Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Iron-niobium composite oxides for selective catalytic reduction of NO with $\rm NH_3$

Nana Zhang^a, Ying Xin^a, Xiao Wang^a, Mingfen Shao^a, Qian Li^a, Xicheng Ma^b, Yongxin Qi^c, Lirong Zheng^d, Zhaoliang Zhang^a,*

^a School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China

^b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

^c School of Material Science and Technology, Shandong University, Jinan 250100, China

^d Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Keywords: Iron-niobium composite oxides Nitrogen oxides Selective catalytic reduction Redox property Acidity

ABSTRACT

Iron-niobium composite oxides (Nb_aFeO_x, *a* represents the mass percent of Nb in Fe-Nb composite oxides) were studied for the selective catalytic reduction (SCR) of NO_x with NH₃. The Nb-doped Fe₂O₃ was found to be responsible for the improved activity. The doping of Nb into Fe₂O₃ resulted in the improvement of specific surface areas, redox property and acidic amount. The optimal Nb_{30.3}FeO_x sample exhibited nearly 100% NO_x conversion and N₂ selectivity from 250 °C to 400 °C, which would be a promising candidate for NH₃-SCR catalysts in the medium temperature ranges.

1. Introduction

Nitrogen oxides (NO_x) are main air pollutants causing photochemical smog, acid rain, ozone depletion, and greenhouse effects [1]. Among various NO_x control technologies, selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) has been demonstrated as the most efficient one in the after-treatment process. Nowadays, the most widely used NH₃-SCR catalyst is V₂O₅-WO₃/TiO₂ [2,3], however some unavoidable disadvantages still remained, such as the toxicity of vanadium species, the poor activity at temperatures lower than 350 °C and the high oxidation of NH₃ at the high temperature [4,5]. Consequently, the exploration of the novel eco-friendly SCR catalysts with high activity and N₂ selectivity over wide-temperature ranges is never stopped.

It is well known that the excellent redox capability and acidity of catalysts are favorable to the NH₃-SCR reaction [6]. Thus, transition metal oxides with prominent redox property are considered to be the promising candidates for NH₃-SCR catalysts [7,8]. Therein, iron oxides (typically Fe₂O₃) have been received considerable attention because of their non-toxicity and abundance [9–11]. Nevertheless, pure Fe₂O₃ often suffers from poor activity at the low temperature [12]. Therefore, many researchers tried to introduce hetero atoms into Fe₂O₃ to improve the properties and consequently the catalytic activity, for example, Fe-Ti [13], Fe-Ce [14], and Fe-Mn composite oxides, etc. [15,16].

Generally, niobium oxides have gained attention as catalysts due to

http://dx.doi.org/10.1016/j.catcom.2017.04.033

the high acidity [17]. As early as in 1985, Okazaki et al. first reported the promotion effect of Nb₂O₅ to Fe₂O₃ catalyst for NH₃-SCR reaction [18]. However, the characteristic details were lost in the long history. Afterwards, Vikulov et al. found similar results in Nb₂O₅-modified V₂O₅/TiO₂ [19]. Lian et al. showed that the addition of Nb to MnO_x enhanced the acidity, especially the Brønsted acidity, which brought about the low temperature SCR activity [20]. While Ding et al. reported that the introduction of Nb into CeZr₂O_x allows for a high surface area, the strong surface acidity and redox ability, all of which are beneficial to the remarkable SCR performance [21].

Herein, a series of Fe-Nb composite oxides were synthesized and characterized in depth. X-ray diffraction (XRD) showed the presence of the Nb-doped Fe_2O_3 and $FeNbO_4$ phases in Fe-Nb composite oxides. However, only was the Nb-doped Fe_2O_3 found to be responsible for the improved activity in NH₃-SCR. The doping of Nb into Fe_2O_3 resulted in the improvement of specific surface areas, redox property and acidic amount, which gained the maximum at 30.3 wt% Nb. Nb_{30.3}FeO_x exhibited nearly 100% NO_x conversion and N₂ selectivity from 250 °C to 400 °C, demonstrating a promising candidate for the SCR catalysts in the medium temperature range.

^{*} Corresponding author. *E-mail address:* chm_zhangzl@ujn.edu.cn (Z. Zhang).

Received 9 January 2017; Received in revised form 7 March 2017; Accepted 17 April 2017 Available online 18 April 2017 1566-7367/ © 2017 Elsevier B.V. All rights reserved.

2. Experimental section

2.1. Sample preparation

The Fe-Nb composite oxides were prepared by a co-precipitation method. In a typical process, a certain amount of NbCl₅ was dissolved in 50 mL of deionized water with magnetic stirring at room temperature. Similarly, FeSO₄·7H₂O and ascorbic acid (mole ratio is 1:1.1) were dissolved in 100 mL of deionized water and stirred to obtain a clear solution, and then it was dropwise added into the NbCl₅ aqueous solution with magnetic stirring for 10 min at room temperature. The total amount of the metallic ions was 0.033 g/mL. Subsequently, the excess urea solution (2 mol/L) was added into the mixed solution and then heated under reflux aging at 90 °C over 12 h. The precipitate was collected by filtration and washing with deionized water, followed by drying at 100 °C overnight and calcinating at 500 °C for 5 h in air. The obtained mixed oxides were denoted as Nb_aFeO_x, where a represents the mass percent (wt%) of Nb in Fe-Nb composite oxides based on inductively coupled plasma-atomic emission spectrometry (ICP-AES). For comparison, pure Fe₂O₃ and Nb₂O₅ were synthesized by the same procedure, while FeNbO₄ was prepared by the solid state reaction [22]. The mechanically mixed sample was obtained by grinding the mixture of Fe₂O₃ and FeNbO₄ nanoparticles with the Nb content according to the quantitative XRD analysis of Nb_{30,3}FeO_x.

2.2. Characterization

XRD patterns were recorded with a Rigaku D/max 2500PC diffractometer using Cu K α (= 0.15405 nm) radiation and intensity data were collected over a 20 range of 10 to 90°. A Micromeritics ASAP2020M instrument was used to measure the N2 adsorption isotherms of the samples at liquid N_2 temperature (- 196 °C). Before the N_2 physisorption, all the samples were degassed at 300 °C. ICP-AES experiments were carried out on an IRIS Intrepid IIXSP instrument from Thermo Elemental. High-resolution transmission electron microscopy (HRTEM) was conducted on a JEOL JEM-2010 at an accelerating voltage of 200 kV. X-ray absorption fine structure (XAFS) measurements for the Fe K-edge and Nb K-edge were performed in the transmission mode at room temperature on the XAFS station of the 1W1B beamline of Beijing synchrotron radiation facility (BSRF, Beijing, China). H₂ temperatureprogrammed reduction (H2-TPR) experiments were carried out on a quartz reactor with a thermal conductivity detector (TCD) to monitor H₂ consumption. The samples (50 mg) in a quartz reactor were pretreated at 500 $^\circ$ C for 30 min in O₂ and cooled down to the room temperature. Then a 50 mL/min gas flow of 5 vol% H₂ in N₂ was passed over the samples with the rate of 10 °C/min up to 800 °C. NH3temperature programmed desorption (NH₃-TPD) experiments were performed in a quartz reactor using 50 mg catalyst. Prior to the experiments, the samples (40-60 mesh) in a quartz reactor were pretreated at 500 °C for 30 min in 10 vol% O_2/He (50 mL/min) to remove surface impurities and then cooled to the 30 °C. NH₃ adsorption was operated in 4000 ppm NH₃/He (50 mL/min) until the concentration stabilized. Then the weak adsorbed ammonia was purged with highly pure He. Finally, the samples were heated up to 700 °C at a heating rate of 10 °C/min. NH₃ was detected using quadrupole mass spectrometer (OmniStar 200, Balzers).

2.3. Catalytic performance testing

All samples were tested for SCR activity in a fixed-bed quartz tube reactor (6.0 mm i.d.) with a thermocouple placed inside the catalyst bed and in the temperature range 150–450 °C. The experimental conditions were controlled as follows: 500 ppm NO, 500 ppm NH₃, 5.3% O₂, 100 ppm SO₂ (when used), 5% H₂O (when used) and balance He. The total flow rate was 300 mL/min and the gas hourly space velocity (GHSV) was 50,000 h⁻¹. Concentrations of NO and NO₂ were

Fig. 1. XRD patterns of Fe₂O₃, Nb₂O₅ and Nb_aFeO_x.

determined by a chemiluminiscence NO_x analyzer (42*i*-HL, Thermo), in addition, NH₃ and N₂O were detected by using a quadrupole mass spectrometer (MS, OmniStar 200, Balzers) at m/z = 44 for N₂O, and 17 for NH₃. The NO_x conversion and N₂ selectivity were calculated according to the following equation:

$$NO_x \text{ conversion} = \frac{[NO_x]_{inlet} - [NO_x]_{outlet}}{[NO_x]_{inlet}} \times 100\%$$

N2 selectivity

$$=\frac{[\mathrm{NO}_x]_{\mathrm{inlet}} + [\mathrm{NH}_3]_{\mathrm{inlet}} - [\mathrm{NO}_x]_{\mathrm{outlet}} - [\mathrm{NH}_3]_{\mathrm{outlet}} - 2 \times [\mathrm{N}_2\mathrm{O}]_{\mathrm{outlet}}}{[\mathrm{NO}_x]_{\mathrm{inlet}} + [\mathrm{NH}_3]_{\mathrm{inlet}} - [\mathrm{NO}_x]_{\mathrm{outlet}} - [\mathrm{NH}_3]_{\mathrm{outlet}}} \times 100\%$$

3. Results and discussion

3.1. XRD

Powder XRD was conducted to investigate the crystal structure of $Nb_{a}FeO_{x}$ (Fig. 1). Pure iron and niobium oxides are present as $Fe_{2}O_{3}$ (JCPDS 33-0664) and Nb₂O₅ (JCPDS 30-0873), respectively. For $Nb_{12,0}FeO_x$, the XRD peaks are indexed as a hematite phase of Fe_2O_3 , while no diffraction peaks of Nb-containing species was detected. Increasing in the Nb content results in the emergence of a new phase FeNbO₄ (JCPDS 71-1849) (Fig. S1) as for Nb_{21.2}FeO_x, Nb_{30.3}FeO_x, and Nb_{35.4}FeO_x. Furthermore, compared with pure Fe₂O₃, the peaks of Fe₂O₃ in Nb_aFeO_x shift to the higher angle (inset) deriving from the lattice constriction. The decreased lattice parameter a (Table 1) for the Fe₂O₂ phase correspond to the increasing Nb content in Nb₂FeO₂, owing to the substitution of Fe ions (0.0645 nm) by the smaller Nb ions (0.064 nm) [23]. This suggests that a fraction of Nb atoms was doped into the Fe₂O₃ lattice besides the formation of FeNbO₄. The relative amount of $FeNbO_4$ in Nb_aFeO_r can be obtained using the quantitative XRD analysis by the reference intensity ratio (RIR) method (Table 1 and Supporting information) [24]. In combination with the ICP data, the doping amount of Nb into the Fe₂O₃ lattice was roughly calculated (Table 1), which corresponded well with lattice parameter a. Furthermore, with the doping amount increasing, the crystallinity of hematite is decreased, especially for Nb_{35.4}FeO_x.

3.2. N_2 adsorption/desorption and TEM

The surface areas and pore distribution were characterized by N₂ adsorption/desorption (Table 1 and Fig. S2). As shown in Table 1, all Nb_aFeO_x samples possess much higher BET surface areas than those of pure Fe₂O₃ and Nb₂O₅. The largest surface area of 84.7 m²/g was obtained for Nb_{30.3}FeO_x, indicating the optimal doping amount for specific surface areas. N₂ adsorption/desorption isotherms exhibit

Table	1
-------	---

ICP, XRD, surface area, H2-TPR and NH3-TPD data for Fe2O3, Nb2O5 and NbaFeOx.

Samples	Nb mass percent (wt%) ^a	Nb in FeNbO ₄ (wt %) ^b	Nb doped into Fe ₂ O ₃ (wt%)	Lattice parameter <i>a</i> (Å)	Surface area (m ² /g)	Peak position of H_2 -TPR (°C)	Total amount of NH ₃ desorption (mmol/g)
Fe ₂ O ₃	-	-	-	5.086	48.1	398	198.9
Nb12.0-Fe2O3	12.0	-	12.0	5.045	71.1	393	271.1
Nb _{21.2} -Fe ₂ O ₃	21.2	6.7	14.5	5.035	73.2	393	287.6
Nb _{30.3} -Fe ₂ O ₃	30.3	7.7	22.6	5.030	84.7	380	314.4
Nb35.4-Fe2O3	35.4	10.8	24.6	5.023	77.3	386	281.6
Nb ₂ O ₅	-	-	-	-	32.6	-	163.0

^a ICP data.

^b Obtained from the quantitative XRD analysis.

typical IV curves and H1 type hysteresis loops (Fig. S2a), suggesting the existence of mesopores and a small fraction of macropores (Fig. S2b), which originate from the interstices between the particles.

The morphology and microstructures were further investigated by TEM taking Nb_{30.3}FeO_x as an example (Fig. S3). The nanoparticles of 10–20 nm were aggregated together (Fig. S3a), which can be distinguished as the Nb-doped Fe₂O₃ and FeNbO₄ (Fig. S3b), in good agreement with XRD and pore distribution analysis for Nb_aFeO_x.

3.3. XAFS

XAFS can be used to determine the local environment around specific atoms, which may influence the performance of catalysts. Fig. 2 shows the radial structure function (RSF) curves of Fe and Nb K-edge EXAFS spectra for Fe_2O_3 , Nb_2O_5 , $FeNbO_4$ and Nb_aFeO_x . In

Fig. 2. The radial structure function (RSF) curves of Fe (a) and Nb (b) K-edge EXAFS spectra for Fe₂O₃, Nb₂O₅, FeNbO₄ and Nb_aFeO_x.

Fig. 2a, Fe₂O₃ shows two characteristic peaks assigned to the Fe-O and Fe-O-Fe shells together with an obvious shoulder peak, which was also typical for α -Fe₂O₃ [13]. In the case of Nb_aFeO_x, the coordination environment of iron is similar to that of Fe₂O₃, while the intensity of the shoulder peak is relatively stronger than that of the Fe-O-Fe shell, which is caused by the co-existed FeNbO₄. In Fig. 2b, FeNbO₄ shows two characteristic peaks, one belongs to Nb-O shell together with an obvious shoulder and the other assigns to Nb-O-Fe shell. For Nb_aFeO_x, the position of the Nb-O-Fe peak shows a slight shift to higher R value in comparison with FeNbO₄, suggesting the contribution from the doped Nb species in Fe₂O₃.

3.4. H₂-TPR

To study the redox property of the samples, H₂-TPR was performed. Fig. 3 shows the H₂-TPR patterns of Fe₂O₃, Nb₂O₅, FeNbO₄ and Nb_aFeO_x. The pristine Fe₂O₃ shows three reduction peaks at 396 °C, 638 °C and > 700 °C, which can be assigned to the reduction of Fe₂O₃ to Fe₃O₄ (396 °C), Fe₃O₄ to FeO (638 °C) and FeO to Fe (> 700 °C), respectively [16,25]. Nb₂O₅ and FeNbO₄ do not show obvious reduction peaks below 700 °C. Thus, the low-temperature redox peaks could be attributed to the reduction of Fe species in the Nb-doped Fe₂O₃ phase. It is clear that the addition of Nb can result in the peak shift to lower temperatures. The lowest reduction peak temperature was reached at Nb_{30.3}FeO_x (Table 1), indicating the optimal doping amount for redox ability. After that the reduction peak shifts to the higher temperature.

3.5. NH₃-TPD

 NH_3 -TPD was carried out to investigate the effect of Nb contents on acidity of the samples. Fig. 4 shows the NH_3 -TPD spectra over Fe₂O₃, Nb_2O_5 and Nb_aFeO_x . The corresponding desorption amounts of NH_3 are

Fig. 4. NH₃-TPD profiles of Fe₂O₃, Nb₂O₅ and Nb_aFeO_x.

Fig. 5. NO_x conversion in NH_3 -SCR as a function of temperature over Fe_2O_3 , Nb_2O_5 , FeNbO₄, Fe_2O_3 + FeNbO₄ and Nb_aFeO_x .

listed in Table 1. Both Fe₂O₃ and Nb₂O₅ show broad distributions of NH₃ desorption over a wide temperature range. However, after the addition of Nb, all Nb_aFeO_x samples desorbed much more NH₃ compared with Fe₂O₃. Because FeNbO₄ does not show any acidity (not shown here), the promotional effect of acidity is derived from the doping of Nb in Fe₂O₃. Similar to surface areas and redox property, the maximum NH₃ desorption was obtained at Nb_{30.3}FeO_x.

3.6. Catalytic performance

NO_x conversion and N₂ selectivity as a function of temperature in NH₃-SCR reactions were shown in Fig. 5 and S4, respectively. In Fig. 5, although both Nb₂O₅ and FeNbO₄ are inactive, Fe₂O₃ shows good activity above 300 °C. As expected, all Nb_aFeO_x samples show improved activity at lower temperatures. Because the mixture of Fe₂O₃ and FeNbO₄ shows similar activity with that of Fe₂O₃, the improvement of activity for Nb_aFeO_x was attributed to the Nd-doped Fe₂O₃. Among the various samples, Nb_{30.3}FeO_x was optimal and exhibited nearly 100% NO_x conversion and N₂ selectivity from 250 °C to 400 °C at a gas hourly space velocity of 50,000 h⁻¹. In comparison with V₂O₅-WO₃/TiO₂ [26], the temperature widow shifts to lower temperature and the N₂ selectivity is always nearly 100% even at 450 °C (Fig. S4). On the basis of the above characterization results, the high activity over Nb_aFeO_x can be attributed to the doping of Nb in Fe₂O₃.

The stability of Nb_aFeO_x is also considered, taking $Nb_{30.3}FeO_x$ as an example, the catalyst is maintained above 100% NO_x conversion at

250 °C (Fig. S5). Moreover, the resistance to H₂O and SO₂ over Nb_{30.3}FeO_x at 250 °C is checked (Fig. S5). When 5% H₂O and 100 ppm SO₂ were added into the reaction gas, NO_x conversion decreased from 100% to ~80%. However, the initial activity can be recovered after removing SO₂ and heat-treatment of the catalyst at 500 °C.

4. Conclusions

Iron-niobium composite oxides were characterized and studied for NH₃-SCR. XRD, ICP-AES, HRTEM and XAFS show the presence of the Nb-doped Fe₂O₃ and FeNbO₄ phases in Fe-Nb composite oxides. However, only is the former responsible for the activity. The doping of Nb into Fe₂O₃ resulted in the improvement of specific surface areas, redox property and acidic amount as detected by N₂ adsorption/ desorption, H₂-TPR and NH₃-TPD, respectively. The optimal doping amount was obtained at 30.3 wt% Nb due to the highest surface areas, reducibility and acidic amount. Nb_{30.3}FeO_x exhibits nearly 100% NO_x conversion and N₂ selectivity from 250 °C to 400 °C at a gas hourly space velocity of 50,000 h⁻¹, which demonstrated a promising candidate for the SCR catalysts in the medium temperature ranges.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 21477046, 21277060, and 21547007), Key Technology R&D Program of Shandong Province (No. 2016ZDJS11A03), and Shandong Provincial Natural Science Foundation, China (No. ZR2016BM32).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.catcom.2017.04.033.

References

- M.A. Gomez-Garcia, V. Pitchon, A. Kiennemann, Pollution by nitrogen oxides: an approach to NO_x abatement by using sorbing catalytic materials, Environ. Int. 31 (2005) 445–467.
- [2] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: a review, Appl. Catal. B Environ. 18 (1998) 1–36.
- [3] S. Djerad, L. Tifouti, M. Crocoll, W. Weisweiler, Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V₂O₅-WO₃/TiO₂ catalysts, J. Mol. Catal. A Chem. 208 (2004) 257–265.
- [4] Z.P. Qu, L. Miao, H. Wang, Q. Fu, Highly dispersed Fe₂O₃ on carbon nanotubes for low temperature selective catalytic reduction of NO with NH₃, Chem. Commun. 51 (2015) 956–958.
- [5] P. Forzatti, Present status and perspectives in de-NO_x SCR catalysis, Appl. Catal. A Gen. 222 (2001) 221–236.
- [6] N.Y. Topsøe, Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy, Science 265 (1994) 1217–1219.
- [7] J.H. Li, H.Z. Chang, L. Ma, J.M. Hao, R.T. Yang, Low-temperature selective catalytic reduction of NO_x with NH₃ over metal oxide and zeolite catalysts-a review, Catal. Today 175 (2011) 147–156.
- [8] H. Hu, S.X. Cai, H.R. Li, L. Huang, L.Y. Shi, D.S. Zhang, Mechanistic aspects of deNO_x processing over TiO₂ supported Co-Mn oxide catalysts: structure-activity relationships and in situ DRIFTs analysis, ACS Catal. 5 (2015) 6069–6077.
- [9] H. Arai, M. Machida, Removal of NO_x through sorption-desorption cycles over metal oxides and zeolites, Catal. Today 22 (1994) 97–109.
- [10] C. Bolm, J. Legros, J.L. Paih, L. Zani, Iron-catalyzed reactions in organic synthesis, Chem. Rev. 104 (2004) 6217–6254.
- [11] Y. Li, Y. Wan, Y.P. Li, S.H. Zhan, Q.X. Guan, Y. Tian, Low-temperature selective catalytic reduction of NO with NH₃ over Mn₂O₃-doped Fe₂O₃ hexagonal microsheets, ACS Appl. Mater. Interfaces 8 (2016) 5224–5233.
- [12] S.J. Yang, C.X. Liu, H.Z. Chang, L. Ma, Z. Qu, N.Q. Yan, C.Z. Wang, J.H. Li, Improvement of the activity of γ-Fe₂O₃ for the selective catalytic reduction of NO with NH₃ at high temperatures: NO reduction versus NH₃ oxidization, Ind. Eng. Chem. Res. 52 (2013) 5601–5610.

- [14] J. Han, J. Meeprasert, P. Maitarad, S. Nammuangruk, L.Y. Shi, D.S. Zhang, Investigation of the facet-dependent catalytic performance of Fe₂O₃/CeO₂ for the selective catalytic reduction of NO with NH₃, J. Phys. Chem. C 120 (2016) 1523–1533.
- [15] H.X. Jiang, L. Zhang, J. Zhao, Y.H. Li, M.H. Zhang, Study on MnO_x-FeO_y composite oxide catalysts prepared by supercritical antisolvent process for low-temperature selective catalytic reduction of NO_x, J. Mater. Res. 31 (2016) 702–712.
- [16] Z.H. Chen, F.R. Wang, H. Li, Q. Yang, L.F. Wang, X.H. Li, Low-temperature selective catalytic reduction of NO_x with NH₃ over Fe-Mn mixed-oxide catalysts containing Fe₃Mn₃O₈ phase, Ind. Eng. Chem. Res. 51 (2012) 202–212.
- [17] K. Tanabe, Catalytic application of niobium compounds, Catal. Today 78 (2003) 65–77.
 [18] G. Catalytic application of niobium compounds, Catal. Today 78 (2003) 65–77.
- [18] S. Okazaki, H. Kuroha, T. Okuyama, Effect of Nb₂O₅ addition on the catalytic activity of FeO_x for reduction of NO_x with NH₃ and O₂, Chem. Lett. 14 (1985) 45–48.
- [19] K.A. Vikulov, A. Andreini, E.K. Poels, A. Bliek, Selective catalytic reduction of NO with NH₃ over Nb₂O₅-promoted V₂O₅/TiO₂ catalysts, Catal. Lett. 25 (1994) 49–54.
- [20] Z.H. Lian, F.D. Liu, H. He, X.Y. Shi, J.S. Mo, Z.B. Wu, Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃ at low

temperatures, Chem. Eng. J. 250 (2014) 390-398.

- [21] S.P. Ding, F.D. Liu, X.Y. Shi, H. He, Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO_x with NH₃ over CeZrO_x catalyst, Appl. Catal. B Environ. 180 (2016) 766–774.
- [22] S. Ananta, P. Brydson, N.W. Thomas, Synthesis, formation and characterisation of FeNbO₄ powders, J. Eur. Ceram. Soc. 19 (1999) 489–496.
- [23] T. Baba, T. Takizawa, K. Harada, H. Yamada, T. Ishihara, A. Takami, Effect of Pr doping on catalytic properties of oxide ion conductor, Zr-Nd-O, for soot oxidation, Catal. Today 251 (2015) 2–6.
- [24] F.H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures. I. matrix-flushing method for quantitative multicomponent analysis, J. Appl. Crystallogr. 7 (1974) 519–525.
- [25] K. Sirichaiprasert, A. Luengnaruemitchai, S. Pongstabodee, Selective oxidation of CO to CO₂ over Cu-Ce-Fe-O composite-oxide catalyst in hydrogen feed stream, Int. J. Hydrogen Energy 32 (2007) 915–926.
- [26] S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, W. Weisweiler, Effect of oxygen concentration on the NO_x reduction with ammonia over V₂O₅-WO₃/TiO₂ catalyst, Catal. Today 113 (2006) 208–214.