JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS J Label Compd Radiopharm 2006; 49: 55-70. Published online in Wiley InterScience (www.interscience.wiley.com), DOI: 10.1002/jlcr.1026 #### Research Article # Syntheses and radiofluorination of two derivatives of 5-cyano-indole as selective ligands for the dopamine subtype-4 receptor Rainer Tietze¹, Carsten Hocke¹, Stefan Löber², Harald Hübner², Torsten Kuwert¹, Peter Gmeiner² and Olaf Prante^{1,*} # **Summary** Two fluoroethoxy substituted derivatives, namely 2-[4-(2-(2-fluoroethoxy)phenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (5a) and 2-[4-(4-(2-fluoroethoxy)-phenyl) piperazin-1-vlmethyllindole-5-carbonitrile (5b) were synthesized as analogs of the selective D₄ receptor ligand 2-[4-(4-fluorophenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (FAUC 316). In vitro characterization using CHO-cells expressing different dopamine receptor subtypes gave K_i values of 2.1 (5a) and 9.9 nM (5b) for the dopamine D₄ subtype and displayed a 420-fold D₄-selectivity over D₂ receptors for **5b**. The para-fluoroethoxy substituted candidate **5b** revealed substantially reduced α_1 and serotoninergic binding affinities in comparison to the ortho-fluoroethoxy substituted compound. In order to provide potential positron emission tomography (PET) imaging probes for the dopamine D₄ receptor, ¹⁸F-labelling conditions using $[^{18}F]$ fluoroethyl tosylate were optimized and led to radiochemical yields of 81 \pm 5% $(1^{18}F|5a)$ and 47 + 4% $(1^{18}F|5b)$ (n = 3, decay-corrected and referred to labellingagent), respectively. Thus, ¹⁸F-fluoroethylation favourably at the para position of the phenylpiperazine moiety of the 5-cyano-indole framework proved to be tolerated by D₄ receptors and could also be applied to alternative scaffolds in order to develop D₄ radioligand candidates for PET with improved D₄ receptor affinity and selectivity. Copyright © 2005 John Wiley & Sons, Ltd. Contract/grant sponsor: Deutsche Forschungsgemeinschaft; contract/grant number: PR 677/2 ¹ Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany ² Department of Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany ^{*}Correspondence to: O. Prante, Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, D-91054 Erlangen, Germany. E-mail: olaf.prante@nuklear.imed.uni-erlangen.de **Key Words:** ¹⁸F-fluoroethylation; indole; F-18; D₄ receptor; positron-emission-tomography; PET #### Introduction The dopamine D_4 receptor subtype belongs to the subfamily of D_2 -like distinct dopamine receptors (D_2R , D_3R and D_4R) mediating the action of dopamine in the brain, but differing in their brain distribution and pharmacological profiles. Among them, the D_4 receptor has been cloned and intensively studied *in vitro* using knock-out mice or immunohistochemistry with receptor-specific antibodies. The precise function and exact distribution of the dopamine D_4 receptor in the CNS are of great interest, as associations are emerging between D_4 receptors and neuropsychiatric disorders, including schizophrenia, attention-deficit hyperactivity disorder as well as specific personality traits such as novelty seeking. Whether the dopamine D_4 receptor fulfills distinct functional roles has not yet been satisfactorily addressed. Up to now, dopamine D₄ receptor concentrations in vitro are usually determined by indirect binding studies, in which [3H]raclopride binding (D₂/ D₃ antagonist) is subtracted from total binding measured with [³H]nemonapride. 9,10 However, this method has yielded conflicting results: whereas Seeman et al. Preported an increased D₄ receptor density in postmortem brain tissue of schizophrenic patients, these results could not be confirmed by others. 11,12 Data on the apparently low D₄ receptor densities in the brain are scarce and were reported in analyses using in situ hybridization establishing receptor expression in the prefrontal cortex and hippocampus. 13 Furthermore, in vitro autoradiography with [3H]NGD 94-1 reflected a distribution unique among dopamine receptor subtypes and revealed B_{max} -values in the low range from 9 to 30 fmol/mg in distinct human brain regions. 14,15 Thus, the selection criteria for a suitable D₄ receptor radioligand for positron emission tomography (PET) has to consider a high affinity for its target in order to observe a receptor-specific signal in vivo. Assuming the maximal concentration of D₄ receptors to be equivalent to approximately 3 nM, the in vitro affinity of a radioligand candidate should be significantly less than B_{max} to achieve a high in vitro binding potential $(B_{\text{max}}/K_{\text{d}})$ that could correlate to a suitable target-tonontarget ratio in vivo with good contrast for imaging. 16 However, the in vivo distribution of a radioligand at a single time point is likely to be influenced by various factors besides receptor density and affinity, such as blood flow, clearance of the radioligand, metabolism and binding to nonspecific sites. Up to now, the lack of selective D_4 receptor radioligands suitable for *in vivo* imaging techniques hampers the noninvasive investigation of neurotransmission by single photon emission tomography (SPET) and positron emission tomography (PET) as high-performance tools for understanding the Figure 1. Chemical structure of FAUC 316 $(K_i(D_4R) = 1.0 \text{ nM}, K_i(D_2R)/K_i(D_4R) = 19000)^{32}$ neurochemical basis and pathology of neuropsychiatric diseases.¹⁷ Several efforts were reported on the radiosyntheses of ¹²³I-, ¹⁸F- and ¹¹C-labelled ligands for the exploration of D₄ receptor density *in vivo* by SPET and PET, including [¹¹C]SDZ GLC 756, ¹⁸ methoxybenzamide derivatives, ^{19,20} SB-235753, ^{21,22} a ¹²³I-labelled chromeno[3,4-*c*]pyridinone²³ as well as ¹⁸F- and ¹²³I-labelled pyrrolo[2,3-*b*]pyridines. ^{24–26} However, none of these radioligands has been proven suitable, due to lack of specificity *in vivo* or undesirable pharmacological properties. As a part of our drug discovery and SAR investigations on selective dopamine D_4 receptor ligands and radiolabelled analogs, $^{27-31}$ we identified the indole derivative 2-[4-(4-fluorophenyl)piperazin-1-ylmethyl]indole-5-carbonitrile(FAUC 316; Figure 1) as a dopamine D_4 receptor ligand with high affinity $(K_i(D_4R) = 1.0 \text{ nM})$ and excellent subtype selectivity $(K_i(D_2R)/K_i(D_4R) = 19\,000)$. The aims of the present study were the syntheses of fluoroethoxy substituted derivatives of the lead compound FAUC 316, the assessment of their *in vitro* properties with regard to dopamine receptor affinity and subtype selectivity and the radiosyntheses of 18 F-labelled analogs. We herein report the effect of fluoroethylation on receptor binding affinities *in vitro* and the 18 F-radiosyntheses of the D_4 receptor radioligand candidates 2-[4-(2-(2-[18 F]fluoroethoxy)phenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (18 F]5a) and 2-[4-(4-(2-[18 F]fluoroethoxy)phenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (18 F]5b). #### Results and discussion Our previous biological investigation of a representative library of 13 indole derivatives showed highly potent and selective dopamine D₄ receptor binding profiles, when positions 2 and 5 proved highly suitable attachment positions for the aminomethyl and cyano groups, respectively.³² Consequently, this substitution pattern at the indole core unit was maintained for the syntheses of fluoro substituted analogs presented herein. Starting from the commercially available 2- and 4-hydroxyphenylpiperazines, the corresponding fluoroethoxy substituted phenylpiperazines **4a** and **4b** were obtained by a three step procedure including classical N-protection of the piperazine nitrogen as *t*-butyl carbamate (Scheme 1). First, introduction of a *t*-butyloxycarbonyl (BOC) protecting group was accomplished using BOC anhydride in *N*,*N*-dimethyl formamide (DMF) in the presence of triethylamine to obtain compounds **2a,b**. Subsequently, fluoroethylation of the aromatic hydroxyl group was realized by reaction of **2a,b** with 1-fluoro-2-tosyloxyethane (fluoroethyl tosylate) in the presence of tetrabutylammonium hydroxide (N(Bu)₄OH) to afford **3a** and **3b**, respectively, in good yields (72 and 86%) employing the protocol of Wilson *et al.*³³ Deprotection of the piperazine nitrogen under acidic conditions provided the desired fluoroethoxy substituted phenylpiperazines **4a** and **4b** in yields of 60 and 50%, respectively (Scheme 1). With the 2- and 4-(2-fluoroethoxy)phenyl substituted piperazines (**4a,b**) in hand, we needed access to the appropriate 5-cyano-indole-2-aldehyde (**1**) in order to allow reductive amination leading to target compounds **5a-6b** (Scheme 2). Starting from 2-(hydroxymethyl)indole-5-carbonitrile,³⁴ we easily gained the corresponding aldehyde **1** by oxidation using manganese(IV) oxide at ambient temperature. Thus, the fluoroethoxy substituted reference compounds **5a** and **5b** as well as the labelling precursor compounds **6a** and **6b** were obtained by the same experimental procedure using Na(OAc)₃BH as reducing agent in the coupling of **1** with **4a**, **4b**, or 2-/4-hydroxyphenylpiperazine, respectively (Scheme 2). After purification by flash chromatography on silica gel and confirmation of chemical purity by LC/MS, the novel fluoroethoxyphenyl substituted 5-cyano- Scheme 1. (i) (BOC)₂O, DMF; (ii) 1-fluoro-2-tosyloxyethane, N(Bu)₄OH, DMF; (iii) conc. HCl Scheme 2. Syntheses of the target compounds 5a,b as well as the corresponding labelling precursors 6a,b: (i) MnO₂, CH₂Cl₂; (ii) Na(OAc)₃BH, CH₂Cl₂ indoles (**5a**, **5b**) and the corresponding hydroxyphenyl substituted derivatives (**6a**, **6b**) were characterized *in vitro* for their ability to displace [3 H]spiperone from the cloned human dopamine receptors D_{2long} , D_{2short} , 35 D_3^{36} and D_4^{37} being stably expressed in chinese hamster ovary (CHO) cells. 38 D_1 affinity was determined by employing porcine striatal membrane preparations and the D_1 selective antagonist [3 H]SCH 23390. In addition, receptor affinities to the related biogenic amine receptors 5-HT_{1A}, 5-HT₂ and α_1 were evaluated utilizing porcine cortical membranes and the selective radioligands [3 H]8-OH-DPAT, [3 H]ketanserin and [3 H]prazosin, respectively. For comparison of the binding data, the reference compound FAUC 316 was investigated under the same conditions (Table 1). The dopamine receptor binding profiles of the test compounds clearly indicate poor affinities for the D₁, D₂ and D₃ subtypes, with the exception of compound 5a indicating a distinct influence when introducing a fluoroethoxy substituent at the ortho position of the phenylpiperazin moiety. All test compounds revealed a K_i value in the low nanomolar range for the D_4 receptor (Table 1). Comparison of the D₄ binding data among each other showed significantly higher D₄ receptor affinities for the derivatives with substituents in ortho position of the phenylpiperazinyl group (5a: 2.1 nM, 6a: 1.6 nM). The corresponding derivatives substituted in para position (5b: 9.9 nM and 6b: 3.1 nM) showed decreased D₄ binding affinity, whereas dopamine receptor subtype selectivities were superior in comparison with 5a and 6a, respectively. Interestingly, a significant effect on α_1 binding was observed when comparing derivatives substituted at 2-position to those substituted at 4-position. This effect was especially illustrated by a 70-fold loss of α_1 binding of **5b** when comparing to α_1 affinity of **5a**. In general, **5b** was characterized as a high affinity D₄ receptor ligand with good dopamine subtype receptor selectivity, weak receptor affinity for α_1 , 5-HT_{1A} and 5-HT₂, and thus illustrating superior in vitro properties in comparison with 5a. When comparing 5b to the reference lead compound FAUC 316, displacement of the para-fluorine substituent by a para-fluoroethoxy group led to reduced binding properties in vitro (Table 1). It is tempting to speculate whether ¹⁸F-labelled indoles [¹⁸F]5a and [¹⁸F]5b could be suitable radioligands for the observation of a receptor-specific signal with PET, due to the low D_4 receptor concentration in the brain. However, the *in vitro* binding profile of 5a demonstrated a K_i value for the D_4 receptor in the low nanomolar range (2.1 nM), which could be acceptable for an adequate binding potential (B_{max}/K_d) when assuming an existing D_4 receptor concentration of roughly 3 nM in the brain. Moreover, [¹⁸F]5b is characterized by an improved D_4 receptor selectivity including less binding affinity to adrenergic and serotoninergic sites, which could be beneficial when performing *in vitro* autoradiography studies on native tissue. Due to the high D_4 receptor affinity of 5a and distinct D_4 receptor selectivity of 5b, we aimed at optimizing Table 1. Binding affinities of the fluorinated target compounds 5a,b to the human dopamine receptor subtypes D_{210ng}, D_{2short}, D₃, D₄ and the porcine D₁ receptor as well as the porcine 5-HT_{1A}, 5-HT₂ and \(\alpha_1\) receptors in comparison with the labelling precursors 6a,b and the reference compound FAUC 316. K_i values are expressed as mean \pm SEM of 2-5 experiments each performed in triplicate | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | FAUC 316 | |---------------------------------------|----------| | N N N N N N N N N N N N N N N N N N N | 5a – 6b | | Compound | K_i values (nM \pm SEM) | ± SEM) | | | | | | | D ₄ selectivity | $D_4 \ selectivity^b \ within the \ D_2 \ family$ | family | |--------------------------|-----------------------------|----------------|-----------------|------------------|----------------------------|---|-------------------|---------------------------|--|---|---| | | [3H]spiperone | | | | [³ H]SCH 23990 | ³ HJSCH 23990 [³ HJ8-OH-DPAT [³ H]ketanserin [³ H]prazosin | [3H]ketanserin | [³ H]prazosin | | | | | | D2long | D2short | D_3 | D _{4,4} | D_1 | 5-HT _{IA} | 5-HT ₂ | α_1 | $K_i(\mathrm{D}_{2\mathrm{long}})/K_i(\mathrm{D}_{4,4})$ | $K_i(\mathrm{D}_{2\mathrm{short}})/K_i(\mathrm{D}_{4,4})$ | $K_i(\mathbf{D}_3)/K_i(\mathbf{D}_{4,4})$ | | 5a (R = 2-OEtF) | 11 ± 1.3 | 16 ± 1.5 | 67 ± 14 | 2.1 ± 0.5 | 2600 ± 190 | 190° | 3400 ± 1300 | | 5.2 | 7.6 | 32 | | 5b $(R = 4-OEtF)$ | | 4200 ± 330 | 2500 ± 690 | 9.9 ± 0.4 | 38000 ± 5000 | 5300 ± 300 | 24000 ± 5500 | | 410 | 420 | 250 | | 6a $(R = 2.0H)$ | | 450 ± 50 | 280° | 1.6 ± 0 | 3700 ± 300 | pu | pu | | 460 | 280 | 180 | | 6b $(R = 4-OH)$ | 3500 ± 350 | 2000 ± 300 | 4700 ± 1800 | 3.1 ± 0.9 | 12000 ± 1000 | pu | pu | 690 ± 95 | 1100 | 650 | 1500 | | FAUC 316 | • • | 19000 ± 4000 | 15000 ± 2000 | 1.0 ± 0.1 | $8600 \pm 2400^{\rm a}$ | pu | pu | pu | 28 000 | 19 000 | 15 000 | nd: not determined. $^{b}D_{4}$ receptor selectivity was expressed as the dimensionless ratio between K_{i} (nM) for each subtype and K_{i} for the D_{4} receptor (nM). ^aDetermined with bovine receptors. Data of a single experiment. the radiosyntheses of the corresponding 18 F-labelled analogs, in order to provide putative D_4 receptor radioligands that could be further investigated by *in vitro* assays or used to assess the pharmacokinetics of these 5-cyano-indole derivatives *in vivo*. **6a** and **6b** were used for the following ¹⁸F-radiolabelling studies with [18F]fluoroethyl tosylate under varied reaction parameters. Compounds **5a** and 5b served as authentic reference compounds in analytical radio-HPLC to confirm chemical identity of [18F]5a and [18F]5b. The radiosyntheses of [18F]5a and I¹⁸FI5b are depicted in Scheme 3. Based on the nucleophilic ¹⁸F-for-OTos substitution on bistosyloxyethane as described by Block and coworkers, 39 we isolated [18F]fluoroethyl tosylate by semipreparative reversed-phase HPLC followed by solid phase extraction. Slight modifications of the procedure described by Block et al.39 were introduced concerning reaction time and reaction temperature. In order to improve the radiochemical yield (RCY) of the prosthetic group [18F]fluoroethyl tosylate, the reaction temperature was increased to 90°C, while the reaction time was shortened to 3 min. These reaction conditions provided limited amounts of an ¹⁸F-labelled hydrophilic by-product (<5%; probably 2-[18F]fluoroethanol occurring under basic reaction conditions) and an improved radiochemical yield of 84% as determined by radio-HPLC (Scheme 3, step 1). The reaction parameters for the ¹⁸F-fluoroethylation key step were investigated with respect to the choice of reaction solvent, base and reaction time as summarized in Table 2. Using DMF and sodium methoxide (NaOMe) as a base to generate the phenoxide from precursor 6a did not lead to a rapid progression of the ¹⁸F-fluoroethylation in ortho position. By increasing the reaction temperature from 100 to 140°C, the RCY of [¹⁸F]5a decreased to 13%. At 100°C the remaining radioactivity at the end of reaction was present as [¹⁸F]fluoroethyl tosylate (50 \pm 3%, t = 5 min), while at 140°C an accelerated degradation of [¹⁸F]fluoroethyl tosylate was observed probably due to the formation of Scheme 3. Two-step procedure for the radiosynthesis of [18 F]5a and [18 F]5b: (i) [$K \subset 222$] $^{+}$ [18 F]F $^{-}$, bistosyloxyethane, CH₃CN, $T = 90^{\circ}$ C, 3 min; (ii) for [18 F]5a: 6a, NaOMe, DMSO, $T = 120^{\circ}$ C, 5 min; for [18 F]5b: 6b, N(Bu)₄OH, DMF, $T = 140^{\circ}$ C, 5 min | Table 2. Radiochemical yields (RCY) for th | e ¹⁸ F-fluoroethylation of 6a and 6b using | |--|---| | 1-[18F]fluoro-2-tosyloxyethane | | | Product | Solvent/base | <i>T</i> (°C) | t (min) | RCY (%) ^a | |----------------------|----------------------------|---------------|-------------|----------------------| | [¹⁸ F]5a | DMF/NaOMe | 100 | 1 | 12; 13 $(n = 2)$ | | | , | | 5 | 37; 39 (n = 2) | | | | | 15 | 67 ± 5 | | | | 120 | 1 | 14 ± 5 | | | | | 5 | 34 ± 3 | | | | | 10 | 47 ± 1 | | | | 140 | 1 | 7; 11 $(n = 2)$ | | | | | 3 | 8; 16 $(n = 2)$ | | | | | 10 | 7; 20 $(n = 2)$ | | | DMSO/NaOMe | 120 | 1 | 31; 45 $(n = 2)$ | | | | | 2 | 57; 67 $(n=2)$ | | | | | 2
3
5 | 70 ± 5 | | | | | | 80 ± 2 | | | | | 10 | 81 ± 5 | | 10 | | | 15 | 70 ± 5 | | [¹⁸ F]5b | DMF/NaOMe | 120 | 1–15 | 0 _b | | DN | DMSO/NaOMe | 140 | 1–15 | $0_{\rm p}$ | | | DMF/NaH | 120 | 1–15 | $0_{\rm p}$ | | | DMF/N(Bu) ₄ OH | 100 | 1 | 9° | | | | | 3
5 | 10° | | | | | 5 | 7 ^c | | | | 120 | 1 | 24 ± 5 | | | | | 5 | 37 ± 8 | | | | | 10 | 31 ± 4 | | | | | 15 | 34 ± 5 | | | | 140 | 1 | 41 ± 10 | | | | | 5 | 47 ± 4 | | | | | 15 | 36 ± 5 | | | DMSO/N(Bu) ₄ OH | 140 | 1–15 | $0_{\rm p}$ | ^aRCY were determined by radio-HPLC and related to 1-[18 F]fluoro-2-tosyloxyethane. Values are expressed as mean \pm standard deviation (SD) of three independent experiments (n=3). Independent experimental values are expressed for n=2 (10.8 μmol precursor, V=350 μl). 2-[18 F]fluoroethanol ($\sim 70\%$, t=10 min). The low RCY of [18 F]5a using the solvent system DMF/NaOMe could be due to limited solubility of the sodium phenoxide in DMF and thus decreased nucleophilicity. Thus, we examined the influence of the solvent on the RCY under identical experimental conditions. We used dimethyl sulfoxide (DMSO) instead of DMF, since this solvent provides excellent properties for dissolving sodium salts as already has been exploited in numerous 18 F-fluoroethylation procedures, such as the radiosynthesis of O-(18 F]fluoroethyl)-L-tyrosine and others. $^{40-42}$ As shown in Table 1, the use of DMSO revealed an accelerated formation of the desired product [18 F]5a, obtaining a RCY of about 80% (decay-corrected and related to [18 F]fluoroethyl tosylate) within 5–10 min at 120° C. ^bDetermined by radio-TLC. ^cData of a single experiment. Surprisingly, these reaction conditions were not transferable to the ¹⁸F-fluoroethylation of the para substituted precursor **6b** to give [¹⁸F]**5b** (Table 2). More than 90% of the remaining radioactivity at end of reaction was detected as unreacted [18F]fluoroethyl tosylate when using the solvent/ base systems DMF/NaOMe or DMSO/NaOMe. Changing the base from NaOMe to equimolar amounts of sodium hydride also did not reveal any reaction or degradation of [18F]fluoroethyl tosylate. However, following the protocol of Wilson et al.³³ we used tetrabutylammonium hydroxide as base promotor to generate the para phenoxide of **6b** in DMF. Under these conditions, addition of [18F]fluoroethyl tosylate lead to satisfactory radiochemical yields of [18F]5b at 140°C (40-50%, decay-corrected and related to [18F]fluoroethyl tosylate; Table 2). In comparison with the radiosynthesis of the [18F]fluoroethoxy substituted derivative [18F]5a, 18F-fluoroethylation in the para position of the phenylpiperazine moiety using the solvent system DMF/ N(Bu)₄OH allowed the use of a higher reaction temperature (140°C) and proceeded more rapidly reaching a maximum RCY of [18F]5b within a shorter reaction time of 1-5 min. At later time points, the RCY of [18F]5b slightly decreased, suggesting degradation of the final product under basic reaction conditions. As the major by-product we detected an unknown hydrophilic ¹⁸Flabelled compound ($R_t = 2.9 \,\mathrm{min}$, radio-HPLC), probably due to the formation of 2-[18F]fluoroethanol as also observed for the reaction of **6a** with [18F]fluoroethyl tosylate at 140°C (see above). Efforts to improve the RCY of the para substituted product [18F]5b by using DMSO/N(Bu)4OH failed (Table 2), so that the solvent system DMF/N(Bu)₄OH at 140°C turned out to be the optimal reaction medium for the radiosynthesis of [18F]5b. This optimization study for the syntheses of the ¹⁸F-labelled radioligands [¹⁸F]5a (DMSO/NaOMe, 120°C, 5 min) and [¹⁸F]5b (DMF/N(Bu)₄OH, 140°C, 5 min) led to adequate radiochemical yields of 80 and 47%, respectively, permitting further *in vitro* and *in vivo* studies. # **Experimental** #### General All chemicals and reagents were of analytical grade and obtained from commercial sources. [¹⁸F]Fluoride was produced by the ¹⁸O(*p*, *n*)¹⁸F reaction on ¹⁸O-enriched (95%) water using a 11 MeV proton beam generated by a RDS 111 cyclotron (PET Net GmbH, Erlangen, Germany). Solid phase cartridges (Sep-Pak®Plus C18 cartridges) were purchased from Waters (Eschborn, Germany). Thin layer chromatography (TLC) was carried out on silica gel-coated aluminium plates (silica gel/TLC-cards, with fluorescent indicator 254 nm, layer thickness 0.2 mm, Fluka); for radio-TLC plastic sheets (Polygram®, Sil G/UV₂₅₄, Macherey-Nagel) were used. Compounds were visualized by UV light (254 nm). Analytical radio-HPLC was performed on the following system: HPLC Hewlett Packard (HP 1100) with a quarternary pump and variable wavelength detector (HP 1100) and radio-HPLC-detector D505TR (Canberra Packard). Computer analysis of the HPLC data was performed using FLO-One software (Canberra Packard). NMR spectra were recorded on a Bruker Avance 360 or Bruker Avance 600 using TMS as internal standard (all data were expressed in parts per million (ppm)). LC-MS analyses were performed on an Agilent 1100 Series analytic HPLC system with a VWL detector, coupled to a Bruker esquire 2000 mass spectrometer with atmospheric pressure chemical ionization (APCI). Melting points (m.p.) were uncorrected and obtained with a Büchi apparatus. 1-fluoro-2-tosyloxvethane was synthesized as previously described by Block et al.39 and identity was confirmed by TLC (ethyl acetate/hexane 7:3, $R_{\rm f} = 0.89$), ¹H-NMR (CDCl₃: δ 2.46 (s, 3H), 4.24–4.32 (dt, 2H, OCH₂), 4.45–4.63 (dt, 2H, FCH₂), 7.34–7.38 (m, 2H) 7.79-7.83 (m, 2H)) and HPLC (Lichrosorb RP18, 250 × 4.6 mm 1 ml/min, 30–80% CH₃CN in water (0.1% TFA) in 25 min: $R_t = 13.40$ min). 2-(Hydroxymethyl)indole-5-carbonitrile (LC-MS (APCI): [M + H]⁺) was available as a product of a former research study (Department of Medicinal Chemistry).³⁴ Each ¹⁸F-labelled compound was identified by retention time (R_t) on the radio-HPLC system and co-injection of the corresponding reference compound. # Chemistry 5-Cyano-indole-2-aldehyde (1). 1 was synthesized by oxidation of 2-(hydroxymethyl)indole-5-carbonitrile (1.4 g, 8.14 mmol) using manganese(IV) oxide (7.08 g, 80.28 mmol) in 30 ml CH₂Cl₂. The suspension was stirred at room temperature for 24 h. The reaction mixture was filtered through cellulose and the precipitate was washed with ethyl acetate. The organic layer was removed under reduced pressure to give the product as a pale yellow solid (1.09 g, 6.41 mmol, 79%), which was used for subsequent reactions without further purification. TLC (CH₂Cl₂/MeOH 95:5): $R_{\rm f} = 0.43$. ¹H-NMR (DMSO): δ 7.53 (s, 1H), 7.64 (m, 2H), 8.36 (s, 1H), 9.96 (s, 1H, CHO), 12.48 (s, 1H, NH). 4-(2-Hydroxyphenyl)piperazine-1-carboxylic acid t-butyl ester (2a). Anhydrous di-t-butyldicarbonate (720 mg, 3.3 mmol) was dissolved in 10 ml DMF and slowly added to a solution of 1-(2-hydroxyphenyl)piperazine (534 mg, 3.0 mmol) and triethylamine (334 mg, 3.3 mmol) in 20 ml DMF. After stirring at room temperature for 1 h, the reaction was stopped by adding 30 ml of a saturated NaHCO₃ solution. The solution was extracted with ethyl acetate (3 × 20 ml) and the organic solvent was removed under reduced pressure. The crude product was purified by silica gel chromatography using ethyl acetate/hexane (3:7) as eluant. 2a was isolated in 58% yield (511 mg, 1.74 mmol) as a yellow oil. TLC (ethyl acetate/hexane 3:7): $R_f = 0.60$. ¹H-NMR (CDCl₃): δ 1.48 (s, 9H, *t*-butyl), 2.85 (t, 4H), 3.59 (t, 4H), 6.87–7.15 (m, 4H). 4-(4-Hydroxyphenyl)piperazine-1-carboxylic acid t-butyl ester (**2b**). **2b** was synthesized as described for **2a**. Starting from 178 mg (1.0 mmol) 1-(4-hydroxyphenyl)piperazine, **2b** was obtained as a yellow oil in a yield of 64% (188 mg, 0.64 mmol). TLC (ethyl acetate/hexane 3:7): $R_{\rm f} = 0.30$. ¹H-NMR (CDCl₃): δ 1.50 (s, 9H, t-butyl), 2.91 (t, 4H), 3.56 (t, 4H), 6.76 (m, 2H), 6.90 (m, 2H). 4-(2-(2-Fluoroethoxy)phenyl)piperazine-1-carboxylic acid t-butyl ester (3a). Following a protocol reported by Wilson et al.,³³ a mixture of 2a (149 mg, 0.51 mmol), 1-fluoro-2-tosyloxyethane (171 mg, 0.79 mmol) and a solution of tetrabutylammonium hydroxide (0.51 ml, 1.4 N in dry MeOH) were dissolved in 8 ml dry DMF and stirred at room temperature for 24 h. The reaction was quenched by adding 50 ml 0.05 N NaOH. After extraction with ethyl acetate (3 × 25 ml) and drying over Na₂SO₄ the organic layer was evaporated and the residue was purified by silica gel chromatography using CH₂Cl₂/ethyl acetate (90:10) to give 3a (126 mg, 0.37 mmol, 72%) as a yellow oil. TLC (ethyl acetate/hexane 3:7): $R_f = 0.60$. ¹H-NMR (CDCl₃): δ 1.49 (m, 9H, t-butyl), 3.02 (t, 4H), 3.58 (t, 4H), 4.21–4.30 (dt, 2H, FCH₂), 4.71–4.83 (dt, 2H, FCH₂), 6.82–7.02 (m, 4H). 4-(4-(2-Fluoroethoxy)phenyl)piperazine-1-carboxylic acid t-butyl ester (**3b**). **3b** was synthesized as described for **3a**. Starting from 225 mg (0.77 mmol) **2b**, chromatographic isolation on silica gel yielded 86% of **3b** as a dark yellow oil after evaporation of the organic solvent (225 mg, 0.66 mmol). TLC (ethyl acetate/hexane 3:7): $R_f = 0.75$. ¹H-NMR (CDCl₃): δ 1.49 (m, 9H, t-butyl) 3.02 (t, 4H), 3.61 (t, 4H), 4.21–4.31 (dt, 2H, FCH₂), 4.69–4.85 (dt, 2H, FCH₂), 6.81–7.01 (m, 4H). 1-(2-(2-Fluoroethoxy)phenyl)piperazine (4a). A solution of 3a (595 mg, 1.75 mmol) in 10 ml of concentrated hydrochloric acid was stirred at room temperature for 15 min. Cleavage of the *t*-butyl ester was analysed by TLC. The solution was carefully diluted with water and slowly adjusted to pH 8–10 with sodium hydroxide pellets. Extraction with ethyl acetate, drying over Na₂SO₄ and removal of the solvent under reduced pressure yielded 60% of 4a (237 mg, 1.06 mmol) as a yellow oil. TLC (MeOH/CH₂Cl₂ 3:1, 0.5% triethylamine): $R_f = 0.20$. ¹H-NMR (CDCl₃): δ 3.09 (m, 8H), 4.18–4.31 (dt, 2H, FCH₂), 4.68–4.86 (dt, 2H, FCH₂), 6.82–7.02 (m, 4H). 1-(4-(2-Fluoroethoxy)phenyl)piperazine (4b). Ester cleavage of 3b to obtain 4b was performed as described above for the synthesis of 4a. Chromatography on silica gel yielded **4b** as a yellow oil (121 mg, 0.53 mmol, 50%). TLC (MeOH/CH₂Cl₂ 3:1, 0.5% triethylamine): $R_{\rm f} = 0.20$. ¹H-NMR (CDCl₃): δ 3.08 (m, 8H), 4.19–4.32 (dt, 2H, FC H_2), 4.68–4.88 (dt, 2H, FC H_2), 6.80–6.89 (m, 2H) 6.90–7.02 (m, 2H). 2-[4-(2-(2-Fluoroethoxy)phenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (**5a**). A mixture of **4a** (237 mg, 1.05 mmol) and **1** (270 mg, 1.59 mmol) was dissolved in 20 ml dry CH₂Cl₂, Na(OAc)₃BH (335 mg, 1.59 mmol) was added to the suspension in one portion. After stirring at room temperature for 24h the reaction was stopped by adding 30 ml saturated NaHCO₃. The product was extracted with ethyl acetate and the organic layer was dried over Na₂SO₄. The solvent was evaporated and the residue was purified by silica gel chromatography in a two step procedure (a: CH₂Cl₂/ethyl acetate 90:10; b: CH₂Cl₂/MeOH 95:5) yielding **5** as a pale yellow solid (98 mg, 0.26 mmol, 24%). M.p.: 186°C. TLC (CH₂Cl₂/MeOH 95:5): $R_f = 0.50$. ¹H-NMR (CDCl₃): δ 2.71 (t, 4H), 3.17 (t, 4H), 3.83 (s, 2H, CH₂), 4.21–4.28 (dt, 2H, OCH₂), 4.71–4.82 (dt, 2H, FCH₂), 6.47–7.90 (m, 8H), 8.91 (s, 1H, N*H*). HPLC (Lichrosorb RP18, 250 × 4.6, 1 ml/min, 30–80% CH₃CN in water (0.1% TFA) in 25 min): $R_f = 10.60$ min. LC-MS (APCI): m/z 379.1 [M + H]⁺, 225.1 (fluoroethoxyphenyl piperazinyl fragment [C₁₂H₁₇FN₂O+H]⁺). 2-[4-(4-(2-Fluoroethoxy)phenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (**5b**). Compound **5b** was synthesized as described for **5a** starting from **4b** (125 mg, 0.56 mmol) and **1** (140 mg, 0.83 mmol). The pale yellow solid **5b** was obtained in a yield of 27% (56 mg, 0.15 mmol). M.p.: 205°C. TLC (CH₂Cl₂/MeOH 95:5): $R_f = 0.55$. ¹H-NMR (CDCl₃): δ 2.68 (t, 4H), 3.22 (t, 4H), 3.74 (s, 2H, CH₂) 4.09–4.20 (dt, 2H, OCH₂), 4.34–4.77 (dt, 2H, FCH₂), 6.46 (s, 1H), 6.88 (m, 4H), 7.42 (s, 2H), 7.91 (s, 1H), 8.90 (s, 1H, N*H*). HPLC (Lichrosorb RP18, 250 × 4.6, 1 ml/min, 30–80% CH₃CN in water (0.1% TFA) in 25 min): $R_t = 10.13$ min. LC-MS (APCI): m/z 379.1 [M + H]⁺, 225.0 (fluoroethoxyphenyl piperazinyl fragment [C₁₂H₁₇FN₂O+H]⁺). 2-[4-(2-Hydroxyphenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (**6a**). 1-(2-Hydroxyphenyl)piperazine (397 mg, 2.23 mmol) and **1** (253 mg, 1.49 mmol) were dissolved in 10 ml dry CH₂Cl₂ and Na(OAc)₃BH (1263 mg, 5.96 mmol) was added to the suspension. After stirring at room temperature for 1 h, the reaction was terminated by adding 30 ml saturated NaHCO₃. The crude product was purified by silica gel chromatography using CH₂Cl₂/MeO H (95:5) as eluant yielding 32% (159 mg, 0.48 mmol) of **6a** as a pale yellow solid. M.p.: 148°C. TLC (CH₂Cl₂/MeOH 95:5): $R_f = 0.30$. ¹H-NMR (CDCl₃): δ 2.44 (t, 4H), 3.33 (t, 4H), 3.74 (s, 2H, CH₂), 6.43–8.05 (m, 8H), 8.87 (s, 1H, N*H*), 11.69 (s, 1H, O*H*). LC-MS (APCI): m/z 333.1 [M + H]⁺, 179.0 (hydroxyphenyl piperazinyl fragment $[C_{10}H_{14}N_2O + H]^+$). 2-[4-(4-Hydroxyphenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (**6b**). **6b** was synthesized as described above for compound **6a**. The reaction yielded **6b** as a pale yellow solid (183 mg, 0.55 mmol, 36%). M.p.: 149°C. TLC (CH₂Cl₂/MeOH 95:5): $R_f = 0.50$. ¹H-NMR (CDCl₃): δ 2.53 (t, 4H), 3.31 (t, 4H), 3.73 (s, 2H, CH₂), 6.51 (s, 1H), 6.59 (d, 2H), 6.82 (d, 2H), 7.39–7.98 (m, 3H), 8.79 (s, 1H, NH), 11.70 (s, 1H, OH). LC-MS (APCI): m/z 333.1 [M + H]⁺, 179.0 (hydroxyphenyl piperazinyl fragment [C₁₀H₁₄N₂O+H]⁺). # Radiochemistry 1-[18F]Fluoro-2-tosyloxyethane³⁹. No-carrier-added [18F]fluoride (200 -650 MBq) was delivered on a QMA-cartridge and eluted with a solution of 15 mg Kryptofix[®] 2.2.2/15 μl 1 M K₂CO₃ in 1 ml acetonitrile/water (8:2). The solution was evaporated using a stream of nitrogen at 85°C and co-evaporated to dryness with CH₃CN ($2 \times 200 \,\mu$ l). Following the procedure described by Block et al., 39 4.5 mg (12 μmol) bistosyloxyethane in 500 μl anhydrous acetonitrile were added to the reaction vessel and the mixture was stirred for 3 min at 90°C. The reaction was quenched by dilution with 500 µl water. The prosthetic group 1-[18F]fluoro-2-tosyloxyethane was isolated by gradient reversed-phase HPLC (Lichrosorb RP18, 125 × 8 mm, 4 ml/min, CH₃CN/ H₂O (40/60) (0.1% TFA)). The product fraction was diluted 1:10 with water and fixed on a C18-cartridge (Waters Sep-Pak®Plus), dried in a nitrogen stream and eluted with 1 ml DMF in a reaction vessel. 1-[18F]Fluoro-2tosyloxyethane was obtained in a radiochemical yield (RCY) of 84% as determined by radio-HPLC from a sample withdrawn from the reaction mixture. Radio-TLC (ethyl acetate/hexane 7:3): $R_{\rm f} = 0.87$. Radio-HPLC (Lichrosorb RP18, $250 \times 4.6 \text{ mm}$, 1 ml/min, 30-80% CH₃CN in water (0.1%TFA) in 25 min): $R_t = 14.34$ min. 2-[4-(2-(2-[^{18}F]Fluoroethoxy)phenyl)piperazin-1-ylmethyl]indole-5-carbonitrile ([^{18}F]5a). 3.6 mg (10.8 μmol) 2-[4-(2-hydroxyphenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (6a) were dissolved in 250 μl dry DMSO and 50 μl sodium methoxide in dry methanol (8 mg/ml) were added to the reaction vial. The reaction mixture was stirred for 3 min at 120°C under a nitrogen atmosphere. Subsequently, 1-[^{18}F]fluoro-2-tosyloxyethane in 50 μl dry DMF (5–20 MBq) were added to the reaction mixture. The progression of the reaction was analysed by radio-HPLC. The radiochemical yield of [^{18}F]5a was 81 ± 5% after 5–10 min at 120°C. Radio-HPLC (Lichrosorb RP18, 250 × 4.6 mm, 1 ml/min, 30–80% CH₃CN in water (0.1% TFA) in 25 min): $R_t = 10.66$ min. 2-[4-(4-(2-[^{18}F]Fluoroethoxy)phenyl)piperazin-1-ylmethyl]indole-5-carbonitrile ([^{18}F]5b). 3.6 mg (10.8 μmol) 2-[4-(4-hydroxyphenyl)piperazin-1-ylmethyl]indole-5-carbonitrile (6b) were dissolved in 250 μl dry DMF. 113 μl 1.4 N tetrabuty-lammonium hydroxide in dry MeOH were added to the reaction vial. The reaction mixture was stirred for 3 min at 120°C under a nitrogen atmosphere. Subsequently, 50 μl of the 1-[^{18}F]fluoro-2-tosyloxyethane solution in dry DMF (5–20 MBq) were added to the reaction mixture at 140°C. The progression of the reaction was analysed by radio-HPLC. The radiochemical yield of [^{18}F]5b was $47 \pm 4\%$ after 5 min at a reaction temperature of 140°C. Radio-HPLC (Lichrosorb RP18, 250 × 4.6, 1 ml/min, 30–80% CH₃CN in water (0.1% TFA) in 25 min): $R_t = 10.24$ min. *Optimization of the* ¹⁸*F-fluoroethylation procedure*. The ¹⁸F-fluoroethylation of **6a** and **6b** was optimized by repeating the reaction with varying parameters as indicated in Table 1. ## Receptor binding experiments and data analysis Receptor binding studies were performed as described previously.³⁸ In brief, the dopamine D₁ receptor assay was done with porcine striatal membranes at a final protein concentration of 40 µg/assay tube and the radioligand [3 H]SCH23390 at 0.3 nM ($K_{\rm d} = 0.5$ nM). Competition experiments with the human D_{2long}, D_{2short}, D₃ and D_{4.4} receptors were run with preparations of membranes from CHO cells expressing the corresponding receptor and [³H]spiperone at a final concentration of 0.5 nM. The assays were carried out at a protein concentration of $6-30 \,\mu\text{g/assay}$ tube and $K_{\rm d}$ values of $0.10 \,\text{nM}$ for D_{2long}, D_{2short} and D₃ and 0.10-0.13 nM for D_{4,4}. Serotonin 5-HT_{1A}, 5-HT₂ and adrenergic α_1 binding were measured utilizing porcine cortical membranes and the selective radioligands [3H]8-OH-DPAT, [3H]ketanserin and [3H]prazosin, respectively, each at a final concentration of 0.5 nM. The resulting competition curves were analysed by nonlinear regression using the algorithms in PRISM (GraphPad Software, San Diego, USA). The data were fitted using a sigmoid model to provide an IC₅₀ value, representing the concentration corresponding to 50% of maximal inhibition. IC₅₀ values were transformed to K_i values according to the equation of Cheng and Prusoff.⁴³ #### **Conclusion** In conclusion, two isomeric fluoroethoxy substituted derivatives of 5-cyanoindole were synthesized and characterized as high-affinity dopamine D_4 receptor ligands *in vitro*. A para-fluoroethoxy substituent at the phenylpiperazine moiety was tolerated by D_4 receptors and more advantageous than an ortho substituent with respect to dopamine D_4 receptor selectivity. For both 18 F-labelled derivatives of 5-cyano-indole the reaction conditions for 18 F-fluoroethylation using [18 F]fluoroethyl tosylate were successfully optimized providing potential PET imaging probes for the dopamine D_4 receptor. The methodology of 18 F-fluoroethylation could also be applied to alternative lead compounds of the FAUC series, such as derivatives of pyrazolo[1,5-a]pyridine, in order to provide D_4 radioligand candidates for PET with improved D_4 receptor affinity and selectivity. ## Acknowledgements We gratefully acknowledge Wilhelm Hamkens and the cyclotron staff for producing and delivering [¹⁸F]fluoride (PET Net GmbH, Erlangen). This work was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG, PR 677/2). ### References - 1. Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O. *Nature* 1991; **350**: 610–614. - 2. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS. *Nature* 1996; **381**: 245–248. - 3. Ariano MA, Wang J, Noblett KL, Larson ER, Sibley DR. *Brain Res* 1997; **752**: 26–34. - 4. Defagot MC, Malchiodi EL, Villar MJ, Antonelli MC. *Mol Brain Res* 1997; **45**: 1–12. - 5. Defagot MC, Falzone TL, Low MJ, Grandy DK, Rubinstein M, Antonelli MC. *J Neurosci Res* 2000; **59**: 202–208. - 6. Oak JN, Oldenhof J, Van Tol HHM. Eur J Pharmacol 2000; 405: 303-327. - 7. Wong AHC, Van Tol HHM. *Prog Neuro-Psychopharmacol Biol Psychiatry* 2003; **27**: 1091–1099. - 8. Tarazi FI, Zhang K, Baldessarini RJ. *J Recept Signal Transduct Res* 2004; **24**: 131–147. - 9. Seeman P, Guan HC, Van Tol HHM. Nature 1993; 365: 441-445. - 10. Lahti RA, Roberts RC, Tamminga CA. Neuroreport 1995; 6: 2505–2512. - 11. Helmeste DM, Tang SW, Bunney WE, Potkin SG, Jones EG. Eur J Pharmacol 1996: **314**: R3–R5. - 12. Reynolds GP, Mason SL. Eur J Pharmacol 1995; 281: R5–R6. - 13. Lidow MS, Wang F, Cao Y, Goldman-Rakic PS. Synapse 1998; 28: 10-20. - 14. Primus RJ, Thurkauf A, Xu J, Yevich E, McInerney S, Shaw K, Tallman JF, Gallagher DW. *J Pharmacol Exp Ther* 1997; **282**: 1020–1027. - 15. Lahti RA, Roberts RC, Cochrane EV, Primus RJ, Gallager DW, Conley RR, Tamminga CA. *Mol Psych* 1998; **3**: 528–533. - 16. Eckelman WC. Nucl Med Biol 1994; 21: 759-769. - 17. Erritzoe D, Talbot P, Frankle WG, Abi-Dargham A. Neuroimaging Clin North Am 2003; 13: 817–832. - 18. Boy C, Klimke A, Holschbach M, Herzog H, Mühlensiepen H, Rota Kops E, Sonnenberg F, Gaebel W, Stöcklin G, Markstein R, Müller-Gärtner HW. *Synapse* 1998; **30**: 341–350. - 19. Langer O, Halldin C, Chou Y, Sandell J, Swahn C, Någren K, Perrone R, Berardi F, Leopoldo M, Farde L. *Nucl Med Biol* 2000; **27**: 707–714. - 20. Zhang MR, Haradahira T, Maeda J, Okauchi T, Kawabe K, Noguchi J, Kida T, Suzuki K, Suhara T. *Nucl Med Biol* 2002; **29**: 233–241. - 21. Boyfield I, Brown TH, Coldwell MC, Cooper DG, Hadley MS, Hagan JJ, Healy MA, Johns A, King RJ, Middlemiss DN, Nash DJ, Riley GJ, Scott EE, Smith SA, Stemp G. *J Med Chem* 1996; **39**: 1946–1948. - 22. Matarrese M, Soloviev D, Moresco RM, Todde S, Simonelli P, Colombo D, Magni F, Carpinelli A, Fazio F, Kienle MG. *J Label Compd Radiopharm* 2000; **43**: 359–374. - 23. Staelens R, Oltenfreiter B, Cornelissen P, Blanckaert, De Vos F, Deforce D, Dierckx RA, Slegers G. *J Label Compd Radiopharm* 2005; **48**: 101–108. - 24. Eskola O, Bergman J, Lehikoinen P, Haaparanta M, Grönroos T, Forsback S, Solin O. *J Label Compd Radiopharm* 2002; **45**: 687–696. - Oh SJ, Lee KC, Lee SY, Ryu EK, Saji H, Choe YS, Chi DY, Kim SE, Lee J, Kim BT. *Bioorg Med Chem* 2004; 12: 5505–5513. - 26. Staley JK, Tamagnan G, Baldwin RM, Fujita M, Al Tikriti MS, Eshima L, Thornback J, Roe D, Lu L, Seibyl JP, Innis RB. *Nucl Med Biol* 2000; **27**: 547–556. - 27. Lanig H, Utz W, Gmeiner P. J Med Chem 2001; 48: 1151-1157. - 28. Löber S, Hübner H, Utz W, Gmeiner P. J Med Chem 2001; 44: 2691-2694. - 29. Löber S, Aboul-Fadl T, Hübner H, Gmeiner P. *Bioorg Med Chem Lett* 2002; **12**: 633–636. - Prante O, Löber S, Hübner H, Gmeiner P, Kuwert T. J Label Compd Radiopharm 2001; 44: 849–858. - 31. Prante O, Hocke C, Löber S, Hübner H, Gmeiner P, Kuwert T. *Nuklearmedizin* 2006, in press. - 32. Hübner H, Kraxner J, Gmeiner P. J Med Chem 2000; 43: 4563-4569. - 33. Wilson AA, DaSilva JN, Houle S. Nucl Med Biol 1996; 23: 487–490. - 34. Dann O, Char H, Fleischmann P, Fricke H. Liebigs Ann Chem 1986; 3: 438-455. - 35. Hayes G, Biden TJ, Selbie LA, Shine J. Mol Endocrinol 1992; 6: 920-926. - 36. Sokoloff P, Andrieux M, Besancon R, Pilon C, Martres MP, Giros B, Schwartz JC. *Eur J Pharmacol* 1992; **225**: 331–337. - 37. Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HHM. *J Neurochem* 1995; **65**: 1157–1165. - 38. Hübner H, Haubmann C, Utz W, Gmeiner P. J Med Chem 2000; 43: 756-762. - 39. Block D, Coenen HH, Stöcklin G. J Label Compd Radiopharm 1987; 24: 1029–1042. - 40. Coenen HH, Laufer P, Stöcklin G, Wienhard K, Pawlik G, Böcker-Schwarz HG, Heiss HD. *Life Sci* 1987; **40**: 81–88. - 41. Moerlein SM, Perlmutter JS. Eur J Pharmacol 1992; 218: 109-115. - 42. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G. *J Nucl Med* 1999; **40**: 205–212. - 43. Cheng YC, Prusoff WH. Biochem Pharmacol 1973; 22: 3099–3108.