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Abstract: Oxidation of diastereomericalty pure diphenylphosphinoyl furans [e.g. 4-benzyloxy-2-diphenylphosphinoyl 
1-(2'-furyl) octan-l-ol] with m-CPBA, followed by reduction with sodium borohydride, gives triols with four 
stereochemically controlled stereogenic centres. (E)-Selective Homer-Wittig elimination removes the middle two 
stereogenic centres to yield diols with 1,5-related stereogenic centres across a trans double bond. © 1998 Elsevier Science 
Ltd. All rights reserved. 

We have used the diphenylphosphinoyl group as a powerful stereodirecting group 1 in the synthesis of 

racemic allylic alcohols 2 and allylic sulfides 3 with 1,4-related stereogenic centres across double bonds of 

fixed configuration. The aim of our synthetic programme is to synthesize all possible stereoisomers of 

alkenes such as 3 by removing two stereogenic centres from a row of at least four, as in 2, by stereospecific 

Horner-Wittig elimination. For example, we used both Sharpless kinetic resolution 4 and diastereoselective 

epoxidation 5 with m-CPBA to complete the formal synthesis of eight isomers of epoxy alcohol 2 and hence 

all eight stereoisomers of alkenyl oxazolidinone 3. 6 
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We now describe the formal synthesis of all eight stereoisomers of [3-hydroxy phosphine oxide 4 and 

show how these compounds can be used to synthesize any isomer of allylic alcohols 6 with 1,5-related 

stereogenic centres across a trans double bond. As part of our general strategy, the furan ring of I~-hydroxy 

phosphine oxides 4 can be transformed into a useful prochiral unit and reduced to give compounds 5 with 

four controlled stereogenic centres. Horner-Wittig elimination then extrudes diphenylphosphinic acid from 5 

to give E-alkenes 6 with 1,5-related stereogenic centres. 
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Lithiation of phosphine oxide 7 7 in THF, and reaction with furfural, gave only the 2,3anti [3-hydroxy 

phosphine oxides 4a and 4b (82:18, 61%) which were separable by HPLC. In toluene, the sense of the 1,3 

stereocontrol was reversed (4a:4b 43:57, 56%), though the addition reaction was less 2,3anti selective than in 

THF.9 The 1,3 stereoselectivity could also be reversed by reacting lithiated 7 with esters: 8 acylation with 
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ethyl 2-furoate and reduction with sodium borohydride, l0 provided the 2,3syn 13-hydroxy phosphine oxides 4d 

and 4e (71:29) in 56% yield over the two steps. Beak has also shown that the sense of the stereoselectivity of 

SE2 reactions of configurationally unstable organolithiums 11 can depend on the electrophile used.12 We 

synthesised the remaining diastereoisomer 4e by oxidation and reduction of 4a. 
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Oxidative rearrangement 13-15 of 13-hydroxy phosphine oxide 4a gave the enone 8 (as a 77:23 mixture 

of anomers) which was reduced 16 with sodium borohydride to give the triol 5a as a single diastereoisomer. 

We suggest that this reaction is 1,2 syn selective, 17 proceeding under Felkin-Anh control 19 via the transition 

state shown in the Figure. Horner-Wittig elimination of 5a (an anti [3-hydroxy phosphine oxide 20) was not 

stereospecific and provided the E-alkenyl diol 1,Santi_ 6 in a poor 23% yield. 
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10 s There are many examples of Horner-Wittig eliminations in which the usual syn stereospecificity ha 

been lost, 21 and most of these can be explained by particularly favourable reverse Horner-Wittig addition 
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followed by recombination. In our case, however, we suggest that the loss of stereospecificity stems from the 

precedented 22 elimination of [~,7-dihydroxyphosphine oxides (such as 5a) to vinyl phosphine oxides (e.g. 10). 

Readdition of hydroxide to 10, and Homer-Wittig elimination, would then give the E-alkenyl diol 1,Santi-6 

(see Scheme). Despite the loss of stereospecificity in the elimination step, the use of single diastereoisomers 

throughout the sequence is of fundamental importance: the [3-hydroxy phosphine oxide unit contains two 

"relay" stereogenic centres which control the flow of stereochemical information along the molecule. 
Ca 
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Diols 1,Ssyn- and 1,5anti_ 6 were synthesized from the syn ~-hydroxy phosphine oxides 20 4c and 4d. 

Oxidation of the furan rings of 4c-d, and reduction with sodium borohydride, gave triols 5e-d as single 

diastereoisomers. 23 Horner-Wittig elimination of these triols gave (E)-alkenyl diols 6 in poor to moderate 

yield. 24 The relative stereochemistry and diastereomeric purity 25 of the diols 6 were established by careful 

comparison of their 500 MHz 1H NMR spectra and by using Mosher's method for determining the absolute 

stereochemistry of secondary alcohols. 26,27 We also synthesized the diols 1,5anti_ and l,Ssyn-13 (as 74:26 

and 70:30 mixtures) from mixtures of the cyclohexyl-substituted phosphine oxides 12. 

HO HO OBn HO HO OBn 

12 1"Ssyn-13 1'5anti-13 

Our work neatly complements the Lewis acid mediated reactions between chiral allylic stannanes and 

aldehydes which inevitably lead to products with remote stereogenic centres separated by a cis double 

bond. 28 The remote stereochemical relationships in our molecules are built up more slowly, but the 

syntheses of our starting materials are easier than those of optically active allylic stannanes. 28 Furthermore, 

our route allows the synthesis of both 1 ~Ssy n and 15anti isomers 6 and 13 and both enantiomeric series can be 

prepared by careful choice of the ligand used to introduce asymmetry into the reaction sequence, 
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