View Article Online

ChemComm

Chemical Communications

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Z. M. A. Judeh, M. B. Tatina, Z. Moussa and M. Xia, *Chem. Commun.*, 2019, DOI: 10.1039/C9CC06151G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 16 September 2019. Downloaded on 9/16/2019 11:33:37 PM.

COMMUNICATION

Perfluorophenylboronic Acid-Catalyzed Direct α-Stereoselective Synthesis of 2-Deoxygalactosides from Deactivated Peracetylated D-Galactal

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Madhu Babu Tatina,^a Ziad Moussa,^b Xia Mengxin,^a Zaher M. A. Judeh^{a,*}

Perfluorophenylboronic acid 1c catalyzes the direct stereoselective addition of alcohol nucleophiles to deactivated peracetylated D-galactal to give 2-deoxygalactosides in 55-88% yield with complete α -selectivity. The unprecedented results reported here also enable the synthesis of disaccharides containing 2-deoxygalactose moiety directly from the deactivated peracetylated D-galactal. This convenient and metal-free glycosylation method works well with a wide range of alcohol nucleophiles as acceptors and tolerates a range of functional groups without formation of Ferrier byproduct and without the need for large excess of nucleophiles or additives. The method is potentially useful for the synthesis of a variety of α -2deoxygalactosides.

Deoxyglycosides are widely present in natural products and are biologically active components in drugs including anticancers and antibiotics such as orthosamycins, anthracyclines, angucyclins and aureolic acids.¹ Therefore, practical routes for their synthesis are important. Direct catalytic and stereoselective addition of alcohol nucleophiles to 1,2-glycals is the most attractive method for the synthesis of 2-deoxyglycosides due to its simplicity and practicality.² However, achieving complete stereocontrol is challenging due to the absence of stereo-directing groups at the C-2 of 1,2-glycals that guide the attacking nucleophiles. Additionally, the type of substituents on the 1,2-glycals and the type of the alcohol nucleophiles (*via* stereoelectronic effects) play important role in the success of the this reaction.^{2d,2g,2j,3} For example, 1,2-glycals substituted with alkyl, benzyl, allyl, silyl groups etc. successfully react with alcohol nucleophiles in the presence of many catalysts including (Lewis) acids, organocatalysts and metal/ligand-based catalysts to give good to excellent yields and selectivities.^{2d,2g,2j,3} However, catalyzed direct addition of alcohols to deactivated peracetylated D-glycals are rarely explored, and success has been reported with Ph₃P-HBr⁴ and CeCl₃.H₂O-Nal⁵ using only simple alcohol nucleophiles. Additionally, peracetylated D-galactals remain formidable substrates and are unreactive towards addition of alcohols despite testing a range of catalysts such as glucose-Fe₃O₄-SO₃H solid acid,^{3d} Ph₃P-HBr,⁴ Au(I)/AgOTf,^{3a} ReOCl₃(SMe₂)(Ph₃PO),^{2f} Pd-based catalysts, 3b, 3e, 3f thiourea,^{2k} and acid/thiourea organocatalyst.^{3d} To our knowledge, the only successful reported example is the CeCl₃.H₂O-NaI-catalyzed addition of octanol to peracetylated D-galactal which gave 85% yield with α -selectivity after 8.5 hours.⁵ The lack of reactivity of the peracetylated Dgalactals (and peracetylated D-glycals in general) is attributed to the deactivation of the alkene bond through the disarming effect of the acetate moieties, especially the acetate at the C-3.^{6,2k} Peracetylated D-galactal (and peracetylated 1,2-glycals in general) are common substrates in carbohydrate chemistry and are easily prepared in comparison to other substituted D-galactal/1,2-glycals.⁷ In fact, they serve as substrates for the preparation of the more reactive peralkylated, perbenzylated, persilylated D-galactal/1,2-glycals.^{2j} Therefore, a highly stereoselective catalytic processes that directly add alcohol nucleophiles to deactivated peracetylated D-galactal is extremely desired. Additionally, the preparation of disaccharides containing 2-deoxygalactose moiety is of great interest and has not been realized through catalyzed direct addition of sugar alcohols to peracetylated D-galactal.

Organoboron reagents have been used to catalyze many reactions including Friedel-Crafts alkylations,⁸ aldol reactions,⁹ epoxides opening,¹⁰ glycosylation reactions¹¹ and many others.¹² Recently, Galan reported excellent results in the addition of alcohols to 1,2-glycals using tris(pentafluorophenyl)borane catalyst, although addition to peracetylated D-galactals was not investigated.^{2f} Taylor also used PhB(OH)₂ and other boronic acids mainly as transient protecting/activating groups through cyclic ester formation.^{11c-11f} Our group has used arylphenylboronic acids as

^{a.} School of chemical and Biomedical Engineering Nanyang Technological University Singapore, 637459.

^{b.} Department of Chemistry, College of Science,

United Arab Emirates University

United Arab Emirates, 15551

^{+ *}Corresponding Author

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

catalysts in the direct addition of *C-, O-, N-* and *S*-nucleophiles to 1,2-glycals to prepare 2,3-unsaturated glycosides *via* Ferrier rearrangement.¹⁴ Despite the robustness and mildness of organoboronic acid catalysts in comparison to traditional strong Lewis and Brønsted acid catalysts, to our knowledge, their use as promoters for the synthesis of 2-deoxyglycosides has not be disclosed yet.

Given our interest in glycosylation,^{13,14} we specifically pursued this work on targeting the glycosylation of the deactivated peracetylated D-galactal (3,4,6-tri-*O*-acetyl-D-galactal) which has been thus far very elusive. Herein, we report unprecedented perfluorophenylboronic acid-catalyzed α -stereoselective direct addition of alcohols to deactivated peracetylated D-galactal to prepare 2-deoxygalactosides as well as disaccharides containing 2deoxygalactose moiety.

Our study started by screening phenylboronic acid 1a, pfluorophenylboronic acid **1b** and pentafluorophenylboronic acid 1c¹⁵ for their ability to promote the stereoselective glycosylation of deactivated peracetylated D-galactal 2 with benzyl alcohol (3) (Table 1). The reaction was unsuccessful in CH₂Cl₂ and THF (Table 1, entries 1 and 2). However, pentafluorophenylboronic acid 1c gave 15% and 30% yield of the desired 2-deoxygalactosides 4a in toluene and CH₃CN, respectively (entries 3&4). Satisfyingly, switching to CH₃NO₂ gave the 2-deoxygalactoside 4a in 88% yield with complete α -selectivity after just 6 h (Table 1, entry 5). Keeping the same conditions but lowering the catalyst loading to 10 mol% resulted in lower yield of 4a (40%, entry 6). No sign of the β -isomer was detected in the crude reaction product. Both phenylboronic acid 1a and *p*-fluorophenylboronic acid **1b** did not promote the reaction in CH₃NO₂ possibly due to their lower acidity (Table 1, entries 7 and 8). Unlike several other glycosylation catalysts which need excess amount of alcohols or additives to give reasonable yields, excess of benzyl alcohol 3 and additives are not necessary with 1c.4,5

Under the above conditions, Ferrier product 4b did not form at 60 °C and 2-deoxygalactoside 4a was the sole product. In our previous work, pentafluorophenylboronic acid 1c catalyzed the addition of various C-, O-, N- and S-nucleophiles to peracetylated Dglucals and peracetylated L-rhamnals and gave only the 2,3unsaturated glycosides (Ferrier products) at both 40 °C and 60 °C.14 This means that the formation of either 2-deoxygalactosides or 2,3unsaturated glycosides depends on the stereochemistry of the starting glycal and not on the temperature of the reaction. In the case of tris(pentafluorophenyl)borane as catalyst, disarmed glycals gave Ferrier product at 75 °C while armed glycals gave 2deoxygalactosides at 50 °C.^{2f} However, camphorsulfonic acid gave either 2-deoxygalactosides or Ferrier product during the addition of alcohols to silvlated rhamnals depending on the acidity and temperature of the reaction.²¹ These results prove the reaction outcome can be controlled using the catalyst, donor and reaction conditions.

Table 1: Optimization of the reaction conditions in the glycosylation of peracetylated D-galactal 2 with benzyl alconol ዓመር የተቀናዩ የተርቆ G of organoboronic acids 1a-c

Entry	Organoboronic	Solvent	Temp.	Time	4a Yield
	acid (mol %)		(°C)	(h)	(%) ^b
1	1a/1b/1c (20)	CH_2CI_2	reflux	24	-
2	1a/1b/1c (20)	THF	reflux	12	-
3	1c (20)	Toluene	80	12	15
4	1c (20)	CH₃CN	60	12	30
5	1c (20)	CH₃NO₂	60	6	88
6	1c (10)	CH_3NO_2	60	6	40
7	1a (20)	CH_3NO_2	60	6	-
8	1b (20)	CH_3NO_2	60	6	-

^a1 eq of peracetylated D-galactal **2** reacted with 1.2 eq of benzyl alcohol **3**. ^bYield was measured after column chromatography purification.

Scheme 1 Perfluorophenylboronic acid 1c-catalyzed addition of alcohols 4a-n to peracetylated D-galactal 2

Manuscrip

Journal Name

Published on 16 September 2019. Downloaded on 9/16/2019 11:33:37 PM.

Journal Name

With the optimal reaction conditions in hand (Table 1, entry 5), we then examined the scope of the pentafluorophenylboronic acid 1c-catalyzed glycosylation of peracetylated D-galactal 2 with various glycosyl acceptors 3a-n (Scheme 1). In all cases, the glycosylation reactions proceeded smoothly to give the 2-deoxygalactosides 4a-o in 56-88% yield with complete α -selectivity within 6 h. The glycosylation using primary, secondary and tertiary alcohols 4a-e as well as phenols 4f-o with electron donating and withdrawing groups proceeded successfully to give similar yields and α -selectivities irrespective of the steric and electronic effects of these acceptors (Scheme 1). However, 4-formyl substituent resulted in lower yield of 4o (Scheme 1) while 4-nitrophenol failed to react under the optimised conditions due to the very strong electron withdrawing effect of the nitro group. It is noteworthy that phenols 4f-o reacted smoothly with peracetylated D-galactal 2 without any rearrangement to C-glycosides. Such rearrangements occurred using very strong acid catalysts.¹⁶ Carbamate alcohol also smoothly gave product **4d** in 84% yield with α -selectivity. Mixtures of (α/β) hemiacetal by-product 5 (~5-10%) were observed in the ¹H NMR spectra of the crude products which were attributed to reaction of the starting peracetylated D-galactal 2 with water; a common problem encountered in these reactions.¹⁷

We then challenged the perfluorophenylboronic acid 1c in the glycosylation reactions between peracetylated D-galactal 2 and sugar alcohol acceptors including glucoses (6 and 7), mannoses (8 and 9), ribose 10 and arabinose 11 alcohols, under the optimized conditions (Table 1, entry 5). In all cases, the reaction successfully gave the expected disaccharides 6a-11a in 55-65% yield with α selectivity. The reaction conditions tolerated ether, ester and thioether functional groups. Hemiacetal **5** (α/β mixture up to 30%) also appeared as the by-product in these reactions, which explains the reduction in the isolated yields. The R_f values of the disaccharides 6a-11a and hemiacetal 5 were very close which prevented smooth purification. Therefore, the crude reaction products were acetylated, which allowed for smoother separation of the disaccharides 6a-11a from the acetylated hemiacetal 5. Small amount of impurities remained despite attempts to remove them completely.

Next, we investigated the mechanism of the reaction. Addition of an equimolar amount of Et₃N to the reaction mixture completely shut down the glycosylation reaction leading to recovery of the starting materials and indicating that the transformation is acidcatalyzed. ¹H NMR studies of the reaction mixture in CD₃NO₂ did not show any significant chemical shift changes in the olefinic protons of the -HC=CH- of D-galactal 2. These results rule out any coordination between perfluorophenylboronic acid 1c with the -HC=CH-, at least during the early stages of the reaction. When the glycosylation reaction was performed using CD₃OD as the nucleophile, 2-deoxygalactosides 12 was obtained in 85% yield (Figure 1, See SI). Our findings suggest that perfluorophenylboronic acid 1c acts as an indirect acid source. In general, the acidity of boronic acids (pKa 4-10.4)¹⁸ is related to their ability to ionize water and generate hydronium ions via indirect proton transfer according to the ionization equilibrium shown in eq. 1.1 (Fig. 1).¹⁸ Because of

COMMUNICATION

the similarity of pKa values of water (15.7) and view Article online nucleophiles employed in this study (17009)10 weighter commer behaviour of ionization of acid **1c** in which it ionizes the alcohol according to eq. 1.2 to form alkyloxonium ions which function as the H⁺ source. The more acidic phenols may as well undergo similar ionization. A second pathway involving the formation of hydronium ions due to the presence of adventitious water may operate in parallel, leading to the same alkyloxonium ion intermediate.

Table 2: Perfluorophenylboronic acid **1c**-catalyzed glycosylation ofperacetylated D-galactal **2** with various sugar acceptors

^a1 eq of D-galactal **2** reacted with 1.05 eq of acceptors **6-11**.

A plausible reaction mechanism is proposed in Figure 1. Acid induced polarization of the double bond of D-galactal **2** activates it towards nucleophilic addition. Thus, reaction between DOCD₃ (or the alcohol nucleophile) and **1c** according to equation 1.2 yields a highly acidic alkyloxonium ion which protonates the enol ether functionality of the ${}^{4}\text{H}_{5}$ conformation (**I**) primarily *via* cleavage of the O-H bond which may be rationalized by the kinetic isotopic effect. Indeed, we observed minute formation of C-2 deuterated **12** as indicated by high resolution mass spectroscopy. Once formed, the oxygen nucleophile attacks the oxocarbenium ion **II** (${}^{4}\text{H}_{3}$) in a diastereoselective fashion from the least congested face to yield

COMMUNICATION

J

Journal Name

the α -2-deoxygalactosides **12** products exclusively. Interestingly, heating a mixture of methanol and catalyst **1c** overnight did not affect the outcome of the reaction or yield following the addition of galactal **2** in the next day, indicating that **1c** retains its catalytic properties and does not lose its acidic character.

Fig. 1 Plausible mechanism of glycosylation of D-galactal 2

Conclusion

We developed a mild and metal-free direct stereoselective glycosylation method for deactivated peracetylated D-galactal using commercially available perfluorophenylboronic acid **1c** catalyst. The glycosylation method gave 2-deoxygalactosides in good to excellent yields with complete α -selectivity and tolerated a wide substrate scope and a range of functional groups. The unprecedented results enabled glycosylation of the challenging peracetylated galactal. Application of this chemistry to the synthesis of other 2-deoxyglycosides is currently underway in our laboratory.

Conflicts of interest

There are no conflicts to declare.

Acknowledgments

We thank Nanyang Technological University, Singapore (Grant # RG 13/18) and United Arab Emirates University (Grant # 852) for financial support.

Notes and references

- (a) T. K. Lindhorst in Glycoscience: Chemistry and Chemical Biology, 2nd ed. (Eds.: B. O. Fraser-Reid, K. Tatsuta, J. Thiem, G. L. Cot, S. Flitsch, Y. Ito, H. Kondo, S.-i. Nishimura, B. Yu, Springer, Berlin, 2008, chap. 12.6; (b) X. M. He, H.W. Liu, *Curr. Opin. Chem. Biol.*, 2002, 6, 590-597.
- 2 (a) D. Benito-Alifonso, M. C. Galan, Bronsted and Lewis Acid Catalyzed Glycosylation. In Selective Glycosylations: Synthetic Methods and Catalysis; Bennett, C. E., Ed.; 2017; pp 155–171; (b) M. J. McKay, H. M. Nguyen, ACS Catal., 2012, 2, 1563–1595; (c) E. I. Balmond, M. C. Galan, E. M. McGarrigle, Synlett, 2013, 24, 2335–2339; (d) C. S. Bennett, M. C. Galan, Chem. Rev., 2018, 118, 7931–7985; (e) S. Medina, M. C. Galan, Carbohydr. Chem., 2015, 41, 59–89; (f) A. Sau, C. Palo-Nieto, M. C. Galan, J. Org. Chem., 2019, 84, 2415–2424; (g) G. A. Bradshaw, A.C. Colgan, N.

P. Allen, I. Pongener, M. B. Boland, Y. Ortin, E. M. McGarrigle, Chem. Sci., 2019, **10**, 508–514; (h) G. Y. Zhao, To Wang, Corgeve Chem. Int. Ed., 2018, **57**, 6120–6124; (i) S. Medina, M. J. Harper, E. I. Balmond, S. Miranda, G. E. M. Crisenza, D. M. Coe, E. M. McGarrigle, M. C. Galan, Org. Lett., 2016, **18**, 4222–4225; (j) E. I. Balmond, D. Benito-Alifonso, D. M. Coe, R. W. Alder, E. M. McGarrigle, M. C. Galan, Angew. Chem. Int. Ed., 2014, **53**, 8190–8194; (k) E. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle, Angew. Chem. Int. Ed., 2012, **51**, 9152–9155; (I) J. Wang, C. Deng, Q. Zhang, Y. Chai, Org. Lett., 2019, **21**, 1103–1107; (m) Y.-J. Lu, Y.-H. Lai, Y.-Y. Lin, Y.-C. Wang, P.-H. Liang, J. Org. Chem., 2018, **83**, 3688-3701.

- 3 (a) C. Palo-Nieto, A. Sau, M. C. Galan, J. Am. Chem. Soc., 2017, 139, 14041–14044; (b) A. Sau, R. Williams, C. P. Nieto, A. Franconetti, S. Medina, M. C. Galan, Angew. Chem. Int. Ed., 2017, 56, 3640 –3644; (c) C. H. Marzabadi, R. W. Franck, Tetrahedron, 2000, 56, 8385–8417; (d) R. S. Thombal, V. H. Jadhav, RSC Adv., 2016, 6, 30846; (e) A. Sau, R. Williams, C. Palo-Nieto, A. Franconetti, S. Medina, M. C. Galan, Angew. Chem. Int. Ed., 2017, 56, 3640–3644; (f) A. Sau, M. C. Galan, Org. Lett., 2017, 19, 2857–2860.
- 4 J. S. Yadav, B. V. S. Reddy, K. B. Reddy, M. Satyanarayana, *Tetrahedron Lett.*, 2002, **43**, 7009–7012.
- 5 (a) V. Bolitt, C. Mioskowski, S. G. Lee, J. R. Falk, J. Org. Chem., 1990, 55, 5812–5813; (b) M.-Y. Hsu, Y.-P. Liu, S. Lam, S.-C. Lin, C.-C. Wang, Beilstein J. Org. Chem., 2016, 12, 1758–1764.
- 6 (a) E. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle, Angew. Chem. Int. Ed., 2012, 51, 9152; (b) B. D. Sherry, R. N. Loy, F. D. Toste, J. Am. Chem. Soc., 2004, 126, 4510; (c) H. Kunz, C. Unverzagt, Angew. Chem., Int. Ed. Engl., 1988, 27, 1697.
- 7 J. Zhao, S. Wei, X. Ma, H. Shao, *Carbohydra. Res.*, 2010, **345**, 168–171.
- 8 J. A. McCubbin, H. Hosseini, O. V. Krokhin, J. Org. Chem., 2010, **75**, 959.
- 9 I. Georgiou, G. Ilyashenko, A. Whiting, Acc. Chem. Res., 2009, 42, 756.
- 10 (a) X.-D. Hu, C.-A. Fan, F.-M. Zhang, Y.-Q. Tu, *Angew. Chem. Int. Ed.*, 2004, **43**, 1702; (b) H. Zheng, S. Ghanbari, S. Nakamura, D.
 G. Hall, *Angew. Chem. Int. Ed.*, 2012, **51**, 6187.
- (a) D. Lloyd, C. S. Bennett, Synthesis. *Chem. Eur. J.*, 2018, 24, 7610–7614; (b) M. Tanaka, J. Nashida, D. Takahashi, K. Toshima, *Org. Lett.*, 2016, 18, 2288–2291; (c) K. A. D. Angelo, M. S. Taylor, *J. Am. Chem. Soc.*, 2016, 138, 11058–11066; (d) R. S. Mancini, J. B. Lee, M. S. Taylor, *J. Org. Chem.*, 2017, 82, 8777–8791; (e) R. S. Mancini, C. A. McClary, S. Anthonipillai, M. S. Taylor, *J. Org. Chem.*, 2015, 80, 8501–8510; (f) S. Manhas, M. S. Taylor, *Carbohydra. Res.*, 2018, 470, 42–49.
- (a) A. Debache, B. Boumoud, M. Amimour, A. Belfaitah, S. Rhouati, B. Carboni, *Tetrahedron Lett.*, 2006, **47**, 5697; (b) H. Zheng, D. G. Hall, *Tetrahedron Lett.*, 2010, **51**, 3561.
- 13 M. B. Tatina, X. Mengxin, R. Peilin, Z. M. A. Judeh, *Beilstein J. Org. Chem.*, 2019, **15**, 1275–1280.
- 14 M. B. Tatina, D. T. Khong, Z. M. A. Judeh, *Eur. J. Org. Chem.* 2018, 2208–2213.
- 15 D. Zarzeczańska, A. Adamczyk-Woźniak, A. Kulpa, T. Ossowski, A. Sporzyński, *Eur. J. Inorg. Chem.* 2017, 4493–4498.
- 16 T. Matsumoto, T. Hosoya, K. Suzuki, *Tetrahedron Lett*. 1990, **31**, 4629-4632.
- 17 H. M. Christensen, S. Oscarson, H. H. Jensen, *Carbohydra. Res.* 2015, **408**, 51-95.
- 18 J. P. Lorand, J. O. Edwards, J. Org. Chem. 1959, 24, 769-774.

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

