temperature. The addition of excess aqueous NaOH precipitated the crude dye which was collected by filtration, washed throughly with water, and dried in vacuo at 50°. lization from 2-propanol gave 28.9 g (76%) of N'-[4-(o-chlorophenylazo)-1-naphthyl]-N,N-diethylethylenediamine (8) as deep maroon crystals, mp 99-100°.

Procedure II.—p-(2-Diethylaminoethoxy)aniline (13.5 g, 0.065 mole) was diazotized and coupled with 15.8 g (0.065 mole) of 1-(2-diethylaminoethylamino)naphthalene according to procedure I. The purple reaction mixture was made alkaline (NH₄OH)

⁽²²⁾ E. F. Elslager and F. H. Tendick, J. Med. Pharm. Chem., 5, 1153 (1962).

⁽²³⁾ E. F. Elslager, R. E. Bowman, F. H. Tendick, D. J. Tivey, and D. F. Worth, *ibid.*, **5**, 1159 (1962).

⁽²⁴⁾ E. F. Elslager, E. H. Gold, F. H. Tendick, L. M. Werbel, and D. F. Worth, J. Heterocyclic Chem., 1, 6 (1964).

⁽²⁵⁾ F. Mietzsch and J. Klarer, U. S. Patent 2,022,921 (Dec. 3, 1935).
(26) Melting points (corrected) were taken in open capillary tubes in a Thomas-Hoover capillary melting point apparatus. Water determinations were made by the Karl Fischer method.

Table IV $N,N-Diethyl-N'-alkyl-N'-(4-phenylazo-1-naphthyl)ethylenediamines^a$

$$\begin{array}{c}
R \\
N(CH_2)_2N(C_2H_3)_2
\end{array}$$

$$N=N-\sqrt{Z}$$

				puri-	Pro-	${\tt cation}^b$		Carbo	on, %	Hydro	gen, %	Nitrog	en, %
No.	\mathbf{R}	Z	Mp, °C	fied, %	eedure	solvent	Formula	Caled	Found	Caled	Found	Calcd	Found
197	CH_3	H	110-120	65	II	K	$C_{28}H_{28}N_4 \cdot C_6H_8O_7 \cdot C_2H_6O^{c,d}$	62.19	62.53	7.07	6.84	9.36	9.30
198	CH_3	SO_3H	$240 \deg$	97	IV	H	$C_{23}H_{28}N_4O_3S \cdot 0.5H_2O^{e,f}$	61.44	61.38	6.50	6.49	12.46	12.29
199	C_2H_5	SO_3H	226-229 dec	87	IV	11	$C_{24}H_{30}N_4O_3S \cdot 0.25H_2O^g$	62.79	62.72	6.70	6.79	12, 21	11.87

Porifi-

^a Compounds range from orange to brown in color. ^b See footnote b, Table I. ^c Monocitrate salt. ^d Ethanol of crystallization. ^e Anal. Calcd: S, 7.13. Found: S, 7.24. ^f Anal. Calcd: volatile loss at 100°, 2.00. Found: 1.64. ^g Anal. Calcd: volatile loss at 100°, 0.98. Found: 0.88.

and the sticky precipitate that formed was extracted with chloroform. The combined chloroform extracts were dried (K_2CO_2), the drying agent was collected by filtration, and the chloroform was removed in vacuo. The residue was dissolved in hot 2-propanol and the solution was treated with excess HCl-2-propanol. Upon cooling, deep blue crystals separated. The product was collected by filtration and recrystallized from 2-propanol–HCl. N'- $\{4[p-(2-\text{Diethylaminoethoxy})\text{phenylazo}]-1-\text{naphthyl}\}-N,N-diethylethylenediamine (83) was obtained as a hydrated trihydrochloride salt, mp 170–173°, yield 22.5 g (56%). The salt was allowed to equilibrate in the air prior to analysis.$

Vield

Procedure III.—A mixture of 13.8 g (0.1 mole) of p-nitroaniline, 30 ml of water, and 30 ml of concentrated HCl was heated until solution occurred. The solution was cooled rapidly to room temperature with vigorous stirring. Ice (80 g) was then added followed by 6.9 g (0.1 mole) of NaNO₂ in one portion. After most of the precipitate had dissolved, the diazonium salt solution was added with stirring at 0–5° to a solution of 24.2 g (0.1 mole) of 1-(2-diethylaminoethylamino)naphthalene¹⁰ in 250 ml of water, 250 ml of 95% ethanol, and 25 ml of concentrated HCl. The purple reaction mixture was stirred for 2 hr at 0–5°, then for 2 hr at room temperature. The mixture was made alkaline with NaOH and the precipitate was collected by filtration, washed with water and dried in vacuo. Crystallization of the crude dye from 2-propanol gave 30.1 g (77%) of N,N-diethyl-N'-[4-(p-nitrophenylazo)-1-naphthyl]ethylenediamine (16) as purple-black crystals, mp 137–138°.

Procedure IV.—A solution, prepared by combining 34.7 g (0.20 mole) of sulfanilic acid, 34 ml (0.20 mole) of 6 N NaOH solution, 250 ml of water, and 200 ml (0.20 mole) of 1 M NaNO₂ solution, was cooled to 0° and added with stirring to a mixture of 50 ml (0.60 mole) of concentrated HCl and 500 g of an ice-water mixture. After stirring for 5 min, the suspension of the diazonium salt was added to a mixture of 48.6 g (0.20 mole) of 1-(2diethylaminoethylamino)naphthalene, 10 ml (1.20 moles) of concentrated HCl, and 2 kg of ice-water. The deep purple suspension was stirred for 18 hr during which time it was allowed to warm to room temperature. The precipitate was collected by filtration, washed with 0.5 N HCl, and dried in vacuo at 78° for 18 hr. After exposure to the atmosphere for 24 hr, p-[4-(2-diethylaminoethylamino)-1-naphthylazo] benzenesulfonic acid monohydrochloride dihydrate was obtained as a purplegreen solid, mp 200° dec.

The free base was prepared as follows. The acid hydrochloride salt was suspended in water and neutralized with aqueous sodium acetate or $(NH_4)_2CO_3$ solution. The orange precipitate that separated was collected by filtration, washed successively with water and methanol, and dried in vacuo at 100° for 16 hr. The base (23) weighed 78.5 g (92%), mp 243–244°.

Procedure V.—A solution of 5.3 g (0.0136 mole) of N-(4-amino-1-naphthyl)-N-(2-diethylaminoethyl)-2,2,2-trifluoroacetamide monohydrochloride (VIId) in 50 ml of ice and water containing 2.5 ml (0.03 mole) of concentrated HCl was treated with 13.6 ml (0.0136 mole) of a 1 M aqueous solution of NaNO₂ over a period of 5 min. The red diazonium salt solution was stirred for 5 min at 0-5° and poured into a stirred solution of 3.3 g (0.0136 mole) of 1-(2-diethylaminoethylamino)naphthalene¹⁰ in 150 ml of water and 7.5 g (0.09 mole) of concentrated HCl while maintaining the temperature below 5°. The resulting purple mixture

was stirred and allowed to warm to room temperature during 1 hr, whereupon it was treated with 170 ml of 1 M aqueous NaHCO₃. The mixture was extracted with ether and the combined extracts were washed successively with water and saturated aqueous NaCl solution and dried (MgSO₄). The drying agent was collected by filtration, and the ether was evaporated to give 7.2 g of the intermediate N-(2-diethylaminoethyl)-N-{4-[4-(2-diethylaminoethylamino)-1-naphthylazo]-1-naphthyl}-2,2,2-trifluoroacetamide (VIIId) as a deep red solid with green iridescence. In another run, a sample of the dihydrochloride salt was prepared by adding a 2-propanol-HCl solution to a solution of the crude base in 2-propanol. Crystallization from methanol-2-propanol-ethyl acetate gave dark red crystals, mp 203-205° dec.

Anal. Calcd for $C_{34}H_{41}F_3N_6O \cdot 2HCl$: C, 60.08; H, 6.38; Cl, 10.43; N, 12.37. Found: C, 60.00; H, 6.38; Cl, 10.66; N, 12.85.

The crude iridescent base $(7.2~\mathrm{g})$ was dissolved in 75 ml of warm methanol, 25 ml $(0.05~\mathrm{mole})$ of 2 N methanolic NaOH was added, and the mixture was stirred at room temperature for 1 hr. The dye was collected by filtration, washed with cold methanol, and recrystallized twice from an ethanol–acetone mixture to give 3.7 g (52% over-all) of N,N''-(azodi-1,4-naphthylene)bis(N',N'-di-ethylethylenediamine) (VIIIa, **209**) as iridescent brown needles, mp $163-165^\circ$.

Procedure VI.—A mixture of 7.1 g (0.02 mole) of N-(2-bromoethyl)-4-phenylazo-1-naphthylamine, 5.0 g (0.04 mole) of 3-azabicyclo [3.2.2] nonane, and 12 ml of dimethylformamide was heated on a steam bath for 2 hr. The mixture was poured into a mixture of 300 ml of water and 400 g of ice and allowed to stand overnight. The orange precipitate that separated was collected by filtration, washed with water, and dried in vacuo at 55°. Crystallization from chloroform-2-propanol gave 6.2 g (78%) of 3-{2-[(4-phenylazo-1-naphthyl)amino]ethyl}-3-azabicyclo[3.2.2]-nonane (136) as lustrous orange-red plates, mp 164-166°.

Procedure VII.— N-(4-Amino-1-naphthyl)-N-(2-diethylaminoethyl)-2,2,2-trifluoroacetamide monohydrochloride (VIId) (9.8 g, 0.025 mole) was diazotized according to procedure V. The diazonium salt solution was added in one portion to a solution of $3.6~\mathrm{g}~(0.025~\mathrm{mole})$ of 2-naphthol and $4.2~\mathrm{g}$ of NaHCO3 in 200 ml of water, 200 ml of ethanol, and 200 g of ice containing a trace of Carbowax stearate. The temperature was maintained at 5° for 3 hr, the mixture was allowed to warm to room temperature overnight, and the red precipitate that separated was collected by filtration, dried, and crystallized from 2-propanol. The N-(2-diethylaminoethyl)-2,2,2-trifluoro-N-[4-(2intermediate hydroxy-1-naphthylazo)-1-naphthyl]acetamide weighed 9.2 g, mp 158-162°. It was suspended in a mixture of 100 ml of methanol and 50 ml of methanol containing 0.1 mole of NaOII and warmed to 60° when solution occurred. The mixture was stirred at room temperature for 48 hr, excess solid CO2 was added, and the iridescent dark green crystals that separated were collected by filtration, washed with water, and dried in vacuo. $The \ 1\hbox{--}[4\hbox{--}(2\hbox{--}diethylaminoethylamino})\hbox{--}1\hbox{--}naphthylazo]\hbox{--}2\hbox{--}naphthol$ (IXb, 203) thus obtained weighed 6.4 g (62% over-all), mp 146-

Procedure VIII. A cooled solution of 0.77 g (0.011 mole) of NaNO₂ in 50 ml of water was added to a solution of 4.0 g (0.011 mole) of N-(4-amino-1-naphthyl)-N-(2-diethylaminoethyl)formamide dihydrochloride (VIIe) in dilute HCl. After 5 min, the

N,N-1) ialkyi.-N'-(4-naphthylazo-1-naphthyl) alkyi.enediamines⁴ TABLE V:

NHYNR, R.

										•		-`			110	~ K	,011	٠.
	en, %	Found	10.60	12.84	15.78	13.82	10.23	11.27	10.36	15.64	9.20	16.46	9.93	8.55	Calcd:	i $Anal.$	" Anal.	
	Nitrogen, %	Calcd	10.65	13.00	15.86	13.58	10.84	11.65	10.45	15.44	9.54	16.46	68.6	8.53		13.09.		
	% %	Found	5.92	5.26	5.20	.94	. 58	92.9	. 14	6.82	88.	3.22	.57	.85	4.14.	Found: Cl,	ınd: CI,	
	Hydrogen, %	Saled F	5.75	6.32						6.89					nd: H ₂ O	23. For	02. Fou	
		ر اط													3. Fou	Cl, 13.	Cl, 15.	
	Carbon, %	d Found	8 56.87												1.0, 5.1	Caled:	Calcd: Cl,	
	Ü	Calcd	57.0	72.4	70.7	75.7	60.4	64.9	60.5	74.14	61.3	75.2	57.6	65.86	Caled: I	h Anal. Calcd: Cl, 13.23. Found: Cl,	l Anal.	
			H_2Oc,d				H2O€,∫	в	$5\Pi_2\mathrm{O}^{h,i}$) j, k		H_2O^I	$0.5 \mathrm{H}_2 \mathrm{O}^m$	_			
		Formula	· HCl · 1.5				HCl 1.75	·0.25H50	211Cl-1.2		· HCl·II ₂ (3HCI - 2.5	·1.5HCl·	6.57. d	d: H ₂ O,	Found: H ₂ O, 3.14.	
		-	23 H26N4O3S · HCl · 1.5H2O°	ZeHzrCIN4	CzeHz7N5O2	C26H28N4O	2sH2sN4O.2HCl.1.75H2O%	C26H28N4O3S · 0.25H5O9	C_{27} Hz ₈ N ₄ O ₂ · 2 HCl · 1.25 H ₂ O	C28H31N5O	CaoHa6N4O3S.HCI.II2O5ik	$C_{32}H_{42}N_6$	$C_{84}H_{48}N_6O_2 \cdot 3 \coprod Cl \cdot 2.5 \coprod_2O^I$	$C_{36}H_{46}N_4O_2S \cdot 1.51ICl \cdot 0.5H_2O^m$	ound: Cl, 6.57. d Anal.	. Foun		
-y	on _o	nt	Ů	ప్	స్	చ్	ప్	ű	చ్	స్	చ్	ů	Č,	రో	<u> </u>	0.094	H ₂ O, 3.07.	
Purifi	eation^b		H	V	V	Η	Н	п	H	Ь	Ξ	0	Η	Ξ	Cl, 6.74.	Caled: H	aled: 1	
	Pro-	eedure	IV	I	111	VII	Π	ΙΛ	Π	-	IΛ	>	П	11	Calcd:	_	Anal. Ca	
Yield	puri-	fied, $\%$	82	64	36	62	83	87	73	40	66	25	95	99	. c Anal. Calcd: Cl,	5.75. a Anal.	M, 5.75. * A	
		Mp, °C	230	124	17.1	150	155 dec	230	178	114	210	165	36	102	_	_	$\overline{}$	
		Z	228-230	123 - 124	170-171	146-150	150 - 155	229-230	176-178	112 - 114	205 - 210	163 - 165	90 dec	100 - 102	e b, Ta	md: I	. Foun	
												C.H.)2	(C2IIs)2		footnot	3.09. F	CI, 6.04	
		Z	=						II(H-NIICOCII3	_	-NII(CII2)2N(C2H5)2	-C00(CH2)2N(C2H5)2	J.	. b See	H ₂ O, (Caled:	
ne		ţ.	4-SO ₃ H	4-CI	4 NO2	2-011	5-0H	4-SO ₃ H	3-C001	4-NH($4-SO_3H$	4-NII	4-COC	$4-SC_6H_6$	in colon	Caled:	i Anal.	
Naphthalene	ring	attachment	1	_	_	-	_	1	2	1	_	-	1	-	o black	f Anal.), 4.22.	
Z											CH ₃ ₂		N(CH ₃)2	C2Hs]2	om red t	13.65.	nd: H ₂ C	
		YNR_1R_2	$CH_2)_3N(CH_3)_2$	CIE_2 ₂ $N(C_2II_5)_2$	CH_2) $_2N(C_2H_6)_{_2}$	CH_2)2 $N(C_2H_5)_2$	CH2)2N(C2115)2	CH2)2N(C2H5)2	CII2)2N(C2H6)2	CII2)2N(C2H6)2	CH2)2N[(CH2)3CH3[2	(CH2)2N(C2115)2	Mrc(CH3)2CH2N(CH3)2	CH2)2N [(CH2)2OC2H5]2	ange fro	d: Cl,	J. Four	1
			(CH ₂)3.	(CH2)25	$(CH_2)_{2,1}$	(CH ₂) ₂₁	$(CH_2)_{2\hat{1}}$	(CH2)31	$(CII_2)_{2^{\dagger}}$	$(CII_2)_2$	$(CH_2)_{2}$	$(CH_2)_{2\hat{1}}$	$CH_2C(4$	$(CH_2)_{2\bar{1}}$	^a Compounds range from red to black in color. ^b See footnote b, Table	?. Foun	Caled: H_2O , 4.20. Found: H_2O , $Caled$: $C3$ 8.10. Found: $C3$ 8.66	
		No.	200	201	202	203	204	205	206	207	208	508	210	211	" Com	Cl, 13.72	Caled: H ₂ O, 4.20. Found: H ₂ O, 4.22. i Anal. Caled: Cl, 6.04. Found: Caled: Cl 8.10 Found: Cl 8.66	
																_		

diazonium salt solution was added at 0-5° with stirring to a solution of 1.6 g (0.011 mole) of 2-naphthol and 1.9 g (0.0 $\overline{2}$ 2 mole) of NaHCO₃ in 80 ml of water and 100 ml of ethanol. The reaction mixture was allowed to warm to room temperature and stand overnight. The red precipitate was collected by filtration, dried, and crystallized from ethanol. The intermediate N-(2-diethylaminoethyl)-N-[4-(2-hydroxy-1-naphthylazo)-1-naphthyl]formamide (IXa) weighed 1.7 g (35%), mp 170-172°.

Anal. Calcd for C₂₇H₂₈N₄O₂: C, 73.61; H, 6.41; N, 12.72. Found: C, 73.54; H, 6.66; N, 12.52.

Hydrolysis to 1-[4-(2-diethylaminoethylamino)-1-naphthylazo]-2-naphthol (IXb, 203) was accomplished by allowing a solution of IXa in 2-propanol containing an excess of HCl to stand at room temperature overnight.

N-(2-Diethylaminoethyl)-N-(4-phenylazo-1-naphthyl)acetamide (VIb).—A mixture of 5.0 g (0.014 mole) of N,N-diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine (VIa, 17) and 25 ml of acetic anhydride was boiled under reflux for 1 hr, cooled, and poured into an ice-water mixture. The mixture was made basic with NH4OH and the oily precipitate that separated was extracted with ether. The combined ether extracts were dried (K₂CO₅), the drying agent was collected by filtration, and the filtrate was evaporated to dryness. The residual oil was dissolved in petroleum ether (bp 30-60°) and an orange-red solid was deposited as the petroleum ether was allowed to evaporate slowly in the air. After drying in vacuo for 3 days, the product weighed 3.7 g (66%), mp $69-72^{\circ}$.

Anal. Calcd for $C_{24}H_{28}N_4O$: C, 74.19; H, 7.26; N, 14.42.

Found: C, 74.56; H, 7.28; N, 14.60.

N-(2-Diethylaminoethyl)-N-(4-phenylazo-1-naphthalenecarbamic Acid) Ethyl Ester (VIc).—The addition of ethyl chloroformate (113 g, 1.04 moles) to 17.3 g (0.05 mole) of N,N-diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine (VIa, 17) was accompanied by an exothermic reaction and the temperature rose to 50°. The mixture was heated on a steam bath for 2 hr and cooled, and the residue dissolved in 250 ml of water. The mixture was made basic with $\mathrm{NH_{4}OH}$ and the orange precipitate that separated was extracted with ether. The combined ether extracts were washed successively with water and saturated aqueous NaCl and dried (MgSO₄). The drying agent was separated and the ether solution was concentrated to dryness in vacuo. The red, viscous residue (20.0 g, 95%) could not be induced to crystallize and was used directly in the reduction step.

Anal. Calcd for $C_{25}H_{20}N_4O_2$: C, 71.74; H, 7.23; N, 13.39. Found: C, 72.01; H, 7.23; N, 13.39.

N-(2-Diethylaminoethyl)-2,2,2-trifiuoro-N-(4-phenylazo-1naphthyl)acetamide Monohydrochloride (VId).—Trifluoroacetic anhydride (77 g, 0.367 mole) was added slowly with stirring and external cooling to 50 ml of dimethylformamide and the mixture was added over a period of 40 min with stirring to a solution of 106 g (0.306 mole) of N,N-diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine (VIa, 17) in a mixture of 200 ml of benzene and 425 ml of dimethylformamide contained in a 1-l. flask fitted with a dropping funnel, thermometer, mechanical stirrer, and drying tube. An exothermic reaction ensued and the temperature rose to 45°. The dark red, homogeneous reaction mixture was allowed to cool to room temperature and stand overnight. It was then poured into a briskly stirred mixture of 1 kg of ice and water and 425 ml of benzene. A cold solution of 28.7 ml (0.430 mole) of concentrated NH₄OH and 100 ml of water was then added to the stirred mixture and the aqueous layer was removed in a separatory funnel and extracted with 50 ml of benzene. The benzene extract was combined with the original benzene layer and the benzene solution was washed successively with 200 ml of water, 100 ml of water, and 50 ml of saturated aqueous NaCl. The benzene solution was dried (MgSO₄) and the drying agent was collected by filtration. The filtrate volume was 720 ml. A portion (625 ml) of the benzene filtrate was treated with 45 ml of a 5.8 N 2-propanol-HCl mixture and concentrated to a volume of approximately 400 ml. The mixture was allowed to cool slowly to room temperature and the orange crystalline precipitate that separated was collected by filtration, washed with benzene and ether, and dried in vacuo at 50° ; 105.9 g (83.5%), mp 206.5-208.5°.

Anal. Caled for C₂₄H₂₅F₃N₄O·HCl: C, 60.18; H, 5.47; Cl, 7.40; N, 11.70. Found: C, 59.98; H, 5.54; Cl, 7.58; N, 11.69.

N-(4-Amino-1-naphthyl)-N-(2-diethylaminoethyl)acetamide (VIIb).—N-(2-Diethylaminoethyl) - N-(4-phenylazo-1-naphthyl)acetamide (VIb) (91.0 g, 0.234 mole) was dissolved in methanol and hydrogenated over 3 g of Raney nickel at an initial hydrogen pressure of 3.5 kg/cm². The catalyst was collected by filtration and the methanol solution was poured into 180 ml (0.12 mole) of 4 N ethanolic HCl. Volatile materials were removed in vacuo and the residue was crystallized successively from 2-propanol and methanol to give 60.0 g (76%) of the hydrochloride salt as off-white crystals, mp 230° dec. For analysis, a small sample was converted to the free base, mp 68-71°.

Anal. Calcd for $C_{18}H_{25}N_3O$: C, 72.20; H, 8.42; N, 14.03.

Found: C, 71.94; H, 8.43; N, 14.04.

4-Amino-N-(2-diethylaminoethyl)-1-naphthalenecarbamic Acid Ethyl Ester Dihydrochloride (VIIa).—N-(2-Diethylaminoethyl)-N-(4-phenylazo-1-naphthalenecarbamic acid) ethyl ester (VIc) (20.0 g, 0.048 mole) was dissolved in 250 ml of absolute ethanol and hydrogenolyzed over 3 g of Raney nickel at an initial hydrogen pressure of 3.5 kg/cm². The catalyst was removed by filtration and volatile materials were removed in vacuo. The dark residue was dissolved in 200 ml of 2-propanol and the solution was treated with 35 ml of 4 N ethanolic HCl. The hydrochloride salt was precipitated by the addition of anhydrous ether and the dull pink solid was collected and dried; 16.0 g (83%), mp 212-213°.

Anal. Calcd for C₁₉H₂₇N₃O₂·2HCl: C, 56.71; H, 7.26; Cl, 17.62; N, 10.44. Found: C, 56.57; H, 7.54; Cl, 17.41; N, 10.54.

N-(4-Amino-1-naphthyl)-N-(2-diethylaminoethyl)-2,2,2-trifluoroacetamide Monohydrochloride (VIId).—N-(2-Diethylaminoethyl)-2,2,2-trifluoro-N-(4-phenylazo-1-naphthyl)acetamide monohydrochloride (VId) (88 g, 0.184 mole) was dissolved in 600 ml of methanol and hydrogenolyzed at 23–35° at an initial hydrogen pressure of 3.5 kg/cm² in the presence of 5 g of Raney nickel. The solvent was removed on a rotatory evaporator while maintaining the temperature below 45° and the residue was triturated with anhydrous ether. The precipitate was collected by filtration, washed with ether, and dried in vacuo at 50°. Crystallization from ethanol gave 65.9 g (92%) of colorless crystals, mp 215–218°.

Anal. Calcd for $C_{18}H_{22}F_8N_8O$ ·HCl: C, 55.45; H, 5.95; N, 10.78 Found: C, 55.42; H, 5.82; N, 10.80.

N-(4-Amino-1-naphthyl)-N-(2-diethylaminoethyl)formamide Dihydrochloride (VIIe).—A mixture of 25 ml of formic acid, 60 ml of acetic anhydride, and 200 ml of tetrahydrofuran was stirred and heated on a steam bath for 2 hr, and to it was added 50.0 g (0.45 mole) of N,N-diethyl-N'-(4-phenylazo-1-naphthyl)-ethylenediamine (VIa, 17). The mixture was heated under reflux with stirring for 24 hr and volatile materials were removed in vacuo. The residue was suspended in aqueous NaOH solution and the mixture was extracted with ether. The combined ether extracts were dried (K_2CO_3), the drying agent was collected by filtration, and the ether filtrate was evaporated to dryness in vacuo. The viscous red oil thus obtained (47.0 g, 86%) could not be induced to crystallize and the crude N-(2-diethylaminoethyl)-N-(4-phenylazo-1-naphthyl)formamide (VIe) was used directly in the hydrogenation step.

A solution of $47.0~\mathrm{g}$ (0.126 mole) of the crude formamide (VIe) in 300 ml of methanol was hydrogenated over 1 g of Raney nickel at an initial hydrogen pressure of $3.5~\mathrm{kg/cm^2}$. When the theoretical amount of hydrogen had been absorbed, the catalyst was removed by filtration and the filtrate was concentrated to dryness in vacuo. The residue was dissolved in 2-propanol and the hydrochloride salt was precipitated by the addition of an excess of a HCl-2-propanol mixture. The product was collected by filtration and dried in vacuo at 40° ; $43.4~\mathrm{g}$ (95%), mp

.ccccu 175 1 150° dec

Anal. Calcd for $C_{17}H_{23}N_3O\cdot 2HCl\cdot 0.33~H_2O\colon C,~56.20;~H,~7.12;~N,~11.52;~H_2O,~1.63.~Found:~C,~56.59;~H,~7.83;~N,~11.13;~H_2O,~2.13.$

N,N-Diethyl-N'-(1-phenylazo-2-naphthyl)ethylenediamine (XIII).—Aniline (7.9 g, 0.085 mole) was diazotized and coupled with 20.7 g (0.085 mole) of 2-(2-diethylaminoethylamino)naphthalene^{10,27} according to procedure I. The product (XIII) was obtained as red crystals from 2-propanol; mp 78–79°, yield 21.5 g (73%).

Anal. Calcd for C₂₂H₂₆N₄: C, 76.26; H, 7.57; N, 16.17.

Found: C, 76.27; H, 7.70; N, 16.21.

2-(4-Phenylazo-1-naphthyloxy)triethylamine Monocitrate (XIV).—A mixture of 24.8 g (0.1 mole) of 4-phenylazo-1-naphthol, 17.2 g (0.1 mole) of 2-chlorotriethylamine hydrochloride, 10.8 g

Anal. Calcd for $C_{22}H_{25}N_3O \cdot C_8H_8O_7$: C, 62.32; H, 6.16: N, 7.79. Found: C, 62.41; H, 6.30; N, 7.99.

N,N-Diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine N-Oxide Dihydrochloride (XV).—To a solution of 17.3 g (0.05 mole) of N,N-diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine (VIa, 17) in 500 ml of dry CHCl₃ was added slowly with stirring a solution of 6.9 g (0.05 mole) of perbenzoic acid²⁸ in 100 ml of CHCl₃. The reaction was mildly exothermic and the temperature rose to 30°. After 3 hr, the chloroform was removed in vacuo in the presence of platinum foil, and the residue was dissolved in 2-propanol and treated with 5 ml (0.047 mole) of a 34% 2-propanol-HCl mixture. Upon cooling, the dark red precipitate that separated was collected by filtration and dried in vacuo at 40° for 72 hr. The product weighed 6.9 g (31%), mp 155–157°.

Anal. Calcd for $C_{22}H_{26}N_4O \cdot 2HCl$: C, 60.69; H, 6.48; N, 12.87; H_2O , 0.0. Found: C, 60.69; H, 6.36; N 12.69; H_2O , 0.0.

Diethylmethyl[2-(4-phenylazo-1-naphthylamino)ethyl]ammonium Iodide (XVI).—A mixture of 5.0 g (0.0145 mole) of N,N-diethyl-N'-(4-phenylazo-1-naphthyl)ethylenediamine (VIa, 17) and 5.0 g (0.0352 mole) of methyl iodide was heated on a steam bath for 15 min, then dissolved in 500 ml of hot ethanol. Upon cooling, a deep red solid separated weighing 3.8 g (54%), mp 191-193°.

Anal. Calcd for C₂₃H₃₉IN₄: C, 56.56; H, 5.98; N, 11.47.

Found: C, 56.60; H, 5.66; N, 11.34.

N-(2-Bromoethyl)-4-phenylazo-1-naphthylamine.—N-(2-Bromoethyl)-1-naphthylamine hydrobromide¹⁰ (33.1 g, 0.1 mole) was dissolved in a mixture of 420 ml of methanol and 100 ml of ethanol on a steam bath and the solution was cooled to -2° . Aniline (9.3 g, 0.1 mole) was dissolved in a mixture of 200 ml of water and $26~\mathrm{ml}$ (38.4 g., 0.23 mole) of 48% HBr, and 100 ml of ethanol was added. The aniline hydrobromide solution was then cooled to -1° and was slowly treated with a cold solution of 6.9 g (0.1 mole) of NaNO2 in 60 ml of water with stirring so that the temperature was maintained below 2°. After 10 min, a test for nitrous acid (KI-starch paper) was essentially negative and the diazonium salt solution was added to the stirred solution of the naphthylamine salt at such a rate as to maintain the temperature below 5°. The purple reaction mixture was stirred at 0-5° for 3 hr, 250 ml of cold water was added, and the mixture was allowed to stand overnight. The green precipitate was collected by filtration, washed thoroughly with water, and suspended in a mixture of 600 ml of CHCl₃ and 500 ml of 5% aqueous NaOH. The mixture was stirred for 1 hr and the red chloroform layer was separated and dried (MgSO₄). The drying agent was collected by filtration and the chloroform solution was concentrated to 150 ml and diluted with 150 ml of ethanol. The resulting solution was concentrated to approximately 100 ml and petroleum ether (bp 30-50°) was added to the cloud point, Upon scratching, the product crystallized as golden brown needles. The precipitate was collected by filtration and dried in vacuo at 55°; 21.6 g, mp 93-95°. A second crop was obtained by concentration of the filtrate, 7.1 g, mp 93-95°; total yield $28.7~\mathrm{g}$ (81 %

Anal. Calcd for $C_{18}H_{16}BrN_3$: C, 61.02; H, 4.55; N, 11.86. Found: C, 61.31; H, 4.69; N, 12.05.

1-Chloro-3-(4-phenylazo-1-naphthylamino)-2-propanol.—Aniline (4.64 g, 0.05 mole) was diazotized and coupled with 13.6 g (0.05 mole) of 1-chloro-3-(1-naphthylamino)-2-propanol²⁹ utilizing the conditions described under procedure I. The crude dye was extracted with CHCl₃, the combined chloroform extracts were dried (K₂CO₃), the drying agent was collected by filtration, and the CHCl₃ filtrate was evaporated to dryness. The residue

^{(0.2} mole) of sodium methoxide, and 200 ml of ethanol was boiled under reflux for 24 hr. The ethanol was removed in vacuo, and the residue was treated with an excess of aqueous NaOH and extracted with ether. The combined ether extracts were dried (Na₂SO₄), the drying agent was collected by filtration, and the ether was removed in vacuo. The residue was dissolved in warm ethanol and treated with an excess of citric acid in ethanol. Upon cooling, the crude product separated, mp 140-143° dec. Crystallization from ethanol-ether gave 14.6 g (27%) of orange crystals, mp 143-145° dec.

⁽²⁸⁾ H. Gilman and A. H. Blatt, "Organic Syntheses," Coll. Vol. 1, John Wiley and Sons, Inc., New York, N. Y., 1946, p 431.

⁽²⁹⁾ E. Foarneau, M. and Mme, J. Trefouel, and G. Benoit, Ann. Inst. Pasteur, 44, 749 (1930).

was crystallized from ethanol to give 12.2 g (72%) of a reddish brown solid, mp 140-141°

Anal. Calcd for $C_{19}H_{18}ClN_3O$: C, 67.15; H, 5.34; Cl, 10.44; N, 12.37. Found: C, 67.45; H, 5.55; Cl, 10.58; N, 12.26.

1-Chloro-2-methyl-3-(4-phenylazo-1-naphthylamino)-2-propanol.—Utilizing the procedure described above for the preparation of 1-chloro-3-(4-phenylazo-1-naphthylamino)-2-propanol, aniline (3.25 g, 0.035 mole) and 1-chloro-2-methyl-3-(1-naphthylamino)-2-propanol²⁹ (10.0 g, 0.035 mole) gave 7.8 g (63%) of maroon crystals, mp 130-131°.

Anal. Calcd for $C_{20}H_{20}ClN_3O$: C, 67.88; H, 5.70; N, 11.88. Found: C, 67.98; H, 5.67; N, 12.05.

Acknowledgments.—The authors wish to express their appreciation to Dr. Loren M. Long for encourage-

ment in this investigation, to Dr. Paul E. Thompson, Mr. Jack E. Meisenhelder, and Dr. Haig Najarian for the antischistosome testing, and to Miss M. Virginia Dudley, Mrs. Zoe Gavrilis, Mrs. Mary K. Martin, Miss Joan D. Multhaup, Miss Josephine Rarity, Mrs. Doris R. Thomas, and Miss E. A. Weinstein for synthesizing several of the compounds described herein. We also thank Mr. William Pearlman for carrying out the hydrogenations, Mr. C. E. Childs and associates for the microanalyses, and Dr. J. M. Vandenbelt and coworkers for determination of the infrared and ultraviolet absorption spectra.

Reactions of Mercaptoamines. III. Synthesis of N-Monosubstituted 2-Mercaptoethylamines^{1,2}

ARTHUR F. FERRIS, 3 O. LEROY SALERNI, 4 AND BEVERLY A. SCHUTZ

Midwest Research Institute, Kansas City, Missouri 64110

Received September 29, 1965

As part of a program on the synthesis of antiradiation drugs, a four-step novel synthesis of N-monosubstituted 2-mercaptoethylamines has been developed. The synthesis involves (1) conversion of 2-mercaptoethylamine by reaction with nitriles to 2-substituted 2-thiazolines (I), (2) quaternization of the thiazolines by tosylate esters to thiazolinium salts (II), (3) alkaline hydrolysis of the salts to an N-(2-mercaptoethyl)acetamide derivative (III), and (4) hydrolysis of the amides in concentrated HCl and glacial acetic acid to N-monosubstituted 2-mercaptoethylamines (IV).

Because of the potential use of 2-mercaptoethylamines as antiradiation drugs,5-8 it has become imperative that additional synthetic routes to compounds of this class be devised.

Previous studies of the reactions of mercaptoamines have shown that many compounds capable of reacting with the amine function also react with the mercaptan function. 9,10 In the work reported here, a method was devised for protecting the mercaptan function in 2mercaptoethylamine, allowing the amine function to react, and then regenerating the free mercaptan. N-Monosubstituted 2-mercaptoethylamines were thereby obtained.

$$\begin{array}{c|c} \text{HSCH}_2\text{CH}_2\text{NH}_2 & \xrightarrow{\text{CH}_3\text{CN}} & \xrightarrow{\text{N}} & \xrightarrow{p-\text{ROSO}_2\text{C}_6\text{H}_2\text{CH}_3} \\ & \text{I} & \text{NaOH} \\ & \text{NR} & p-\text{O}_3\text{SC}_6\text{H}_4\text{CH}_3 & \xrightarrow{\text{then H}_3\text{O}^+} \\ & \text{II} & & \\ \end{array}$$

Two recent investigations have independently shown that 2-mercaptoethylamine reacts with nitriles to give 2-substituted 2-thiazolines. 11,12 It had been shown earlier that 2-thiazolines are quaternized with alkyl iodides or p-toluenesulfonates.13 It was found that low molecular weight alkyl iodides indeed gave good yields of solid quaternary thiazolinium iodides when heated with 2-methyl-2-thiazoline (I) in refluxing absolute ethanol. However, when more complex halides were used, the reaction appeared to be sluggish. Benzyl chloride and 2-bromoethylamine hydrobromide both gave ill-defined syrups with 2-methyl-2-thiazoline, and chloroacetone gave a tarry product. It became apparent that only active alkylating agents would serve to quaternize the thiazoline. Since esters of ptoluenesulfonic acid ("tosylates") are known to be more effective in displacement reactions than alkyl halides (i.e., the tosylate anion is a better "leaving group" than any of the halide anions), they seemed a likely choice for the thiazoline quaternization. In the first experiments, refluxing absolute ethanol was used as solvent and ethyl and n-heptyl tosylates were the alkylating agents. The same solid product was obtained in both reactions, and it proved to be the simple tosylate salt of 2-methyl-2-thiazoline. From the reaction with heptyl tosylate, a liquid product was isolated and identified as ethyl n-heptyl ether. The isolation of this compound provided a basis for explaining what had happened in these reactions. The tosylate ester had alkylated the solvent in preference to the thiazoline, and the latter had acted merely as an acid acceptor. When refluxing dry acetonitrile

⁽¹⁾ This work was supported by the U. S. Army Medical Research and Development Command, Department of the Army, under Contract No. DA-49-193-MD-2174.

⁽²⁾ Presented in part at the Sixteenth Annual Midwest Chemistry Conference, Kansas City, Mo., Nov 19, 1964.

⁽³⁾ Deceased.

⁽⁴⁾ To whom requests for reprints should be addressed.

⁽⁵⁾ Cf. Symposium on Radiation-Protective Agents, 141st National Meeting of the American Chemical Society, Washington, D. C., March 1962.

⁽⁶⁾ D. D. Reynolds, D. L. Fields, and D. L. Johnson, J. Org. Chem., 26, 5130 (1961).

⁽⁷⁾ R. J. Wineman, M. H. Gollis, J. C. James, and A. M. Pomponi, ibid., 27, 4222 (1962).

⁽⁸⁾ F. I. Carroll, H. M. Dickson, and M. E. Wall, ibid., 30, 33 (1965).

⁽⁹⁾ Paper I: A. F. Ferris and B. A. Schutz, ibid., 28, 3140 (1963).

⁽¹⁰⁾ Paper II: A. F. Ferris and B. A. Schutz, ibid., 29, 201 (1964).

⁽¹¹⁾ R. Kuhn and F. Drawert, German Patent 937,231 (Dec 29, 1955); Chem. Abstr., 53, 409 (1959).

⁽¹²⁾ T. Kurihava, K. Suzuki, and M. Okita, Tohoku Yakka Daikago Kiyo, 5, 43 (1958); Chem. Abstr., 53, 10176 (1959).

⁽¹³⁾ L. G. S. Brocker, J. Am. Chem. Soc., 58, 662 (1936).