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ABSTRACT

A general strategy for the formation of 1,3-cis-substituted tetrahydroisoquinolines is described from ortho-iodo imines involving Larock
isoquinoline synthesis, addition of organolithium compounds to unactivated isoquinolines, and ionic hydrogenation. In addition, a new synthesis
of lactams via an unprecedented azide cyclization in the presence of a sulfonium ion is described.

Methods for the stereoselective synthesis of tetrahydroiso-the C1 and C3 positions. The intermolecular Pie@&pengler

quinolined have elicited wide interest because of their reaction depicted in Scheme 1 convettimto 45- and4a-

potential application to the synthesis of naturally occurring

potent antitumor antibiotics such as saframycin 1%

lemonomycin2,2 and ecteinascidin 74345 Scheme 1. Pictet-Spengler Approach
Intermolecular

g
NHCOCOMe
1, Saframycin A

NMe,

2, Lemonomycin
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3. Ecteinascidin 743 with wide variations in the ratio of the diastereomers, but
under mild reaction conditiongls- is the major (but not

One of the key stereochemical issues, which is common €xclusive) product> An elegant solution to this problem
to all of these compounds, is the cis relationship between Was reported by Corey in the course of his synthesis of

ecteinascidin 74%which utilized an intramolecular Pictet
T Author for inquiries concerning the X-ray data. Spengler reaction to convestinto 6, Scheme 1.
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We have examined a new strategy that uses the C1DABCO and TMEDA; however, no enantioselectivity was
stereogenic center to induce the required cis relationshipobserved in the formation df2 under a variety of condi-
between C1 and C3, Scheme 2. The strategy starts with ations!® Exposure of12 to trifluoroacetic acid in dichlo-

Scheme 2. C1 Nucleophilic Addition Approach
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3-substituted isoquinoling and adds LiCHX followed by
acylation to give8. lonic hydrogenation (CJE£O,H/Et;SiH)
of 8 should give9. The C1 substituent ir8 and in the
iminium ion 8a should be in an axial conformation to avoid
steric interactions with the -NCQRyroup and theperi-H,
thus favoring hydride addition from the least sterically
encumbered face resulting &°

The synthesis of the 3-substituted isoquinolibk was

readily achieved using the recently reported Larock meth-

odology, Scheme 3Phenylthiomethyllithiun® formed by
reacting thioanisole with-BuLi in the presence of a tertiary
diamine, was added to a solutiontf in toluene at-78°C
followed by warming to 25C, and quenching with methyl
chloroformate gave2 (75%)? Using (—)-sparteine as the

romethane containing triethylsilane atl0 °C and then
warming to 25°C resulted in the formation df3 (97%)1*
We could not detect any other sterecisomérsNMR). The
C1-C3cis relative stereochemistry b8 was demonstrated
by treatment ofL.3 with N-chlorosuccinimide/PhClI followed
by stannic tetrachloride (catalytic) resulting & (76%,

Scheme 4. Synthesis of Imine5?
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a Reaction Conditions: (a) (i) MCPBA; (ii) NaOH, MeOH (94%
overall). (b) (HCHO), ELAICI, CH,Cl,. (c) BnBr, K,COs, acetone
(89% over two steps). (d) AgGCHR;, |,, CHCL (82%, 23). (e)
PCC, CHCI, (98%). (f) tert-butylamine 4 A molecular sieves,
toluene.

structure by X-ray). Treatment df3 with BCl; in dichlo-
romethane at-78 °C followed by warming the solution to
0 °C removed the benzyl protecting group, resultingLi

tertiary diamine gave the best results when compared to(95%). Exposure of5to (PhO}P(O)Ns/DEAD/PPh in THF

Scheme 3
1. PdCly(PPhy), (0.02 equiv), 1. PhSCH,Li (1.4 equiv),
| BnO, Cul (0.01 equiv), EtsN, (-)-sparteine (1.4 equiv), N
55°C,6h Y OB THF, 78 1t0 25 °C, 30 min. OBn
t 4+ N
~NBu || 2 Cul©.1 equiv), DM, 2N 2. CICO,Me (3 equiv) “CO,Me
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Scheme 5

1. PhSCH,Li (3 equiv), MeO
oBn (-)-sparteine (3 equiv), tol., Me N OBn
—78 to 25 °C, 15 min. N R
2. CICO,Me (5 equiv) MeO “COzMe
OB spn
27 (83%)
TFA (25 equiv), TFA (10 equiv),
Et3SiH (10 equiv),| Et3SiH (10 equiv),
BnOH (15 equiv), | -15t00°C,8h

-15t00°C, 16 h

1. BCl3 (2.0 equiv), CH,Cly,

MeO

BnO. Cul (1.2 equiv), Et3N, Me

25°C,24 hthen80°C, 3 h o

25 + _N
| | MeO
OBn
26 (91%)
MeQ MeO
Me " Co,Me 1- NCS (1.0 equiv) © H

PhCI, 0 to 25 °C, 2 h Me

2.SnCl4 (1.0 equiv),
0°C, 5 min.

MeO
OBn
30 (75%)

OBn F|
32 (51%)

N-Co,Me 2. DIAD, (PhORP(O)Ns,
THF, PPh;, 010 25°C, 2 h

SPh

Me

N3 -78t0-10°C, 16 h

28 (71%)

Meo®

SPh
28b (61%)

at 0—25°C gavel6 (82%). Whenl6 was treated with NCS

in PhCI followed by SnCl (stoichiometric) at 0°C, the

thiophenyl imino ethel 7 was rapidly formed (5 mini? Mild

acid hydrolysis readily convertedl7 into the lactam18,

whose structure was confirmed by X-ray crystallography.
To explore the application of this new strategy to a more

highly substituted isoquinoline pertinent to the synthesis of

1 and/or2 required the synthesis &5, Scheme 4. Com-

mercially availablel9 was converted int®5 via 20—24

using standard procedur®s.
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It was found that treatment @5 with 2% PdC}(PPh),,
1% Cul, benzylpropargyl ether, and TEA/S& followed
by 10% Cul and DMF/100C (Larock isoquinoline synthe-
sis) gavez26 in 38% vyield, Scheme 5, whereas treatment of
25 with stoichiometric Cul and EN/benzylpropargyl ether
at 25°C followed by warming to 80C gave26 in 91%
yield. Addition of phenylthiomethyllithium in the presence
of (—)-sparteine followed by methyl chloroformate ga&e
(83%), but again no enantioselectivity was observed for the
addition. Reduction of the enecarbamate double bori¥in
using E§SIH/TFA in dichloromethane was complicated by
the competitive formation oR8b (61%) as well as the
required produc?8(31%). The formation o28b presumably
results from the extended oxonium i@8a (a pathway not
available in the unsubstituted version, Scheme 3). Conducting
the above reduction, but now in the presence of benzyl
alcohol (15 equiv), increased the yield 28 to 71%, while
28b was formed in 22% yield. The primary alcohol benzyl
ether protecting group 28 was selectively removed by
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treatment with BGJ in dichloromethane at-78 °C to —20 Acknowledgment. We thank the National Institutes of
°C, and the resulting alcoh@P was converted into the azide Health (GM32718) and Merck Research Laboratories for
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metric) gave31, which was directly hydrolyzed to the lactam
32 (51% from 30).

In summary, a new strategy for the synthesis of 1,3-cis- o
substituted tetrahydroisoquinolines has been developed thaf€dures and characterization data for compoutis1s,
relies on the stereoselctive reduction of 1,2-dihydroisoquino- 2224 26—30, and32and X-ray data (CIF) for compounds
lines under ionic hydrogenation conditions. The [3.3.1] ring 14 and18. This material is available free of charge via the
system present i and3 was made by an unprecedented Internet at http://pubs.acs.org.
intramolecular trapping of a sulfonium ion with an alkyl
azide. 0OL034683+
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