Carbohydrate Research 346 (2011) 1786-1791

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Synthesis of stryphnoside A, a triterpene saponin isolated from the pericarps of *Stryphnodendron fissuratum*

Xun Lv^{a,b}, Shouyi Yu^{a,b}, Jing Wang^a, Yuguo Du^{a,b,*}

^a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China ^b College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Article history: Received 9 April 2011 Received in revised form 3 June 2011 Accepted 6 June 2011 Available online 12 June 2011

Keywords: Stryphnosides Glycosylation Saponins Natural products Cytotoxicity

ABSTRACT

Stryphnoside A, α -L-rhamnopyranosyl 3 β -O-[α -L-arabinopyranosyl-(1 \rightarrow 4)- β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-2 α -hydroxyolean-12-en-28-oate, has been synthesized in 11 steps in 15% overall yield starting from the naturally abundant oleanolic acid. Condensation of a partially protected glucopyranosyl donor and 2 α ,3 β -dihydroxyolean-12-en-28-oic acid derivative using inverse glycosylation procedure has significantly simplified the target saponin synthesis. Stryphnoside A exhibited weak cytotoxic activities against tumor cells HeLa, A549, and HepG2 with IC₅₀ at mM level.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Saponins, as an important family of natural products, are widely distributed in terrestrial plants and some lower marine animals. The diversity of structures, the challenges of isolation and purification, the broad spectrum of biological and pharmacological activities have driven chemists to the research field of saponins.¹⁻⁵ Stryphnoside A(1, Fig. 1) was originally isolated from the pericarps of stryphnodendron fissuratum, part of the stryphnodendron family where species have long been used as medicinal plants for the treatment of hemorrhages, wounds, and diarrhea in Brazil.⁶ Interestingly, it was also suggested that the fruit of this Brazilian plant could cause bovine death.⁷ On the basis of spectroscopic analysis and hydrolytic reactions, the chemical structure of stryphnoside A was elucidated as α -L-rhamnopyranosyl 3β -O-[α -L-arabinopyranosyl-($1 \rightarrow 4$)- β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-2 α -hydroxyolean-12-en-28-oate (1).⁸ The structural complexity, especially having a C-2α hydroxyl group and C-3^β/C-28 diglycosides on oleanolic acid derivative, has hindered the chemical synthesis, and the successful examples are rarely reported.^{9,10} Curious about the toxic activities of stryphnoside A. as well as an intention to explore a practical synthetic strategy for the structure-related compounds, we launched a project toward the total synthesis of stryphnoside A.

In our previous research, we found that a thioglycoside having a C-2 unprotected hydroxyl group could be a good glycosyl donor to

* Corresponding author. Tel./fax: +86 10 62849126.

obtain β glycosylation product, and at the same time facilitate the continuous C-2 glycosylation.^{11,12} Herein, we report the total synthesis of stryphnoside A applying this methodology.

2. Results and discussion

There are two challenges in stryphnoside A synthesis, namely, β -D-glucopyranosylation on C-3 of 2α , 3β -dihydroxyolean-12-en-28-oic acid derivative, and the following C-2' sugar chain elongation on glucose residue. To provide a suitable aglycon acceptor, 2α -hydroxy-3-oxoolean-12-en-28-oic acid benzyl ester (**2**) was prepared from the natural oleanolic acid according to a published method (Scheme 1).¹³

Acetylation of **2** with Ac₂O in pyridine (\rightarrow **3a**), followed by NaBH₄ reduction, afforded benzyl-2 α -acetyl-3 β -hydroxyolean-12-en-28-oic acid (**4a**) in 78% yield. Glycosylation of **4a** and

Figure 1. Chemical structure of stryphnoside A.

E-mail addresses: duyuguo@rcees.ac.cn, duyuguo@mail.rcees.ac.cn (Y. Du).

^{0008-6215/\$ -} see front matter \circledast 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2011.06.006

Scheme 1. Regents and conditions: (a) Ac₂O, Pyr, rt, 6 h, 96%; (b) BnOC(NH)CCl₃, TfOH, CH₂Cl₂, 0 °C, 91%; (c) ^{*i*}Pr₂EtN, CH₃OCH₂Cl, CH₂Cl₂, 0 °C→rt, 4 h, 88%; (d) NaBH₄, THF/ EtOH; -20 °C, 48 h, 78% for **4a**; rt, 20 h, 84% for **4b**; rt, 16 h, 82% for **4c**; (e) NIS, TMSOTF, CH₂Cl₂, -42 °C, 30 min, 36–87%.

ethyl 3,4,6-tri-*O*-acetyl-β-D-thioglucopyranoside (**5a**)¹⁴ in the presence of *N*-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) at -42 °C in CH₂Cl₂ gave messy products. However, the same reaction proceeded smoothly with 'inverse procedure',¹⁵ that is, donor **5a** and NIS in dry CH₂Cl₂ was added into a pre-cooled mixture of acceptor **4a** and TMSOTf in CH₂Cl₂, generating a major component in 66% yield, which was carefully identified as the α-anomer (δ 5.07 ppm, *J* 3.9 Hz, H-1). Surprised by this observation, we then studied the stereo outcomes of this reaction using different protecting groups on both glycosyl donor and acceptor. The results were summarized in Table 1. We found that coupling reaction between 2α-methoxylmethylated (MOM) oleanolic acid derivative **4c** and benzylated thioglycoside **5b**¹⁶ gave the best β-selectivity and good yield under our conditions (entry 6, **6f**).

With compound **6f** in hand, we started a formal convergent total synthesis of stryphnoside A (Scheme 2). Zinc chloride promoted intramolecular rearrangement of the thio ortho ester **7**¹⁷ gave ethyl 2-Oacetyl- β -D-thioxylopyranoside (**8**) in an excellent yield of 92%. TMSOTf catalyzed regioselective¹⁸ glycosylation of diol **8** and 2,3,4tri-O-acetyl- α -L-arabinopyranosyl trichloroacetimidate (**9**)¹⁹ was applied in dry methylene dichloride at $-42 \,^{\circ}$ C with inverse procedure (\rightarrow **10**), followed by acetylation with acetic anhydride in pyridine, furnished disaccharide donor ethyl 2,3,4-tri-O-acetyl- α -L-arabinopyranosyl-($1\rightarrow$ 4)-2,3-di-O-acetyl- β -D-thioxylopyranoside (**11**) in 73% isolated yield over two steps. Based on 2D NMR spectrum, H-1 of

Table	1		
c .1		C . 1	1

Synthesis of the	e key	intermediate	6
------------------	-------	--------------	---

Entry	Donor	Acceptor	Product	Yield ^a (%)	α:β
1	5a	4a	6a	73	66:7
2	5b	4a	6b	70	61:9
3	5a	4b	6c	52	26:26
4	5b	4b	6d	60	30:30
5	5a	4c	6e	36	5:31
6	5b	4c	6f	87	9:78
7	5c	4c	6g	62	10:52

^a Isolated total yield.

arabinose residue appeared at 4.50 ppm (1 5.5 Hz), while a multiple peak at δ 3.85 ppm corresponding to H-4 of xylose, confirming the right structure of **11**. Coupling of **11** and **6f** in dry CH₂Cl₂ at low temperature $(-50 \circ C)$ was carried out smoothly in the presence of co-catalyst NIS/TMSOTf, providing the desired saponin derivative 12 in a good yield of 79%. Selective removal of MOM group²⁰ from **12** with catalytic amount of *p*-toluenesulfonic acid (\rightarrow **13**, 86%), followed by H₂ hydrogenation over Pd(OH)₂/C (\rightarrow **14**, 91%) and acetylation with Ac₂O-pyridine in CH₂Cl₂, afforded 3β-O-[2,3,4-tri-O-acetyl-α-L-arabinopyranosyl- $(1 \rightarrow 4)$ -2,3-di-O-acetyl- β -D-xylopyranosyl- $(1 \rightarrow 2)$ -3,4,6 -tri-O-acetyl- β -D-glucopyranosyl]-2 α -hydroxyloleanolic acid (15) in a yield of 70% over three steps. It was interesting that 2α -OH of oleanolic acid derivative 15 could not be acetylated under the current acetylation conditions. Condensation of acid 15 and 2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl trichloroacetimidate (**16**)²¹ in dry CH₂Cl₂ at -78 °C using TMSOTf-catalyzed inverse procedure obtained acetylated stryphnoside A derivatives 17 (79%). Global deacetylation of 17 with catalytic amount of sodium methoxide in CH₂Cl₂-MeOH co-solvent finished the total synthesis of stryphnoside A(1). Remarkably, this complex natural saponin was prepared convergently in 11 steps and in 15% overall yield. The characteristic data (¹H, ¹³C NMR, MS, and optical rotation) of the synthetic compound 1 were identical to those reported for the natural product.⁸

The cytotoxic activities of synthetic compound **1** on tumor cells HeLa, A549, and HepG2, as well as two normal cell lines (HL7702 and H9C2), were evaluated following the standard MTT assay.²² As shown in Table 2, stryphnoside A (**1**) inhibited tumor cell growth with IC₅₀ ranging from 3.2 to 4.8 mM, while the corresponding positive control showed inhibition at μ M scale. Interestingly, compound **1** exhibited a lower cytotoxicity to the normal cells HL7702 and H9C2.

In conclusion, the natural product stryphnoside A has been chemically synthesized in 11 steps in 15% overall yield starting from the natural abundant oleanolic acid and monosaccharides. Applying a partially protected glucopyranosyl donor, combining with inverse glycosylation procedure, has significantly simplified the target saponin synthesis. The approach described here should be valuable for structure-related^{8,13,23-26} molecule design, synthesis, and bioactivity screening.

Scheme 2. Complete the total synthesis of stryphnoside A (1). Reagents and conditions: (a) ZnCl₂, CH₂Cl₂, -78 °C, 92%; (b) TMSOTf, CH₂Cl₂, -15 °C, then **9**; (c) Ac₂O, Py; for **11**, 73% from **8**; for **15**, 81% from **13**; (d) NIS, TMSOTf, CH₂Cl₂, -50 °C, 79%; (e) TsOH, CH₃OH, 86%; (f) Pd(OH)₂/C, H₂; (g) TMSOTf, CH₂Cl₂, -78 °C, then **16**, 79%; (g) CH₃ONa, CH₃OH-CH₂Cl₂, 91%.

Table 2	
---------	--

Cytotoxicity of compound **1** on tumor cells and normal cells $(IC_{50})^a$

Entry	Hela	A549	HepG	HL7702	H9C2
Compound 1 (mM)	3.6	4.8	3.2	>6.0	>6.0
Cisplatin (µM)	26.1	>30.0	10.0	n.d.	n.d.

^a Values are means of three independent experiments.

3. Experimental

3.1. General methods

Optical rotations were determined at 25 °C with a Perkin-Elmer Model 241-Mc automatic polarimeter. ¹H NMR and ¹³C NMR were recorded with a Bruker ARX 400 spectrometer for solutions in CDCl₃ or CD₃OD. Chemical shifts are given in ppm downfield from internal Me₄Si. Mass spectra were measured using a MALDITOF-MS with α -cyano-4-hydroxycinnamic acid (CCA) as matrix. Thinlayer chromatography (TLC) was performed on silica gel HF₂₅₄ with detection by charring with 30% (v/v) H₂SO₄ in MeOH or in some cases by UV detection. Column chromatography was conducted by elution of a column of silica gel (100–200 mesh) with EtOAcpetroleum ether (60–90 °C) as the eluent, or a column of Bio-Gel P2 with water as the eluent. Solutions were concentrated at <50 °C under reduced pressure.

3.2. Benzyl-2α-O-methoxymethyl-3-oxoolean-12-en-28-oic acid (3c)

To a stirred mixture of **2** (561 mg, 1.0 mmol) and *N*,*N*-diisopropylethylamine (0.52 mL, 3.0 mmol) in CH₂Cl₂ (30 mL) was added

dropwise chloromethyl methyl ether (0.44 mL, 6.0 mmol) at 0 °C. The mixture was stirred at 0 °C for 1 h and at rt for 3 h, then quenched by addition of water and extracted with ether $(30 \text{ mL} \times 3)$. The combined organic layer was washed successively with cold 0.2 N HCl, satd NaHCO₃ solution, and water, then dried over Na₂SO₄, and concentrated under diminished pressure. The residue was purified by silica gel chromatography (30:1 petroleum ether–EtOAc) to give **3c** (532 mg, 88%): $[\alpha_D^{25} + 311 (c 2.3, CHCl_3); {}^{1}H$ NMR (400 MHz, CDCl₃): δ 7.35-7.30 (m, 5H, PhH), 5.28 (t, 1H, J 3.5 Hz, H-12), 5.10, 5.06 (2d, 2H, 12.5 Hz, PhCH₂), 4.70 (s, 2H, CH₃OCH₂), 4.54 (dd, 1H, J 6.0, 12.8 Hz, H-2), 3.38 (s, 3H, CH₃OCH₂), 2.22 (dd, 1H, J 3.8, 4.3 Hz, H-18), 2.01-0.55 (m, 41H). ¹³C NMR (100 MHz, CDCl₃): δ 213.1, 177.3, 143.9, 136.4, 128.4, 128.0, 127.9, 121.9, 95.4, 65.9, 56.9, 55.6, 48.7, 47.4, 47.3, 46.6, 45.8, 41.7, 41.3, 39.3, 37.8, 33.8, 33.3, 32.3, 30.7, 27.5, 26.0, 25.8, 23.6, 22.9, 21.6, 19.2, 16.7, 16.1. Anal. Calcd for C₃₉H₅₆O₅: C, 77.44; H, 9.33. Found: C, 77.62; H, 9.42.

3.3. Benzyl- 2α -O-methoxymethyl- 3β -hydroxyolean-12-en-28-oic acid (4c)

To a solution of **3c** (605 mg, 1.0 mol) in THF (20 mL) and ethanol (4 mL) was added NaBH₄ (45 mg, 1.2 mmol) at 0 °C. After the mixture was stirred at 0 °C for 12 h, 1 N HCl (10 mL) was added dropwise, and the mixture was extracted with EtOAc (50 mL × 3). The organic layer was washed with saturated NaH-CO₃ (30 mL × 3) and brine (30 mL × 3), dried over Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (30:1 petroleum ether–EtOAc) to give **4c** as a syrup (498 mg, 82%): [α_D^{25} +129 (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.30 (m, 5H, Ph*H*), 5.28 (t, 1H, *J* 3.5 Hz, H-12), 5.10, 5.04 (2d, 2H, 12.5 Hz, Ph*CH*₂), 4.73, 4.69 (2d, 2H, *J* 6.8 Hz, CH₃OCH₂), 3.54–3.52 (m, 1H, H-2), 3.40 (s, 3H, CH₃OCH₂), 3.07 (d, 1H, *J* 9.4 Hz, H-3), 2.92 (dd, 1H, *J* 3.8, 4.3 Hz, H-18), 1.12, 1.06, 0.93, 0.92, 0.90, 0.83, 0.59 (7s, 7 × 3H, 7CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 177.4, 143.8, 136.4, 128.4, 128.0, 127.9, 122.2, 96.6, 81.3, 78.6, 65.9, 55.6, 54.9, 47.5, 46.7, 45.8, 44.5, 41.7, 41.3, 39.3, 39.1, 38.1, 33.8, 33.1, 32.6, 32.3, 30.7, 28.8, 27.5, 25.9, 23.6, 23.5, 23.0, 18.1, 17.0, 16.8, 16.5. Anal. Calcd for C₃₉H₅₈O₅: C, 77.19; H, 9.63. Found: C, 77.04; H, 9.72.

3.4. Benzyl-3 β -O-(3,4,6-tri-O-benzyl- β -D-glucopyranosyl)-2 α -O-methoxymethylolean-12-en-28-oic acid (6f)

To a solution of 4c (61 mg, 0.10 mmol) containing 4 Å molecular sieves in anhyd CH_2Cl_2 (5 mL) was added TMSOTf (0.9 μ L, 0.050 mmol) under N₂ atmosphere at -42 °C. After stirring for 10 min, a solution of 5b (55 mg, 0.11 mmol) and NIS (37 mg, 0.16 mmol) in CH₂Cl₂ (5 mL) was added dropwise. The mixture was stirred under these conditions for 20 min, quenched by Et₃N, diluted with CH₂Cl₂, and washed with aq Na₂S₂O₃. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (3:1 petroleum ether-EtOAc) to give compound **6f** as a white foam (81 mg, 78%): $[\alpha_{D}^{25} + 97 (c \ 1.1, \text{CHCl}_{3}); ^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_{3}): \delta \ 7.36 - 7.20 (m,$ 20H, 5PhH), 5.29 (t, 1H, J 3.5 Hz, H-12), 5.10, 5.07 (2d, 2H, J 12.5 Hz, PhCH₂), 4.95-4.81 (m, 4H, 2PhCH₂), 4.61-4.55 (m, 4H), 4.48 (d, 1H, 7.2 Hz, H-1'), 3.77-3.68 (m, 3H), 3.61-3.56 (m, 3H), 3.46-3.44 (m, 1H, H-2'), 3.30 (s, 3H, CH₃OCH₂), 3.24 (d, 1H, J 9.5 Hz, H-3), 2.92 (dd, 1H, J 3.8, 4.3 Hz, H-18), 2.54 (d, 1H, J 1.6 Hz), 1.11, 1.08, 0.96, 0.93, 0.91, 0.87, 0.59 (7s, 7 × 3H, 7CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 177.4, 143.7, 138.7, 138.4, 138.2, 136.4, 128.4, 128.3, 128.0, 127.9, 127.5, 122.3, 104.0, 97.6, 90.3, 84.9, 75.6, 75.2, 75.1, 74.9, 74.1, 73.4, 69.1, 65.9, 55.2, 54.9, 47.6, 46.3, 45.8, 41.7, 41.3, 40.7, 39.2, 39.1, 37.7, 33.8, 33.1, 32.6, 32.3, 30.7, 28.7, 27.5, 25.8, 23.6, 23.5, 23.0, 18.1, 18.0, 16.8, 16.5. Anal. Calcd for C₆₆H₈₆O₁₀: C, 76.27; H, 8.34. Found: C, 76.14; H, 8.50.

3.5. Ethyl 2-O-acetyl-1-thio-β-D-xylopyranoside (8)

To a solution of carefully dried **7** (2.4 g, 10.0 mmol) in dry CH₂Cl₂ (100 mL) was added zinc chloride (1 M in ether, 0.5 mL, 0.50 mmol) at -78 °C. The mixture was stirred at these conditions for 30 min, warmed up to 0 °C in 30 min, then quenched with saturated aqueous NaHCO₃ (50 mL). The organic layer was separated, the water phase was extracted with CH₂Cl₂ (20 mL × 3), and the combined organic phase was dried over Na₂SO₄ and concentrated to dryness. The syrup was purified by silica gel column chromatography (2:1 petroleum ether–EtOAc) to give **8** as a white amorphous solid (2.2 g, 92%): [α_D^{25} +135 (*c* 2.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 4.76 (t, 1H, *J* 9.1 Hz, H-2), 4.40 (d, 1H, *J* 9.4 Hz, H-1), 4.09–4.07 (m, 1H, H-4), 3.74–3.53 (m, 4H), 3.27 (t, 1H, *J* 10.1 Hz, H-3), 2.68–2.66 (m, 2H, SCH₂CH₃), 2.13 (s, 3H, Ac), 1.25 (t, 3H, SCH₂CH₃). Anal. Calcd for C₉H₁₆O₅S: C, 45.75; H, 6.83. Found: C, 45.61; H, 6.94.

3.6. Ethyl 2,3,4-tri-O-acetyl- α -L-arabinopyranosyl- $(1 \rightarrow 4)$ -2,3-di-O-acetyl-1-thio- β -D-xylopyranoside (11)

To a pre-cooled mixture of **8** (236 mg, 1.0 mmol) and 4 Å molecular sieves in anhyd CH_2Cl_2 (20 mL) was added TMSOTF (18 µL, 0.10 mmol) under N₂ atmosphere at -15 °C. After stirring at these conditions for 10 min, a solution of **9** (463 mg, 1.1 mmol) in CH_2Cl_2 (20 mL) was added dropwise. The mixture was stirred for another 30 min, quenched by Et₃N. The organic layer was

separated and dried over Na₂SO₄ and concentrated. The syrup was treated with Ac₂O (3 mL) in pyridine (3 mL) for 2 h, then concentrated to dryness. The residue was purified by silica gel column chromatography (2:1 petroleum ether-EtOAc) to give disaccharide **11** as a white foam (392 mg, 73%): $\left[\alpha_{D}^{25} - 159\right]$ (c 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 5.23–5.21 (m, 1H, H-4'), 5.20 (t, 1H, J 8.8 Hz, H-3'), 5.04-5.02 (m, 2H, H-3, H-2'), 4.92 (t, 1H, J 9.2 Hz, H-2), 4.50 (d, 1H, J 5.5 Hz, H-1'), 4.47 (d, 1H, J 9.2 Hz, H-1), 4.01 (dd, 1H, J 12.4, 5.0 Hz, H-5a'), 3.98 (dd, 1H, J 6.5, 11.6 Hz, H-5a), 3.86-3.84 (m, 1H, H-4), 3.61 (dd, 1H, J 12.4, 2.4 Hz, H-5b'), 3.34 (dd, 1H, J 3.2, 11.6 Hz, H-5b), 2.67-2.64 (m, 2H, SCH₂CH₃), 2.10-2.03 (5s, 15H, 5Ac), 1.26 (t, 3H, SCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 170.4, 170.3, 169.7, 100.0, 84.4, 78.0, 74.4, 74.1, 70.7, 70.4, 69.8, 69.0, 68.0, 67.2, 62.1, 24.9, 21.4, 21.2, 15.5. Anal. Calcd for C₂₂H₃₂O₁₃S: C, 49.25; H, 6.01. Found: C. 49.36: H. 5.90.

3.7. Benzyl-3 β -O-[2,3,4-tri-O-acetyl- α -L-arabinopyranosyl-(1 \rightarrow 4)-2,3-di-O-acetyl- β -D-xylopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-benzyl- β -D-glucopyranosyl]-2 α -O-methoxymethylolean-12-en-28-oic acid (12)

To a mixture of **6f** (208 mg, 0.20 mmol), **11** (129 mg, 0.24 mmol), NIS (81 mg, 0.36 mmol), and 4 Å molecular sieves in anhyd CH₂Cl₂ (10 mL) was added TMSOTf (2.2 µL, 0.012 mmol) under N_2 protection at -50 °C. The mixture was stirred at these conditions for 40 min, quenched by Et₃N, diluted with CH₂Cl₂ (30 mL), and washed with aq Na₂S₂O₃. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (2:1 petroleum ether-EtOAc) to give compound **12** as a white foamy solid (239 mg, 79%): $[\alpha_D^{25} + 92]$ (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.20 (m, 20H, 5PhH), 5.30 (t, 1H, J 3.5 Hz, H-12), 5.22 (d, 2H, 1.5 Hz), 5.13-5.00 (m, 6H), 4.91-4.79 (m, 4H), 4.74 (d, 1H, J 10.0 Hz), 4.63-4.54 (m, 4H), 4.47 (d, 1H, J 3.2 Hz), 4.41 (d, 1H, J 7.6 Hz), 3.99-3.96 (m, 2H), 3.80-3.58 (m, 8H), 3.38 (d, 1H, / 7.7 Hz), 3.29 (s, 3H), 3.11 (t, 2H), 2.92 (dd, 1H, J 3.8, 4.3 Hz), 2.67–2.65 (m, 2H, SCH₂CH₃), 2.12-2.04 (5s. 5 × 3H. 5Ac), 1.12, 1.07, 0.96, 0.93, 0.91, 0.88, 0.60 (7s, $7 \times 3H$, 7CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 178.0, 170.8, 170.7, 170.5, 170.0, 169.7, 144.3, 138.9, 138.6, 138.4, 137.0, 129.4, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 122.9, 103.9, 100.5, 100.4, 98.6, 93.0, 86.8, 79.1, 77.9, 76.2, 76.0, 75.4, 75.2, 74.5, 74.0, 73.8, 72.6, 70.0, 69.8, 69.5, 67.4, 66.5, 63.5, 62.4, 55.7, 48.2, 47.3, 46.4, 42.3, 41.9, 41.6, 39.9, 38.3, 34.4, 33.7, 33.2, 33.0, 31.3, 30.3, 30.2, 28.7, 28.1, 26.4, 24.2, 24.1, 23.6, 21.5, 21.3, 21.2, 18.7, 17.9, 17.4, 17.2. Anal. Calcd for C₈₆H₁₁₂O₂₃: C, 68.23; H, 7.46. Found: C, 67.98; H, 7.60.

3.8. Benzyl-3 β -O-[2,3,4-tri-O-acetyl- α -L-arabinopyranosyl-(1 \rightarrow 4)-2,3-di-O-acetyl- β -D-xylopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-benzyl- β -D-glucopyranosyl]-2 α -hydroxyolean-12-en-28-oic acid (13)

A mixture of **12** (151 mg, 0.10 mmol) and TsOH (76 mg, 0.40 mmol) in MeOH (15 mL) was stirred at rt for 4 h, then quenched with Et₃N and concentrated. The residue was purified by silica gel column chromatography (2:1 petroleum ether–EtOAc) to give **13** as a foamy solid (126 mg, 86%): [α_{D}^{25} +20 (*c* 2.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.22 (m, 20H, 5PhH), 5.26 (t, 1H, *J* 3.5 Hz, H-12), 5.18 (m, 1H), 5.08–4.94 (m, 6H), 4.87–4.82 (m, 2H), 4.74 (t, 2H, *J* 11.2 Hz), 4.57–4.52 (m, 2H), 4.45–4.42 (m, 2H), 4.28 (d, 1H, *J* 7.8 Hz), 3.95–3.87 (m, 2H), 3.80–3.70 (m, 3H), 3.64–3.54 (m, 5H), 3.48–3.46 (m, 1H), 3.11 (t, 1H, *J* 11.4 Hz), 2.88 (d, 1H, *J* 9.2 Hz), 2.07–1.98 (5s, 15H, 5 Ac), 1.07, 1.05, 0.91, 0.88, 0.86, 0.85, 0.57 (7s, 7 × 3H, 7CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 178.1, 170.8, 170.7, 170.5, 169.9, 169.7, 144.2, 138.5, 138.3,

138.2, 137.0, 129.4, 129.1, 129.0, 128.9, 128.5, 128.4, 128.2, 122.9, 104.0, 101.0, 100.4, 97.5, 86.2, 78.6, 76.4, 76.1, 75.6, 75.3, 74.3, 73.9, 72.6, 69.9, 69.8, 69.1, 67.3, 67.0, 66.5, 63.8, 62.3, 56.1, 48.2, 47.3, 46.9, 46.4, 42.2, 41.9, 41.1, 39.9, 38.1, 34.5, 33.7, 33.2, 33.0, 31.3, 30.3, 29.9, 28.6, 28.2, 26.8, 24.2, 24.0, 23.6, 21.5, 21.4, 21.3, 21.2, 20.1, 18.8, 17.8, 17.5, 17.7. MALDITOF–MS: calcd for $C_{56}H_{84}O_{22}$: 1468.7 [M]⁺; found, 1491.9 [M+Na]⁺, 1507.9 [M+K]⁺. Anal. Calcd for $C_{84}H_{108}O_{22}$: C, 68.64; H, 7.41. Found: C, 68.82; H, 7.54.

3.9. 3β -O-[2,3,4-Tri-O-acetyl- α -L-arabinopyranosyl-(1 \rightarrow 4)-2,3di-O-acetyl- β -D-xylopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-acetyl- β -Dglucopyranosyl]-2 α -hydroxyolean-12-en-28-oic acid (15)

To a solution of **13** (180 mg, 0.12 mmol) in EtOAc/ethanol (60 mL, v/v 1:1) at rt was added Pd $(OH)_2/C$ (60 mg). The suspension was stirred under hydrogen pressure (3 atm) for 0.5 h and then filtered. The filtrate was concentrated, and the residue was purified by silica gel column chromatography (EtOAc) to afford 14 as a foamy solid. MALDITOF-MS: calcd for C₅₆H₈₄O₂₂: 1108.5 [M]⁺; found, 1131.8 [M+Na]⁺, 1147.8 [M+K]⁺. To the above intermediate 14 (112 mg, 0.10 mmol) in CH₂Cl₂ (20 mL) was added pyridine (5 mL) and Ac₂O (3 mL) at rt. The solution was stirred at rt for 18 h and concentrated to dryness with the help of toluene. The residue was purified by silica gel chromatography (1:1 petroleum ether–EtOAc) to afford **15** as a foamy solid (120 mg, 81%): $[\alpha_D^{25}]$ +35 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 5.27 (t, 1H, J 3.5 Hz), 5.20-5.18 (m, 2H), 5.07-4.97 (m, 3H), 4.91 (t, 1H, J 9.7 Hz), 4.78 (t, 1H, J 8.2 Hz), 4.59 (d, 1H, J 8.0 Hz), 4.67 (d, 1H, J 5.3 Hz), 4.43 (d, 1H, J 7.7 Hz), 4.18-4.10 (m, 2H), 3.98-3.92 (m, 2H), 3.87-3.72 (m, 4H), 3.57 (dd, 1H, J 10.3, 2.0 Hz), 3.23 (t, 1H, J 11.4 Hz), 2.92 (d, 1H, J 9.2 Hz), 2.80 (dd, 1H, J 10.1, 3.5 Hz), 2.06-1.98 (m, 24H, 8Ac), 1.11, 1.05, 0.97, 0.92, 0.89, 0.87, 0.74 (7s, $7\times$ 3H, 7CH₃). ^{13}C NMR (100 MHz, CDCl₃): δ 183.5, 171.2, 170.7 (2C), 170.6, 170.5, 170.3, 170.2, 169.7, 144.0, 123.1, 103.8, 101.8, 100.1, 98.3, 77.0, 75.5, 73.8, 72.2, 72.1, 69.9, 69.8, 69.2, 67.3, 66.9, 63.7, 62.3, 61.0, 56.0, 48.2, 47.0, 46.8, 46.4, 41.6, 41.2, 39.9, 38.1, 34.4, 33.6, 33.2, 33.0, 31.3, 30.9, 28.4, 28.1, 26.5, 24.1, 24.0, 23.5, 21.5, 21.4, 21.3, 21.2, 21.1, 18.8, 17.5, 17.4, 17.1. MALDI-TOF-MS: calcd for C₆₂H₉₀O₂₅: 1234.6 [M]⁺; found, 1257.6 [M+Na]⁺. Anal. Calcd for C₆₂H₉₀O₂₅: C, 60.28; H, 7.34. Found: C, 60.43; H, 7.30.

3.10. 2,3,4-Tri-O-acetyl- α -L-rhamnopyranosyl 3 β -O-[2,3,4-tri-O-acetyl- α -L-arabinopyranosyl-(1 \rightarrow 4)-2,3-di-O-acetyl- β -D-xylo pyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-acetyl- β -D-glucopyranosyl]-2 α -hydroxyolean-12-en-28-oate (17)

To a pre-cooled stirring mixture of 15 (100 mg, 0.081 mmol), TMSOTf (8 µL, 0.04 mmol), and 4 Å molecular sieves in anhyd CH_2Cl_2 (10 mL) was added a solution of **16** (42 mg, 0.096 mmol) in CH_2Cl_2 (5 mL) under N₂ atmosphere at -78 °C. The mixture was stirred under these conditions for 30 min, then quenched by Et_3N , and filtered. The filtrate was concentrated and purified by silica gel column chromatography (1:1 petroleum ether-EtOAc) to afford **17** as a foamy solid (96 mg, 79%): [α_D^{25} +36 (c1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 6.01 (d, 1H, J 1.8 Hz), 5.32 (br, 1H), 5.27 (dd, 1H, J 3.3, 10.2 Hz), 5.21-5.19 (m, 3H), 5.12 (t, 1H, J 9.9 Hz), 5.07-4.97 (m, 3H), 4.91 (t, 1H, J 9.8 Hz), 4.78 (t, 1H, / 8.0 Hz), 4.59 (d, 1H, / 7.9 Hz), 4.46 (d, 1H, / 5.2 Hz), 4.42 (d, 1H, J 7.7 Hz), 4.16-4.12 (m, 2H), 3.97-3.92 (m, 2H), 3.82-3.74 (m, 4H), 3.59 (dd, 1H, J 10.3, 2.4 Hz), 3.23 (t, 1H, / 11.4 Hz), 2.92 (d, 1H, / 9.0 Hz), 2.89 (dd, 1H, / 10.1, 3.6 Hz), 2.15-1.99 (m, 33H, 11 × Ac), 1.24 (d, 1H, / 6.1 Hz), 1.13, 1.07, 0.97, 0.95, 0.89, 0.86, 0.76 (7s, $7\times 3H$, 7CH_3). ^{13}C NMR (100 MHz, CDCl₃): δ 175.3, 171.2, 170.7 (2C), 170.6, 170.5,

170.3, 170.2, 169.7, 144.2, 123.4, 103.8, 101.8, 100.2, 98.3, 90.7, 77.0, 75.5, 73.8, 72.2, 72.1, 70.9, 69.9, 69.6, 69.5, 69.3, 69.1, 67.3, 66.8, 63.9, 62.3, 62.2, 56.1, 48.1, 47.8, 46.8, 46.2, 42.4, 42.2, 41.2, 39.9, 38.1, 34.3, 33.6, 33.2, 33.1, 31.3, 30.3, 28.4, 28.0, 26.4, 24.0 (2C), 23.5, 21.8, 21.5, 21.4, 21.3, 21.2, 21.1, 21.0, 18.8, 18.1, 17.7, 17.5, 17.1. MALDITOF-MS: calcd for $C_{74}H_{106}O_{32}$: 1506.7 [M]⁺; found, 1529.7 [M+Na]⁺. Anal. Calcd for $C_{74}H_{106}O_{32}$: C, 58.95; H, 7.09. Found: C, 59.18; H, 6.97.

3.11. α -L-Rhamnopyranosyl 3 β -O-[α -L-arabinopyranosyl-($1 \rightarrow 4$)- β -D-xylopyranosyl-($1 \rightarrow 2$)- β -D-glucopyranosyl]-2 α -hydroxyolean -12-en-28-oate (1)

To a stirred solution of **17** (60 mg, 0.04 mmol) in MeOH/CH₂Cl₂ (v/v. 1:1, 10 mL) was added 1 M NaOMe until pH 10 was reached. The mixture was stirred at rt for 3 h at pH 9, then neutralized with Dowex-50 (H⁺) ion exchange resin, filtered, and the filtrate was concentrated. The residue was purified by a Bio-Gel P2 column using H₂O as eluent, and the desired fractions were combined and freeze dried to afford **1** as an amorphous solid (38 mg, 91%): $[\alpha_D^{25}$ –55 (c 0.4, CH₃OH); Selected ¹H NMR (400 MHz, CD₃OD): δ $(100 \text{ km})^{-1}$ (100 km/2, CD30D); 6 6.01 (d, 1H, J 1.8 Hz, H-1^{Rha}), 5.29 (br s, 1H, H-12), 4.60 (d, 1H, J 7.6 Hz, H-1^{Xyl}), 4.39 (d, 1H, J 7.4 Hz, H-1^{Glc}), 4.24 (d, 1H, J 6.9 Hz, H-1^{Ara}), 3.88-3.21 (m, 21H), 2.98 (d, 1H, J 8.8 Hz), 2.92 (dd, 1H, J 10.6, 3.5 Hz, H-18), 1.24 (d, 3H, J 6.1 Hz, H-6^{Rha}), 1.18, 1.12, 1.02, 0.97, 0.93, 0.90, 0.80 (7s, 7 × 3H, 7CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 176.3, 144.1, 123.4, 104.9, 103.8, 103.0, 95.6, 94.1, 81.6, 77.7, 77.2 (2C), 75.3, 75.0, 73.3 (2C), 72.6 (2C), 71.6, 71.2, 70.6, 70.2, 68.9, 67.1, 66.5, 63.9, 61.4, 55.9, 48.8 (2C), 47.5, 46.7, 45.1, 40.9, 39.9, 37.9, 33.9, 33.2, 33.0, 32.6, 30.8, 27.4 (2C), 25.6, 23.8, 23.2, 23.1, 18.5, 17.4, 17.3, 16.8, 16.3. MALDITOF-MS: calcd for C₆₂H₉₀O₂₅: 1044.6 [M]⁺; found, 1067.9 [M+Na]⁺. Anal. Calcd for C₅₂H₈₄O₂₁: C, 59.75; H, 8.10. Found: C, 59.49; H, 8.19.

Acknowledgments

This work was supported in partial by NNSF of China (projects 20872172, 20732001, 20921063, and 20890112). We would like to thank Dr. Jianjun Zhang of CAU for providing compounds **9** and **16** as the starting materials.

References

- Wang, K.-W.; Zhang, H.; Shen, L.-Q.; Wang, W. Carbohydr. Res. 2011, 346, 253– 258.
- Kalinin, V. I.; Silchenko, A. S.; Avilov, S. A.; Stonik, V. A.; Smirnov, A. V. Phytochem. Rev. 2005, 4, 221–236.
- Itabashi, M.; Segawa, K.; Ikeda, Y.; Kondo, S.; Naganawa, H.; Koyano, T.; Umezawa, K. Carbohydr. Res. 1999, 323, 57–62.
- 4. Yu, B.; Zhang, Y.; Tang, P. Eur. J. Org. Chem. 2007, 5145-5161.
- 5. Yu, B.; Sun, J. Chem. Asian J. 2009, 4, 642-654.
- Hashimoto, G.; Nishimoto, Y. Illustrated Cyclopedia of Brazilian Medicinal Plants; Aboc-shya: Kanagawa, Japan, 1996. pp 734–735.
- da Silva Rodrigues, A.; Chaves, N. S. T.; Damasceno, A. D.; Trinidade, B. R.; Martins, G. H. L.; Arantes, A. F. Cien. Anim. Bras. 2005, 6, 119–126.
- Yokosuka, A.; Kawakami, S.; Haraguchi, M.; Mimaki, Y. Tetrahedron 2008, 64, 1474–1481.
- 9. Zhu, C.; Tang, P.; Yu, B. J. Am. Chem. Soc. 2008, 130, 5872-5873.
- 10. Levy, M.; Zehavi, U.; Naim, M. Carbohydr. Res. 1989, 193, 115-123.
- 11. Du, Y.; Gu, G.; Wei, G.; Hua, Y.; Linhardt, R. J. Org. Lett. 2003, 5, 3627-3630.
- 12. Gu, G.; Du, Y.; Linhardt, R. J. J. Org. Chem. 2004, 69, 5497-5500.
- Wen, X.; Sun, H.; Liu, J.; Cheng, K.; Zhang, P.; Zhang, L.; Hao, J.; Zhang, L.; Ni, P.; Zographos, S. E.; Leonidas, D. D.; Alexacou, K. M.; Gimisis, T.; Hayes, J. M.; Oikonomakos, N. G. *J. Med. Chem.* **2008**, *51*, 3540–3554.
- 14. Liu, M.; Fan, H.; Guo, Z.; Hui, Y. J. Carbohydr. Chem. 1996, 15, 1139–1145.
- 15. Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32, 3353-3356.
- 16. Love, K. R.; Andrade, R. B.; Seeberger, P. H. J. Org. Chem. 2001, 66, 8165–8176.
- 17. Yu, W.; Jin, Z. J. Am. Chem. Soc. 2002, 124, 6576–6583.
- 18. Helm, R. F.; Ralph, J.; Anderson, L. J. Org. Chem. 1991, 56, 7015-7021.
- Wang, P.; Li, C.; Zang, J.; Song, N.; Zhang, X.; Li, Y. Carbohydr. Res. 2005, 340, 2086–2096.
- Paquette, L. A.; Gao, Z.; Ni, Z.; Smith, G. F. Tetrahedron Lett. 1997, 38, 1271– 1274.

- Zhang, J.; Zhu, Y.; Kong, F. Carbohydr. Res. 2001, 336, 229–235.
 Kuroda, M.; Mimaki, Y.; Sashida, Y.; Hirano, T.; Oka, K.; Dobashi, A.; Li, H.; Harada, N. Tetrahedron 1997, 53, 11549–11562.
- Wu, F.; Yi, Y.; Sun, P.; Zhang, D. Bioorg. Med. Chem. Lett. 2007, 17, 6430–6433.
 Zehavi, U.; Ziv-Fecht, O.; Levy, M.; Naim, M.; Evron, R.; Polacheck, I. Carbohydr. Res. 1993, 244, 161–169.
- Kuruuzum-Uz, A.; Guvenalp, Z.; Kazaz, C.; Salih, B.; Demirezer, L. O. *Helv. Chim. Acta* **2010**, *93*, 457–465.
 Zareen, S.; Choudhary, M. I.; Akhtar, M. N.; Ngounou, F. N. *Phytochemistry* **2008**, Comparison of the statement of the s
- 69, 2400-2405.