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The decomposition of 3-oxyphenyl-3-methoxy-4-(2’-spiroadamantane)-1,2-dioxetane (A) and 5-tert-
butyl-4,4-dimethyl-1-(3-oxyphenyl)bicyclo[3.2.0]heptane (B) in NaOH/H,O gives light in poor yield,
which is several orders of magnitude lower than that in aprotic solvents. To understand the poor chemi-
luminescence efficiency in NaOH/H,0, we investigated the behaviors of the authentic emitters, methyl 3-
oxidobenzoate (C) and 2,2,4,4-tetramethyl-3-oxopentyl 3-oxidobenzoate (D). We found that D was
weakly fluorescent though hydrolyzed in NaOH/H,0, and estimated that the singlet-chemiexcitation effi-
ciency @s was 6.1 x 1073 for the decomposition of B in NaOH/H,0. On the other hand, @s for A could not
be estimated, since C was hydrolyzed too rapidly to observe its fluorescence.

© 2014 Elsevier Ltd. All rights reserved.

The intramolecular charge-transfer-induced decomposition
(CTID) of oxidophenyl-substituted dioxetanes has received
considerable attention due to interest in the mechanisms of
bioluminescence and chemiluminescence and because of possible
applications in modern biological and clinical analyses using
chemiluminescence."™ Typical examples are adamantylidene-
substituted dioxetanes 1 and bicyclic dioxetanes 2, which undergo
chemiluminescent CTID through unstable oxidophenyl-substituted
dioxetane 3 or 4 produced by deprotonation or deprotection
(Scheme 1).>>° Although dioxetanes 1 and 2 both effectively emit
light in an aprotic polar medium, they give light in quite poor yield
in an aqueous medium: the chemiluminescence efficiency @ in
H,0 versus CH5CN was ca. 1/16,000 for 1, and ca. 1/10,000 for 2.

This significant defect has been considerably improved through
the addition of a fluorescer and/or a surfactant for practical use in
an aqueous system.”® However, it is still unclear whether the
markedly low & is mainly due to poor singlet-chemiexcitation
efficiency ®s and/or to poor fluorescence efficiency @ of the
emitter produced for CTID of 1 or 2 in H,0. Since @ is given as
®s x d" for dioxetane-based chemiluminescence, it is important
for the estimation of @s to characterize the emitter and to under-
stand its fluorescence properties. Thus, we can first reliably
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estimate @s as well as @7, when the fluorescence spectrum of
the authentic emitter coincides with the chemiluminescence
spectrum.

For the CTID of 3 and 4, the emitters produced are methyl 3-
oxidobenzoate 5 and its 2,2,4,4-tetramethyl-3-oxopentyl analog
6, respectively. However, both the fluorescence spectrum of the
authentic emitter 5 and the chemiluminescence spectrum of 3
have been reported to be considerably different from each other
in NaOH/H,0, while they are similar in an aprotic polar solvent
such as DMSO or acetonitrile.® A similar discrepancy has also been
reported between CTID emission from 4 and fluorescence of 6.'° It
has very recently been reported that 5 undergoes rapid hydrolysis
to give a dianion 15 (vide infra) of 3-hydroxybenzoic acid 9, which
shows a strong fluorescence with A1 =412 nm in a basic aqueous
solution.!! This work prompted us to report our findings that may
lead to a better understanding of the markedly low & for CTID of
3 and 4 in an aqueous system.

Bicyclic dioxetane 10 bearing a 4-hydroxy-2-methylbenzoxazol-
6-yl group has been reported to show & that is considerably high-
er than that for 2 in a NaOH/H,0 system.'? As in the case of 1 and 2,
the fluorescence spectrum of the spent reaction mixture does not
coincide with the chemiluminescence spectrum of 10 in NaOH/
H,0 (Scheme 2). The authentic emitter 11 prepared by dissolving
2,2,4,4-tetramethyl-3-oxopentyl  4-hydroxy-2-methylbenzoxaz-
ole-6-carboxylate (12) in NaOH/H,O showed fluorescence
(i1 =413 nm), the spectrum of which resembled that of the spent
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Scheme 1. Base-induced chemiluminescent decomposition of 3-oxyphenyl-substituted 1,2-dioxetanes.
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Scheme 2. Base-induced chemiluminescent decomposition of bicyclic dioxetane 10 bearing a 4-hydroxy-2-methylbenzoxazol-6-yl group.

reaction mixture when it was irradiated with light of Zex =313 nm.
Furthermore, fluorescence with /1 =413 nm increased gradually
as time passed. On the other hand, when the solution of 11 was irra-
diated with light of 1ex = 370 nm, it showed weak fluorescence with

A =469 nm, the spectrum of which coincided with that of chemi-
luminescence from 10 (Fig. 1).

Thus, we first attempted to carefully investigate the time-
course of absorption and the fluorescence spectra for freshly
prepared 11 in NaOH/H,0 at 25°C."® Figure 2 shows that the
absorption at 4*"=337 nm decreased while the absorption at
72P =320 nm increased over time. On the other hand, Figure 3
shows fluorescence spectra (lex =370 nm) in which a peak at

A =469 nm decreased while a peak at /% =413 nm increased
over time. Irradiation of the same sample with light of /.x =313 nm
gave only fluorescence with A1 at 413 nm that increased over
time, as shown in Figure 4.

These results strongly suggested that 11 with an absorption
maximum 2%, at 337 nm and a fluorescence maximum A7 at
469 nm changed gradually into a species X with 22 at 320 nm
and 21 at 413 nm in NaOH/H,0: species X was presumed to be
a dianion 14 of 4-hydroxy-2-methylbenzoxazole-6-carboxylic acid
13 based on the findings in a previous report (Scheme 2).!! Thus,
we subjected keto ester 12 to hydrolysis with NaOH in aqueous
EtOH to effectively give authentic 13: for the hydrolysis of 12 in
NaOH/H,0 as a control experiment, the isolation of pure 12 was
quite hazardous. As expected, the authentic 13 showed strong fluo-
rescence with A at 413 nm when it was dissolved in NaOH/H,0.
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Figure 1. (A) Chemiluminescence spectrum of 10, (B) fluorescence spectrum of
authentic keto ester 11 (Jex=370nm), and (C) fluorescence spectrum of 11
(Zex =313 nm) in NaOH/H,0.

The above results prompted us to reinvestigate the absorption
and fluorescence spectra of 6, as the authentic emitter for CTID
of 2, prepared from ester 8 in NaOH/H,0. When a freshly prepared
solution of 6 was irradiated with light of /.y = 370 nm, it showed
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Figure 2. Time-course of absorption spectra for keto ester 11 in NaOH/H,0.
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Figure 3. Time-course of fluorescence spectra for keto ester 11 (Zex =370 nm) in
NaOH/H,0.
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Figure 4. Time-course of fluorescence spectra for keto ester 11 (Jex =313 nm) in
NaOH/H,O0.

weak fluorescence with A7 =466 nm, which rapidly disappeared.
On the other hand, when the solution of 6 was irradiated with light
of Jex =313 nm, it showed strong fluorescence with A% =413 nm,
the peak of which increased with time (Fig. 5). In the absorption
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Figure 5. Time-course of fluorescence spectra for ketoester 6 (/ex =313 nm) in
NaOH/H,O0.
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Figure 6. Time-course of absorption spectra for ketoester 6 in NaOH/H-O0.
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Scheme 3. Rapid hydrolysis of an emitter, 3-oxidobenzoate, in NaOH/H,0.

spectra of the solution of 6, a peak initially observed at
)V;E’jx =329 nm decreased and finally disappeared, while a peak at

Azﬁ’jx =313 nm appeared and increased with time (Fig. 6). These re-
sults showed that the time-courses of absorption and fluorescence
spectra for the solution of 6 resembled those for 11 in a NaOH/H,0
system. Thus, we can see that the authentic emitter 6 showed very
weak fluorescence with A1 =466 nm, which coincided with i<
of 2, though 6 rapidly underwent hydrolysis to give dianion 15 of
m-hydroxybenzoic acid (Scheme 3).

As has very recently been reported,'' a solution of authentic
emitter 5 prepared from methyl m-hydroxybenzoate 7 in NaOH/
H,0 showed time-dependent changes in fluorescence and absorp-
tion which resembled the case of 6, as illustrated in Figures 7 and 8.
However, fluorescence with A" =465-470 nm, which corre-

sponded to the A of 2, was not observed. These results showed
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Figure 7. Time-course of fluorescence spectra for methyl ester 5 (/ex =313 nm) in
NaOH/H,O0.
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Figure 8. Time-course of absorption spectra for methyl ester 5 in NaOH/H,0.

that ester 5 was hydrolyzed far more rapidly than 6 so that fluores-
cence of 5 could hardly be observed.

Next, we attempted to estimate the rates of hydrolysis for 5, 6
and 11, by monitoring the time-course of fluorescence intensity
at /! =413 nm due to dianion 15 or 14. The hydrolysis proceeded
according to pseudo-first order kinetics in the present investiga-
tion where a large excess of NaOH (0.1 M vs 2 x 10~* M of a sub-
strate) in H,O was used. Thus, we found that methyl ester 5 was
hydrolyzed 30—40 times faster than 6 and 11: the rate constants
estimated k/s~! were 1.1 x 10~ for 5, 3.1 x 10~* for 6, and
4.3 x 10~ for 11.

Finally, we estimated the values of @ for mono-anions of 3-
oxidobenzoates to be 1.8 x 10~3 for 6 and 3.9 x 103 for 11 in
NaOH/H,0 after analyses of the absorption and fluorescence spec-
tra of freshly prepared authentic emitters. On the other hand, @
for dianion of 3-hydroxybenzoic acid 15 was estimated to be

0.33, which was two orders of magnitude higher than those for an-
jons of esters 6 and 11. Furthermore, based on @ for 6 and for 11
shown above, we estimated the singlet chemiexcitation efficiency
®s=6.1 x 1073 for CTID of 2a (4) and 1.9 x 10~2 for 10 in NaOH/
H,0. Thus, we can understand that the markedly low @ is attrib-
uted to poor & of the emitter 6 as well as poor singlet-chemiexci-
tation efficiency ®s for CTID of 4 in an aqueous system.'*'> This
conclusion is presumably applicable to the case of 1, though the
& of 3 could not be estimated.
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