DOI: 10.1002/ejoc.200900913

Highly Selective Synthesis of [(Z)-3-Chloro-2-(phenylselanyl)-1alkenyl]phosphonates and 2-Ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2oxaphosphole 2-Oxides by Electrophilic Reaction of 1,2-Alkadienylphosphonates with PhSeCl

Guangke He,^[a] Yihua Yu,^[b] Chunling Fu,*^[a] and Shengming Ma*^[a]

Keywords: Allenes / Phosphorus / Selenium / Electrophilic addition / Cyclization

The reactions of monosubstituted 1,2-alkadienylphosphonates with PhSeCl in THF or dioxane/ H_2O (10:1) at 70 °C afforded the selenochlorination products [(*Z*)-3-chloro-2-(phenylselanyl)-1-alkenyl]phosphonates with very high chemo- and stereoselectivity, whereas the same reaction with di- and trisubstituted allenylphosphonates afforded 2ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2-oxaphosphole 2-

Introduction

Recently, we observed that in the halo- and selenohydroxylation reactions of allenylphosphane oxides, [1-3] the electrophilic moiety was added to the central carbon atom of the allene moiety with the hydroxy group always attached to the 3-position with respect to the phosphorus atom; the excellent regio- and (E) stereoselectivity of the reactions has been rationalized in terms of the neighbouring-group participation ability of phosphane oxide.^[1,2] However, when 1.2-alkadienvlphosphonates were used, the chemistry was different: Angelov and co-workers reported that the reactions of allenylphosphonates with RSeCl led to (E)/(Z) mixtures of [2-(alkyl- or phenylseleno)-3-chloro-1-alkenyl]phosphonates.^[4] Macomber et al. reported that dimethyl (propa-1,2-dienyl)phosphonate reacted with 1.0 equiv. PhSeCl in anhydrous chloroform to afford dimethyl [(E)-3chloro-2-(phenylselanyl)-1-propenyl]phosphonate.^[5] In this paper, we wish to report the unexpected reactions of 1- and 3-monosubstituted allenylphosphonates^[6-9] with PhSeCl, which afforded [(Z)-3-chloro-2-(phenylselanyl)-1-alkenyl]phosphonates with (Z) stereoselectivity and the chloro substituent at the 3-position of the starting phosphonates in-

- [b] Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, P. R. China
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.200900913.

oxides exclusively. It was interesting to note that the stereoselctivity for the selenochlorination reaction is opposite to that of the iodo- and selenohydroxylation reactions of (allenyl)diphenylphosphane oxides with Cl^- acting as the nucleophile. The stereoselectivity of the cyclization reaction is clearly different from that of the selenochlorination reaction.

stead of the usual hydroxy group, which opens up new opportunities for the introduction of other nucleophiles with different stereoselectivity in this type of transformation (Scheme 1).^[10]

Scheme 1.

Results and Discussion

The reaction of diethyl hepta-1,2-dienylphosphonate (1a) with 2.0 equiv. of PhSeCl was conducted in CH₃CN/H₂O (40:1) at room temperature and afforded diethyl [(*Z*)-3-chloro-2-(phenylselanyl)-1-heptenyl]phosphonate [(*Z*)-2a] in 33% isolated yield, unexpectedly together with the electrophilic cyclization reaction product, that is, 5-(*n*-butyl)-2-ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2-oxaphosphole 2-oxide (3a; Entry 1, Table 1).^[4,5,11] The reaction in MeCN/H₂O (3:1) afforded the cyclization product 3a with a much higher selectivity (Entry 2, Table 1). Further studies revealed that in CH₃CN/H₂O (10:1) the products were formed with an interesting (*Z*)-2a/3a selectivity. The reac-

 [[]a] Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China Fax: +86-216-260-9305
 E-mail: masm@mail.sioc.ac.cn

Table 1. Selenochlorination of diethyl hepta-1,2-dienylphosphonate (1a) with PhSeCl.^[a]

[a] The reaction was carried out by using 0.2 mmol of 1a and 1.5–2.0 equiv. of PhSeCl in 4.0 mL of solvent. [b] The ratio of (Z)-2a/3a was determined by isolation. [c] Another impurity was formed in this reaction, which could not be separated from 3a.

tion in CH₃CN/H₂O (10:1) at 50 °C afforded (*Z*)-**2a** exclusively in an isolated yield of 44% (Entry 5, Table 1), whereas the reaction in aqueous DMF or CH₃OH was poor (Entries 7 and 8, Table 1). However, the reaction in THF/ H₂O (10:1) or dioxane/H₂O (10:1) at 70 °C with 1.5 equiv. of PhSeCl afforded (*Z*)-**2a** exclusively in yields of 69% (Entries 6 and 10, Table 1). After screening for the effect of the amount of PhSeCl on the reaction, we finally chose THF/ H₂O (10:1) or dioxane/H₂O (10:1) as the best media for the selenochlorination reaction (Entries 6 and 10, Table 1).

Although the yield in dioxane was the same as that in THF, due to the lower boiling point of THF, the reactions of the diethyl (3-monosubstituted alka-1,2-dienyl)phosphonates 1a-1g and diethyl propa-1,2-dienylphosphonate (1h) were conducted in THF. The yields of (*Z*)-2 ranged from 52 to 81% (Table 2).

To further confirm the stereochemistry of this selenochlorination reaction, the reaction of diethyl propa-1,2-dienylphosphonate with 4-BrC₆H₄SeCl was conducted. However, the corresponding product (Z)-2i was a liquid [Equation (1), Scheme 2]. Thus, the cyclic phosphonate 1j was prepared and its reaction with 4-BrC₆H₄SeCl afforded (Z)-2j, which is fortunately a solid with a melting point of 125.9-126.4 °C. The configuration of the carbon-carbon double bond in 2j was then determined by its X-ray diffraction study (Figure 1).^[12] Note that Macomber et al. assigned the stereochemistry of dimethyl [3-chloro-(2-phenylselanyl)-1-propenyl]phosphonate formed from the reaction of dimethyl propa-1,2-dienylphosphonate and 1.0 equiv. of PhSeCl in anhydrous chloroform to an (E)configuration based on the allylic ¹H-¹H coupling and its similarity with certain sulfur analogues.^[5] However, when we conducted the reaction of dimethyl propa-1,2-dienylphosphonate with PhSeCl under both our conditions and those of Macomber et al., the same product (Z)-2k was isolated. Thus, we reasoned that (Z)-2k was misassigned as (*E*)- $2\mathbf{k}$ in the literature (Scheme 2).^[5]

Table 2. Selenochlorination of diethyl (3-monosubstituted 1,2-alka-dienyl) phosphonates with $PhSeCl.^{[a]}$

EtO EtC	0 -P -R -R +	PhSeCI THF/H 70 ° 1.5 equiv.	$\begin{array}{c} O \\ H_2O (10:1) \\ C, time \end{array} \xrightarrow{EtO-P} \begin{array}{c} SePh \\ EtO \\ Cl \\ Z-2 \end{array}$
Entry	R	Time [h]	Isolated yield of (Z)-2 [%]
1	$n-C_{4}H_{9}$ (1a)	2.5	69 (2a)
2 ^[b]	$n-C_{4}H_{9}(1a)$	4.0	69 (2a)
3	Me (1b)	1.0	52 (2b)
4 ^[b]	Me (1b)	5.0	53 (2b)
5	<i>n</i> Pr (1c)	1.5	64 (2c)
6	$n-C_5H_{11}$ (1d)	1.0	66 (2d)
7	$n-C_{6}H_{13}$ (1e)	1.0	68 (2e)
8	<i>i</i> Pr (1f)	1.5	74 (2f)
9	Bn (1g)	3.3	78 (2 g)
10	$H(1\mathbf{h})$	3.0	81 (2h)

[a] The reactions were carried out by using 0.3 mmol of 1 and 0.45 mmol of PhSeCl in 6.0 mL of THF and 0.6 mL of H₂O. [b] Dioxane/H₂O (10:1) was used as the solvent.

The reaction may be easily extended to a scale of 4.8 or 5.5 mmol of the substrates **1a** and **1j** (Scheme 3).

For the diethyl (1-monosubstituted alka-1,2-dienyl)phosphonates, dioxane/H₂O is clearly superior to THF/H₂O (compare Entries 1 and 2 in Table 3). All the selenochlorination reactions proceeded smoothly to afford the products (*Z*)-**2m**–(*Z*)-**2o** in moderate yields. The configuration of the C=C bond in these products was determined by the NOE study of (*Z*)-**2m** (Figure 2). Note that the electrophilic cyclization products 2-ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2-oxaphosphole 2-oxides **3m–3o** were also formed in 6–12% yields. However, the selenochlorination reaction became complicated when diethyl (1-phenyl- and 3-phenylpropa-

Conditions A: 2.0 equiv. 4-BrC₆H₄SeCl, THF/H₂O (10:1), 70 °C, 2.0 h, 72% Conditions B: 1.0 equiv. 4-BrC₆H₄SeCl, anhydrous CHCl₃, N₂, 46 °C, 26 h, 54%, recovery: 13% MeO - P MeO - PMeO

1k Conditions A: 1.5 equiv. PhSeCI, THF/H₂O (10:1), 70 °C, 4 h, 80% Conditions B: 1.0 equiv. PhSeCI, anhydrous CHCl₃, N₂, 46 °C, 7 h,^[5] 46%; 19 h, 71%

Scheme 2.

CEtO-P EtO $n-C_3H_7$ H H H H NOE Z-2m

Figure 1. ORTEP representation of (Z)-2j.

Scheme 3.

1,2-dienyl)phosphonate were subjected to the optimum conditions with 1.5 equiv. of PhSeCl in THF/H₂O (10:1) at 70 °C.

Figure 2. NOE study of (Z)-2m.

It is interesting to observe that the stereoselectivity is different from that of the iodo- and selenohydroxylation reactions of (1,2-alkadienyl)diphenylphosphane oxides.^[1,2] In our previous studies of the halohydroxylation reaction we also observed (*Z*) stereoselectivity, which was rationalized in terms of a steric effect^[13] or a soft Lewis acid/base interaction.^[14] It is proposed that the reaction proceeds through an equilibrium between the three-membered selenonium intermediates (*E*)-4 and (*Z*)-5. Owing to the steric repulsion between the relatively bulky Cl⁻ and the PO(OEt)₂ group and the carbon atom with R² and R³ in (*E*)-4, intermediate **5** is more favored in the nucleophilic attack of Cl⁻ than intermediate (*E*)-4. Thus, the (*Z*) selenochorination products (*Z*)-2 were formed with high stereoselectivity (Scheme 4).^[15]

Table 3. Selenochlorination of diethyl (1-substituted 1,2-alkadienyl)phosphonates with PhSeCI.^[a]

	EtO_{-R}^{O} EtO_{-R}^{O} $+ PhSeCI \xrightarrow{dioxane/H_2O (10:1)}_{70 °C, time} EtO_{-R}^{O} \xrightarrow{SePh}_{EtO_{-R}^{O}} + O_{-R}^{O}$							
		1	Z -2	3				
Entry	R	Time [h]	Isolated yield of (Z)-2 [%]	Isolated yield of 3 [%]				
1	$n-C_{4}H_{9}$ (1m)	3.0	74 (2m)	12 (3m)				
2 ^[b]	$n-C_{4}H_{9}$ (1m)	2.0	57 (2m)	7 (3 m)				
3	Me (1n)	3.0	63 (2n)	6 (3n)				
4	$n-C_7H_{15}$ (10)	3.0	69 (20)	9 (30)				

[a] The reaction was carried out by using 0.3 mmol of 1 and 0.45 mmol of PhSeCl in 6.0 mL of dioxane and 0.6 mL of H₂O. [b] THF/ H_2O (10:1) was used as the solvent.

Scheme 4.

The reactions of (1,3-di-, 3,3-di-, and fully substituted allenyl)phosphonates under the standard conditions all afforded the cyclic 2-ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2-oxaphosphole 2-oxides**3p**–**3r**as the only products (Entries 1–3, Table 4), as reported previously.^[4,5,11] Interestingly, these cyclic products must be formed by*O*-attack of intermediate (*E*)-**4**, which indicates the coexistence of both intermediates (*E*)-**4**and (*Z*)-**5**in this transformation (Scheme 4).

Table 4. Reaction of multisubstituted diethyl allenylphosphonates with $\mathsf{PhSeCl}^{[a]}$

EtO- EtC	$ \begin{array}{c} 0 \\ F \\ 0 \end{array} $ $ \begin{array}{c} R^{1} \\ R^{1} \end{array} $	₹ ² + ₹ ³	T PhSeCI — 1.5 equiv.	HF/H ₂ O (10: r.t., time	$\xrightarrow{1)} \xrightarrow{R^1} \xrightarrow{SePh}_{R^2} \xrightarrow{R^2}_{EtO O} \xrightarrow{R^3}_{R^3}$
Entry	R ¹	\mathbb{R}^2	R ³	Time [h]	Isolated yield of 3 [%]
1 2 ^[b] 3	H <i>n</i> -C ₄ H ₉ <i>n</i> -C ₄ H ₉	Me H Me	Me (1p) Et (1q) Me (1r)	3.0 0.3 4.0	55 (3p) 92 (3q) 87 (3r)

[a] The reaction was carried out by using 0.3 mmol of 1, 0.45 mmol of PhSeCl, 6.0 mL of THF, and 0.6 mL of H₂O. [b] The reaction was conducted at 70 °C.

Conclusions

We have developed a convenient and practical method for the synthesis of [(Z)-3-chloro-2-(phenylselanyl)-1-alkenyl]phosphonates with high regio- and (Z) stereoselectivity from (1- and 3-monosubstituted 1,2-allenyl)phosphonates. 2-Ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2-oxaphosphole 2-oxides were formed from (1,3-di-, 3,3-di-, and fully substituted allenyl)phosphonates. As a result of the presence of a carbon–carbon double bond, carbon–selenium bond, and a carbon–phosphorus bond, these compounds will be useful in organic synthesis.^[16–19] The unique stereoselectivity observed also provides new information on the control of selectivity in this type of transformation. Further studies in this area are being conducted in our laboratory.

Experimental Section

Starting Materials: Compounds 1a-d, 1f, 1h-p, 1r and new compounds 1e, 1g, and 1q were prepared according to the reported procedure.^[20]

Diethyl Nona-1,2-dienylphosphonate (1e). Typical Procedure I: An oven-dried three-necked round-bottomed flask was charged with non-1-yn-3-ol (2.0943 g, 15 mmol), triethylamine (2.80 mL, d =0.7275 g/mL, 2.04 g, 20 mmol), and THF (60 mL). After cooling the mixture to -78 °C in a dry ice/acetone bath, a solution of diethyl chlorophosphite (3.5282 g, 22.5 mmol) in THF (15 mL) was added dropwise at -78 °C with stirring over 15 min. Then the resulting mixture was warmed up naturally to room temperature and heated at reflux. After complete conversion of the propargylic alcohol, as monitored by TLC (petroleum/ethyl acetate, 2:1), the mixture was quenched with water (20 mL). The organic layer was separated, and the aqueous layer was extracted with Et₂O $(3 \times 30 \text{ mL})$. The combined organic extracts were washed with brine (20 mL) and dried with anhydrous Na₂SO₄. After filtration and evaporation of the solvent, chromatography of the crude product on silica gel (petroleum ether/ethyl acetate, 2:1) afforded 1e (2.8568 g, 73%) as a liquid. ¹H NMR (400 MHz, CDCl₃): δ = 5.43– 5.32 (m, 1 H), 5.27-5.20 (m, 1 H), 4.11-3.99 (m, 4 H), 2.09-1.96 (m, 2 H), 1.44–1.33 (m, 2 H), 1.33–1.15 (m, 12 H), 0.82 (t, J =6.8 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 211.8, 92.3 (d, J_{PC} = 16.3 Hz), 79.8 (d, J_{PC} = 198.5 Hz), 62.2 (d, J_{PC} = 6.0 Hz), 31.5, 28.8 (d, J_{PC} = 3.5 Hz), 28.6, 27.3 (d, J_{PC} = 6.6 Hz), 22.5, 16.2 (d, J_{PC} = 6.3 Hz), 14.0 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 17.2 ppm. MS (ESI): m/z (%) = 543 [2 M + Na]⁺ (15.06), 522 [2 M + H]⁺ (26.78), 521 [2 M + H]⁺ (100), 261 [M + 1]⁺ (5.02). IR (neat): $\tilde{v} = 2958, 2929, 2858, 1956, 1459, 1388, 1259, 1164, 1098,$ 1028 cm⁻¹. HRMS: calcd. for $C_{13}H_{26}O_{3}P^{+}$ [M + H]⁺ 261.1614; found 261.1619.

The following compounds were also prepared according to Typical Procedure I.

Diethyl (4-Phenylbuta-1,2-dienyl)phosphonate (1g): The reaction of 1-phenylbut-3-yn-2-ol (1.1690 g, 8.0 mmol), Et₃N (1.65 mL, d = 0.7275 g/mL, 1.20 g, 11.9 mmol), THF (30 mL), and ClP(OEt)₂ (1.9000 g, 12.1 mmol)/THF (5 mL) afforded **1g** (1.0919 g, 46%; purity: 91%) as a liquid. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.37-7.18$ (m, 5 H), 5.69–5.56 (m, 1 H), 5.35–5.28 (m, 1 H), 4.13–3.91 (m, 4 H), 3.51–3.32 (m, 2 H), 1.31 (t, J = 7.1 Hz, 3 H), 1.30 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 212.1$, 138.6 (d, $J_{PC} = 4.7$ Hz), 128.5, 128.4, 126.5, 91.7 (d, $J_{PC} = 15.7$ Hz), 80.4 (d, $J_{PC} = 1.7$ Hz), 62.1 (d, $J_{PC} = 7.0$ Hz), 33.7 (d, $J_{PC} = 6.4$ Hz), 16.2 (d, $J_{PC} = 1.7$ Hz), 16.1 (d, $J_{PC} = 2.0$ Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 16.4$ ppm. MS (EI, 70 eV): *m/z* (%) = 266 [M]⁺ (0.62), 128 (100). IR (neat): $\tilde{v} = 3028$, 2983, 2906, 1956, 1603, 1496, 1454, 1390, 1256, 1221, 1164, 1098 cm⁻¹. HRMS: calcd. for C₁₄H₁₉O₃P [M]⁺ 266.1072; found 266.1080.

Diethyl Nona-3,4-dien-5-ylphosphonate (1q): The reaction of non-4yn-3-ol (1.3951 g, 10.0 mmol), Et₃N (2.0 mL, d = 0.7275 g/mL, 1.46 g, 14.4 mmol), THF (40 mL), and ClP(OEt)₂ (2.3572 g, 15.0 mmol)/THF (10 mL) afforded **1q** (1.7718 g, 68%) as a liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.44-5.31$ (m, 1 H), 4.10–3.91 (m, 4 H), 2.13–1.94 (m, 4 H), 1.46–1.17 (m, 10 H), 1.02–0.91 (m, 3 H), 0.88–0.76 (m, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta =$

207.9 (d, $J_{PC} = 5.0$ Hz), 94.8 (d, $J_{PC} = 16.0$ Hz), 94.4 (d, $J_{PC} = 186.9$ Hz), 61.9, 61.8, 30.1 (d, $J_{PC} = 6.8$ Hz), 28.0 (d, $J_{PC} = 7.5$ Hz), 22.0, 21.0 (d, $J_{PC} = 7.9$ Hz), 16.14 (d, $J_{PC} = 2.1$ Hz), 16.08 (d, $J_{PC} = 2.0$ Hz), 13.7, 13.1 (d, $J_{PC} = 4.1$ Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 20.1$ ppm. MS (EI, 70 eV): m/z (%) = 260 [M]⁺ (1.42), 43 (100). IR (neat): $\tilde{v} = 2963$, 2933, 2873, 1951, 1458, 1391, 1247, 1164, 1098, 1059, 1028 cm⁻¹. HRMS: calcd. for C₁₃H₂₅O₃P [M]⁺ 260.1541; found 260.1545.

Reaction of Diethyl (3-Substituted allenyl)phosphonates with PhSeCl

Diethyl [(Z)-3-Chloro-2-(phenylselanyl)-1-heptenyl]phosphonate [(Z)-2a]. Typical Procedure II: H₂O (0.4 mL) was added to a solution of PhSeCl (57.0 mg, 0.3 mmol) in THF (3.0 mL) at room temperature. Then a solution of 1a (46.4 mg, 0.2 mmol) in THF (1.0 mL) was added, and the resulting mixture was stirred at 70 °C for 2.5 h. The mixture was quenched with H₂O (5 mL) and extracted with diethyl ether $(3 \times 20 \text{ mL})$, washed with brine (5 mL), and dried with anhydrous Na₂SO₄. Filtration, concentration, and flash chromatography on silica gel (petroleum ether/ethyl acetate, 2:1) afforded (Z)-2a (58.8 mg, 69%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.64–7.57 (m, 2 H), 7.43–7.28 (m, 3 H), 6.54 (d, J = 12.9 Hz, 1 H), 4.27–4.08 (m, 5 H), 2.00–1.86 (m, 1 H), 1.75-1.60 (m, 1 H), 1.40-1.22 (m, 1 H), 1.36 (t, J = 7.2 Hz, 6 H),1.20–1.00 (m, 3 H), 0.79 (t, J = 7.0 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 156.5 (d, J_{PC} = 5.6 Hz), 136.0, 129.5, 129.1, 126.7, 117.6 (d, J_{PC} = 195.8 Hz), 63.2 (d, J_{PC} = 20.8 Hz), 62.3 (d, $J_{\rm PC}$ = 5.4 Hz), 61.8 (d, $J_{\rm PC}$ = 5.5 Hz), 38.0 (d, $J_{\rm PC}$ = 1.1 Hz), 28.2, 21.7, 16.4, 16.3, 13.7 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 16.1 ppm. MS (EI, 70 eV): m/z (%) = 429 [M(⁸²Se³⁷Cl) + 1]⁺ (0.23), 428 $[M(^{82}Se^{37}Cl)]^+$ (1.23), 427 $[M(^{82}Se^{35}Cl) + 1]^+$ or $[M(^{80}Se^{37}Cl)$ + 1]⁺ (1.90), 426 $[M(^{82}Se^{35}Cl)]^+$ or $[M(^{80}Se^{37}Cl)]^+$ (9.09), 425 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) + 1]^+$ (4.21), 424 $[M(^{80}Se^{35}-$ Cl)]⁺ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (20.21), 423 $[M(^{77}Se^{37}Cl)]^+$ or $[M(^{78}Se^{35}Cl) + 1]^+$ or $[M(^{76}Se^{37}Cl) + 1]^+$ (3.01), 422 $[M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (9.76), 421 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (3.44), 420 $[M(^{76}Se^{35}Cl)]^+$ or $[M(^{74}Se^{37}Cl)]^+$ (3.36), 418 $[M(^{74}Se^{35}Cl)]^+$ (0.33), 267 (100). IR (neat): $\tilde{v} = 3057, 2959, 2931,$ 2872, 1576, 1476, 1439, 1391, 1368, 1250, 1163, 1097, 1053, 1025 cm⁻¹. HRMS: calcd. for $C_{17}H_{27}^{35}ClO_3P^{80}Se$ [M + H]⁺ 425.0552; found 425.0548.

Reaction in Dioxane/H₂O. Typical Procedure III: H₂O (0.4 mL) was added to a solution of PhSeCl (58.2 mg, 0.3 mmol) in dioxane (3.0 mL) at room temperature. Then a solution of **1a** (45.5 mg, 0.2 mmol) in dioxane (1.0 mL) was subsequently added, and the resulting mixture was stirred at 70 °C for 4 h. The mixture was quenched with H₂O (5 mL) and extracted with diethyl ether (3 × 20 mL), washed with brine (5 mL), and dried with anhydrous Na₂SO₄. Filtration, concentration, and flash chromatography on silica gel (petroleum ether/ethyl acetate, 2:1) afforded (*Z*)-**2a** (57.6 mg, 69%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.64–7.57 (m, 2 H), 7.43–7.28 (m, 3 H), 6.54 (dd, J_1 = 12.9, J_2 = 0.8 Hz, 1 H), 4.27–4.09 (m, 5 H), 2.00–1.85 (m, 1 H), 1.75–1.60 (m, 1 H), 1.40–1.22 (m, 1 H), 1.37 (t, J = 7.2 Hz, 6 H), 1.20–1.00 (m, 3 H), 0.80 (t, J = 7.1 Hz, 3 H) ppm.

Larger Scale Reaction of 1a: H_2O (2.4 mL) was added to a solution of PhSeCl (1.3802 g, 7.2 mmol) in dioxane (36 mL) at room temperature. Then a solution of **1a** (1.1134 g, 4.8 mmol) in dioxane (12 mL) was subsequently added dropwise over 3 min, and the resulting mixture was stirred at 70 °C for 5.5 h. The mixture was quenched with H_2O (10 mL) and extracted with diethyl ether (3 × 30 mL), washed with brine (10 mL), and dried with anhydrous Na₂SO₄. Filtration, concentration, and flash chromatography on silica gel (petroleum ether/ethyl acetate, 3:1 to 2:1) afforded (*Z*)-**2a** (1.4637 g, 72%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.64–7.57 (m, 2 H), 7.43–7.28 (m, 3 H), 6.54 (d, *J* = 12.9 Hz, 1 H), 4.27–4.08 (m, 5 H), 2.00–1.86 (m, 1 H), 1.75–1.60 (m, 1 H), 1.40–1.22 (m, 1 H), 1.36 (t, *J* = 7.2 Hz, 6 H), 1.20–1.00 (m, 3 H), 0.79 (t, *J* = 7.0 Hz, 3 H) ppm.

Diethyl [(Z)-3-Chloro-2-(phenylselanyl)-1-heptenyl]phosphonate [(Z)-2a] and 5-(n-Butyl)-2-ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2**oxaphosphole 2-Oxide (3a):** H_2O (1.6 mL) was added to a solution of PhSeCl (115.4 mg, 0.6 mmol) in MeCN (3.3 mL) at room temperature. Then a solution of 1a (70.6 mg, 0.3 mmol) in MeCN (1.5 mL) was subsequently added, and the resulting mixture was stirred at room temp. for 2 h. The mixture was worked up with H_2O (5 mL) and extracted with diethyl ether (3 × 20 mL), washed with brine (5 mL), and dried with anhydrous Na₂SO₄. Filtration, concentration, and flash chromatography on silica gel (petroleum ether/ethyl acetate, 3:1) afforded (Z)-2a (22.8 mg, 18%) and 3a (53.3 mg, 49%). **3a**: Liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.63–7.55 (m, 2 H), 7.48–7.33 (m, 3 H), [5.42 (dd, $J_1 = 29.5, J_2 =$ 1.6, 0.34 H), 5.40 (dd, $J_1 = 29.5$, $J_2 = 1.6$ Hz, 0.64 H), dr = 35.65], 4.97-4.85 (m, 1 H), 4.14-3.93 (m, 2 H), 1.97-1.81 (m, 1 H), 1.77-1.21 (m, 8 H), 0.90 (t, J = 7.2 Hz, 3 H) ppm. MS (EI, 70 eV): m/z $(\%) = 362 [M(^{82}Se)]^+ (3.7), 360 [M(^{80}Se)]^+ (22.1), 358 [M(^{78}Se)]^+$ or $[M(^{77}Se) + 1]^+$ (12.1), 357 $[M(^{77}Se)]^+$ or $[M(^{76}Se) + 1]^+$ (5.1), $356 [M(^{76}Se)]^+$ (4.8), $361 [M(^{80}Se) + 1]^+$ (4.8), $359 [M(^{78}Se) + 1]^+$ (2.6), 355 $[M(^{74}Se) + 1]^+$ (1.9), 93 (100). IR (neat): $\tilde{v} = 3057, 2957$, 2932, 2871, 1558, 1476, 1439, 1389, 1328, 1262, 1200, 1163, 1041, 1002 cm⁻¹. C₁₅H₂₁O₃PSe (359.26): calcd. C 50.15, H 5.89; found C 50.15, H 5.92.

Diethyl [(Z)-3-Chloro-2-(phenylselanyl)-1-butenyl]phosphonate [(Z)-2b]: According to the typical procedure III, the reaction of 1b (57.8 mg, 0.30 mmol) and PhSeCl (86.1 mg, 0.45 mmol) in H₂O (0.6 mL) and dioxane (6 mL) at 70 °C for 5 h afforded (Z)-2b (62.0 mg, 53%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.61– 7.55 (m, 2 H), 7.41–7.28 (m, 3 H), 6.57 (dd, $J_1 = 12.9$, $J_2 = 0.6$ Hz, 1 H), 4.33 (q, J = 6.7 Hz, 1 H), 4.24–4.09 (m, 4 H), 1.55 (d, J =6.6 Hz, 3 H), 1.35 (t, J = 7.1 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 157.3 (d, J_{PC} = 5.4 Hz), 135.7, 129.6, 129.1, 126.8, 117.8 (d, J_{PC} = 195.0 Hz), 62.4 (d, J_{PC} = 5.7 Hz), 61.9 (d, J_{PC} = 6.4 Hz), 58.3 (d, J_{PC} = 21.4 Hz), 25.6, 16.4, 16.3 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 15.9 ppm. MS (EI, 70 eV): m/z (%) = 384 $[M(^{82}Se^{35}Cl)]^+$ or $[M(^{80}Se^{37}Cl)]^+$ (0.68), 383 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) + 1]^+ (3.57), 382 [M(^{80}Se^{35}Cl)]^+ \text{ or } [M(^{78}Se^{37}Cl)]^+ \text{ or }$ $[M(^{77}Se^{37}Cl) + 1]^+$ (1.87), 381 $[M(^{77}Se^{37}Cl)]^+$ or $[M(^{78}Se^{35}Cl) +$ $1]^+$ or $[M(^{76}Se^{37}Cl) + 1]^+$ (9.84), 380 $[M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (0.74), 379 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (3.95), 378 $[M(^{76}Se^{35}-$ Cl)]⁺ or [M(⁷⁴Se³⁷Cl)]⁺ (0.30), 377 [M(⁷⁴Se³⁵Cl) + 1]⁺ (1.57), 133 (100). IR (neat): $\tilde{v} = 3057, 2982, 2930, 2901, 1576, 1477, 1439,$ 1391, 1368, 1248, 1163, 1097, 1051, 1024 cm⁻¹. HRMS: calcd. for C₁₄H₂₀³⁵ClO₃P⁸⁰Se [M]⁺ 382.0004; found 382.0010.

Diethyl [(Z)-3-Chloro-2-(phenylselanyl)-1-butenyl]phosphonate [(Z)-2b]: According to the typical procedure II, the reaction of **1b** (56.4 mg, 0.30 mmol) and PhSeCl (86.4 mg, 0.45 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 1 h afforded (*Z*)-**2b** (58.6 mg, 52%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.61–7.55 (m, 2 H), 7.41–7.28 (m, 3 H), 6.58 (d, *J* = 12.8 Hz, 1 H), 4.33 (q, *J* = 6.6 Hz, 1 H), 4.24–4.09 (m, 4 H), 1.55 (d, *J* = 6.6 Hz, 3 H), 1.34 (t, *J* = 7.1 Hz, 6 H) ppm.

Diethyl [(*Z***)-3-Chloro-2-(phenylselanyl)-1-hexenyl]phosphonate [(***Z***)-2c]:** According to the typical procedure II, the reaction of **1c** (64.9 mg, 0.30 mmol) and PhSeCl (86.8 mg, 0.45 mmol) in H₂O

(0.6 mL) and THF (6 mL) at 70 °C for 1.5 h afforded (Z)-2c (77.7 mg, 64%) as a liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.58$ (d, J = 7.6 Hz, 2 H), 7.40–7.28 (m, 3 H), 6.52 (d, J = 12.8 Hz, 1 H), 4.24–4.09 (m, 5 H), 1.91–1.81 (m, 1 H), 1.71–1.60 (m, 1 H), 1.40–1.25 (m, 1 H), 1.34 (t, J = 7.4 Hz, 6 H), 1.16–1.04 (m, 1 H), 0.67 (t, J = 7.4 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 156.6 (d, J_{PC} = 5.5 Hz), 136.0, 129.5, 129.1, 126.6, 117.4 (d, J_{PC} = 194.8 Hz), 62.8 (d, J_{PC} = 20.5 Hz), 62.3 (d, J_{PC} = 5.5 Hz), 61.8 (d, $J_{PC} = 5.6$ Hz), 40.1, 19.3, 16.34, 16.28, 12.9 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 17.2 ppm. MS (EI, 70 eV): m/z (%) = 378 $[M(^{82}Se^{35}Cl) + 1 - ^{35}Cl]^+$ or $[M(^{80}Se^{37}Cl) + 1 - ^{35}Cl]^+$ (0.75), 377 $[M(^{82}Se^{35}Cl) - ^{35}Cl]^+$ or $[M(^{80}Se^{37}Cl) - ^{35}Cl]^+$ (3.96), 376 $[M(^{80}Se^{35}Cl) + 1 - ^{35}Cl]^+$ or $[M(^{78}Se^{37}Cl) + 1 - ^{35}Cl]^+$ (4.61), 375 $[M(^{80}Se^{35}Cl) - ^{35}Cl]^+$ or $[M(^{78}Se^{37}Cl) - ^{35}Cl]^+$ or $[M(^{77}Se^{37}Cl) +$ $1 - {}^{35}Cl]^+$ (18.61), 374 [M(${}^{77}Se^{37}Cl$) - ${}^{35}Cl]^+$ or [M(${}^{78}Se^{35}Cl$) + 1 - ${}^{35}Cl]^+$ or $[M({}^{76}Se^{37}Cl) + 1 - {}^{35}Cl]^+$ (2.11), 373 $[M({}^{78}Se^{35}Cl) - {}^{35}Cl]^+$ ${}^{35}\text{Cl}^+$ or $[M({}^{76}\text{Se}{}^{37}\text{Cl}) - {}^{35}\text{Cl}^+$ or $[M({}^{77}\text{Se}{}^{35}\text{Cl}) + 1 - {}^{35}\text{Cl}^+$ (11.32), $372 [M(^{77}Se^{35}Cl) - ^{35}Cl]^+$ or $[M(^{76}Se^{35}Cl) + 1 - ^{35}Cl]^+$ or $[M(^{74}Se^{37}Cl) + 1 - ^{35}Cl]^+$ (4.23), 371 $[M(^{76}Se^{35}Cl) - ^{35}Cl]^+$ or $[M(^{74}Se^{37}Cl) - {}^{35}Cl]^+$ (4.24), 79 (100). IR (neat): $\tilde{v} = 3056$, 2962, 2933, 2873, 1576, 1476, 1439, 1391, 1250, 1163, 1097, 1053, 1023 cm⁻¹. C₁₆H₂₄ClO₃PSe (409.75): calcd. C 46.90, H 5.90; found C 46.86, H 5.93.

Diethyl [(Z)-3-Chloro-2-(phenylselanyl)-1-octenyl]phosphonate [(Z)-2d]: According to the typical procedure II, the reaction of 1d (74.4 mg, 0.30 mmol) and PhSeCl (85.5 mg, 0.45 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 1 h afforded (Z)-2d (87.8 mg, 66%) as a liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.58 (d, J = 7.2 Hz, 2 H), 7.40-7.28 (m, 3 H), 6.51 (d, J = 13.2 Hz, 1 Hz)H), 4.27–4.08 (m, 5 H), 1.94–1.84 (m, 1 H), 1.70–1.58 (m, 1 H), 1.34 (t, J = 7.0 Hz, 6 H), 1.34–1.25 (m, 1 H), 1.22–1.10 (m, 2 H), 1.10–0.97 (m, 3 H), 0.78 (t, J = 7.0 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 156.6 (d, J_{PC} = 5.6 Hz), 136.0, 129.5, 129.1, 126.6, 117.4 (d, J_{PC} = 196.5 Hz), 63.1 (d, J_{PC} = 20.6 Hz), 62.2 (d, $J_{\rm PC} = 5.4 \text{ Hz}$), 61.8 (d, $J_{\rm PC} = 5.4 \text{ Hz}$), 38.2, 30.6, 25.7, 22.2, 16.32, 16.26, 13.8 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 16.1 ppm. MS (EI, 70 eV): m/z (%) = 441 [M(⁸²Se³⁵Cl) + 1]⁺ or [M(⁸⁰Se³⁷Cl) + 1]⁺ (1.50), 440 $[M(^{82}Se^{35}Cl)]^+$ or $[M(^{80}Se^{37}Cl)]^+$ (6.90), 439 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) + 1]^+$ (3.97), 438 $[M(^{80}Se^{35}-$ Cl)]⁺ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (15.28), 436 $[M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (7.63), 435 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (3.35), 434 $[M(^{76}Se^{35}Cl)]^+$ or $[M(^{74}Se^{37}Cl)]^+$ (2.73), 281 (100). IR (neat): \tilde{v} = 2930, 2860, 1576, 1476, 1439, 1391, 1368, 1249, 1164, 1097, 1024 cm⁻¹. HRMS: calcd. for C₁₈H₂₈³⁵ClO₃P⁸⁰Se [M]⁺ 438.0630; found 438.0639.

Diethyl [(Z)-3-Chloro-2-(phenylselanyl)-1-nonenyl]phosphonate [(Z)-2e]: According to the typical procedure II, the reaction of 1e (51.6 mg, 0.20 mmol) and PhSeCl (58.0 mg, 0.30 mmol) in H_2O (0.4 mL) and THF (4 mL) at 70 °C for 1 h afforded (Z)-2e (60.7 mg, 68%) as a liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.63– 7.57 (m, 2 H), 7.40–7.29 (m, 3 H), 6.53 (d, J = 13.2 Hz, 1 H), 4.24– 4.09 (m, 5 H), 1.95–1.86 (m, 1 H), 1.73–1.61 (m, 1 H), 1.35 (d, J = 7.2 Hz, 6 H), 1.35–1.25 (m, 1 H), 1.25–0.95 (m, 7 H), 0.83 (t, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 156.7 (d, $J_{\rm PC} = 5.4 \text{ Hz}$, 136.1, 129.5, 129.2, 126.7, 117.6 (d, $J_{\rm PC} = 196.1 \text{ Hz}$), 63.2 (d, J_{PC} = 20.6 Hz), 62.3 (d, J_{PC} = 6.5 Hz), 61.8 (d, J_{PC} = 5.3 Hz), 38.3 (d, J_{PC} = 1.6 Hz), 31.4, 28.2, 26.0, 22.4, 16.4, 16.3, 13.9 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 17.3 ppm. MS (ESI) m/z (%) = 457 [M(⁸²Se³⁷Cl) + 1]⁺ (4.08), 456 [M(⁸²Se³⁷Cl)]⁺ (9.39), 455 $[M(^{82}Se^{35}Cl) + 1]^+$ or $[M(^{80}Se^{37}Cl) + 1]^+$ (44.49), 454 $[M(^{82}Se^{35}Cl)]^+$ or $[M(^{80}Se^{37}Cl)]^+$ (19.18), 453 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) + 1]^+$ (100), 452 $[M(^{80}Se^{35}Cl)]^+$ or $[M(^{78}Se^{37}Cl)]^+$ or

$$\begin{split} & [M(^{77}Se^{37}Cl) + 1]^+ (13.88), 451 \ [M(^{77}Se^{37}Cl)]^+ \text{ or } [M(^{78}Se^{35}Cl) + 1]^+ \text{ or } [M(^{76}Se^{37}Cl)]^+ \text{ or } [M(^{76}Se^{37}Cl)]^+ \text{ or } [M(^{76}Se^{37}Cl)]^+ \text{ or } [M(^{76}Se^{35}Cl)]^+ \text{ or } [M(^{74}Se^{37}Cl) + 1]^+ (16.73). \text{ IR } (\text{neat}): \tilde{\nu} = 2961, 2956, 2929, 2858, 1577, 1477, 1439, 1386, 1249, 1158, 1095, 1053, 1024 \text{ cm}^{-1}. \text{ HRMS: calcd. for } C_{19}H_{31}^{-35}ClO_3P^{80}Se \ [M + H]^+ 453.0859; \text{ found } 453.0856. \end{split}$$

Diethyl [(Z)-3-Chloro-4-methyl-2-(phenylselanyl)-1-pentenyl]phosphonate [(Z)-2f]: According to the typical procedure II, the reaction of 1f (64.1 mg, 0.30 mmol) and PhSeCl (85.9 mg, 0.45 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 1.5 h afforded (Z)-2f (89.6 mg, 74%) as a liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.60– 7.56 (m, 2 H), 7.39–7.29 (m, 3 H), 6.50 (d, J = 13.6 Hz, 1 H), 4.24– 4.08 (m, 5 H), 2.31–2.20 (m, 1 H), 1.334 (t, J = 7.2 Hz, 3 H), 1.332 (t, J = 7.2 Hz, 3 H), 0.79 (d, J = 7.0 Hz, 3 H), 0.73 (d, J = 7.0 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 155.2 (d, J_{PC} = 6.0 Hz), 136.0, 129.5, 129.1, 126.6, 118.4 (d, $J_{\rm PC}$ = 194.1 Hz), 69.6 (d, J_{PC} = 20.1 Hz), 62.3 (d, J_{PC} = 5.4 Hz), 61.7 (d, J_{PC} = 5.5 Hz), 32.4, 20.6, 16.34, 16.27, 15.1 ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 17.0$ ppm. MS (EI, 70 eV): m/z (%) = 412 [M(⁸²Se³⁵Cl)]⁺ or $[M(^{80}Se^{37}Cl)]^+$ (10.56), 411 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) +$ 1]⁺ (5.21), 410 $[M(^{80}Se^{35}Cl)]^+$ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) +$ 1]+ (23.50), 408 [M(⁷⁸Se³⁵Cl)]+ or [M(⁷⁶Se³⁷Cl)]+ or [M(⁷⁷Se³⁵Cl) + 1]⁺ (12.07), 407 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (4.41), 406 $[M(^{76}Se^{35}Cl)]^+$ or $[M(^{74}Se^{37}Cl)]^+$ (4.15), 253 (100). IR (neat): $\tilde{v} = 3055$, 2974, 2932, 2905, 2873, 1575, 1473, 1440, 1389, 1368, 1250, 1164, 1097, 1053, 1024 cm⁻¹. HRMS: calcd. for C₁₆H₂₄³⁵ClO₃P⁸⁰Se [M]⁺ 410.0317; found 410.0321.

[(Z)-3-Chloro-4-phenyl-2-(phenylselanyl)-1-butenyl]phos-Diethvl phonate [(Z)-2g]: According to the typical procedure II, the reaction of 1g (54.1 mg, 0.20 mmol, purity: 91%) and PhSeCl (59.1 mg, 0.30 mmol) in H_2O (0.4 mL) and THF (4 mL) at 70 °C for 3.3 h afforded (Z)-2g (66.1 mg, 78%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.67–7.60 (m, 2 H), 7.47–7.36 (m, 3 H), 7.23–7.14 (m, 3 H), 6.86–6.79 (m, 2 H), 6.56 (d, J = 12.6 Hz, 1 H), 4.51 (dd, J_1 = 9.0, J_2 = 3.9 Hz, 1 H), 4.23–4.08 (m, 4 H), 3.34 (dd, J_1 = 14.4, $J_2 = 3.9$ Hz, 1 H), 2.86 (dd, $J_1 = 14.4$, $J_2 = 9.0$ Hz, 1 H), 1.38 (t, J = 6.9 Hz, 3 H), 1.37 (t, J = 6.9 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 155.6 (d, J_{PC} = 6.0 Hz), 136.4, 136.3, 129.8, 129.4, 129.2, 128.1, 126.9, 126.6, 118.1 (d, J_{PC} = 194.4 Hz), 63.5 (d, J_{PC} = 20.9 Hz), 62.3 (d, J_{PC} = 5.6 Hz), 61.9 (d, J_{PC} = 5.5 Hz), 44.2 (d, $J_{\rm PC}$ = 1.4 Hz), 16.4, 16.3 ppm. $^{31}{\rm P}$ NMR (121.5 MHz, CDCl₃): δ = 15.9 ppm. MS (EI, 70 eV): m/z (%) = 461 [M(⁸²Se³⁵Cl) + 1]⁺ or $[M(^{80}Se^{37}Cl) + 1]^+$ (1.72), 460 $[M(^{82}Se^{35}Cl)]^+$ or $[M(^{80}Se^{37}Cl)]^+$ (7.38), 459 [M(⁸⁰Se³⁵Cl) + 1]⁺ or [M(⁷⁸Se³⁷Cl) + 1]⁺ (4.23), 458 $[M(^{80}Se^{35}Cl)]^+$ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (16.45), 456 $[M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (8.20), 455 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (3.27), 454 $[M(^{76}Se^{35}Cl)]^+$ or $[M(^{74}Se^{37}Cl)]^+$ (2.81), 128 (100). IR (neat): \tilde{v} = 3060, 2982, 2930, 2905, 1574, 1476, 1439, 1391, 1249, 1163, 1097, 1024 cm⁻¹. HRMS: calcd. for $C_{20}H_{24}^{35}ClO_3P^{80}Se [M]^+$ 458.0317; found 458.0315.

Diethyl [(*Z*)-3-Chloro-2-(phenylselanyl)-1-propenyl]phosphonate [(*Z*)-2h]: According to the typical procedure II, the reaction of 1h (52.6 mg, 0.30 mmol) and PhSeCl (85.5 mg, 0.45 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 3 h afforded (*Z*)-2h (89.2 mg, 81%) as a liquid.^[4a] ¹H NMR (400 MHz, CDCl₃): δ = 7.67–7.62 (m, 2 H), 7.44–7.28 (m, 3 H), 6.46 (dt, J_1 = 13.2, J_2 = 1.6 Hz, 1 H), 4.23–4.10 (m, 4 H), 3.96 (t, *J* = 1.6 Hz, 2 H), 1.36 (t, *J* = 7.0 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.5 (d, J_{PC} = 6.4 Hz), 136.7, 129.44, 129.38, 125.4, 116.5 (d, J_{PC} = 194.5 Hz), 62.0 (d, J_{PC} = 5.6 Hz), 48.4 (d, J_{PC} = 22.7 Hz), 16.3 (d,

$$\begin{split} J_{\rm PC} &= 6.3 \; {\rm Hz} \; {\rm ppm.} \, {}^{31}{\rm P} \; {\rm NMR} \; (121.5 \; {\rm MHz}, {\rm CDCl}_3); \, \delta = 16.8 \; {\rm ppm.} \\ {\rm MS} \; ({\rm EI}, \; 70 \; {\rm eV}); \; m/z \; (\%) &= 372 \; [{\rm M}(^{82}{\rm Se}^{37}{\rm Cl})]^+ \; (0.80), \; 371 \\ [{\rm M}(^{82}{\rm Se}^{35}{\rm Cl}) \; + \; 1]^+ \; {\rm or} \; [{\rm M}(^{80}{\rm Se}^{37}{\rm Cl}) \; + \; 1]^+ \; (1.00), \; 370 \; [{\rm M}(^{82}{\rm Se}^{35}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{80}{\rm Se}^{37}{\rm Cl})]^+ \; (5.38), \; 369 \; [{\rm M}(^{80}{\rm Se}^{35}{\rm Cl}) \; + \; 1]^+ \; {\rm or} \; [{\rm M}(^{78}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{78}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{78}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{77}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{77}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{77}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{76}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{76}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{76}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{77}{\rm Se}^{35}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{76}{\rm Se}^{35}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{74}{\rm Se}^{37}{\rm Cl})]^+ \; {\rm OI} \; {\rm or} \; {\rm or} \; [{\rm M}(^{76}{\rm Se}^{35}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{76}{\rm Se}^{35}{\rm Cl})]^+ \; {\rm or} \; [{\rm M}(^{76}{\rm Se}^{35}{\rm Cl})]^+ \; {\rm or} \; {\rm or} \; {\rm o} \; [{\rm M}(^{76}{\rm Se}^{35}{\rm Cl})]^+ \; {\rm oI} \; {\rm o} \; {\rm oI} \;$$

Diethyl [(Z)-2-(4-Bromophenylselanyl)-3-chloro-1-propenyl]phos**phonate** [(Z)-2i]: According to the typical procedure II, the reaction of 1h (52.3 mg, 0.30 mmol) and p-bromophenylselanyl chloride (163.1 mg, 0.60 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 3.5 h afforded (Z)-2i (98.6 mg, 74%) as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.55–7.41 (m, 4 H), 6.45 (dt, J_1 = 12.6, J_2 = 1.4 Hz, 1 H), 4.22–4.07 (m, 4 H), 3.95 (t, J = 1.4 Hz, 2 H), 1.35 (t, J = 7.2 Hz, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 150.9$ (d, $J_{PC} = 5.9$ Hz), 138.2, 132.7, 124.41, 124.37, 117.5 (d, $J_{PC} =$ 194.3 Hz), 62.2 (d, J_{PC} = 5.7 Hz), 48.3 (d, J_{PC} = 22.8 Hz), 16.4 (d, J_{PC} = 6.4 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 15.4 ppm. MS (EI, 70 eV): m/z (%) = 450 [M(⁸²Se⁸¹Br³⁵Cl)]⁺ or [M(⁸²Se⁷⁹- $Br^{37}Cl)$]⁺ or [M(⁸⁰Se⁸¹Br³⁷Cl)]⁺ (2.85), 448 [M(⁸²Se⁷⁹Br³⁵Cl)]⁺ or $[M(^{80}Se^{81}Br^{35}Cl)]^+$ or $[M(^{80}Se^{79}Br^{37}Cl)]^+$ or $[M(^{78}Se^{81}Br^{37}Cl)]^+$ (7.67), 446 $[M(^{80}Se^{79}Br^{35}Cl)]^+$ or $[M(^{78}Se^{79}Br^{37}Cl)]^+$ or $[M(^{78}Se^{81} Br^{35}Cl)$ ⁺ or $[M(^{76}Se^{81}Br^{37}Cl)]^+$ (7.27), 444 $[M(^{78}Se^{79}Br^{35}Cl)]^+$ or $[M(^{76}Se^{81}Br^{35}Cl)]^+$ or $[M(^{76}Se^{79}Br^{37}Cl)]^+$ or $[M(^{74}Se^{81}Br^{37}Cl)]^+$ (2.98), 447 $[M(^{80}Se^{79}Br^{35}Cl) + 1]^+$ or $[M(^{78}Se^{79}Br^{37}Cl) + 1]^+$ or $[M(^{78}Se^{81}Br^{35}Cl) + 1]^+$ or $[M(^{76}Se^{81}Br^{37}Cl) + 1]^+$ (1.74), 445 $[M(^{78}Se^{79}Br^{35}Cl) + 1]^+$ or $[M(^{76}Se^{81}Br^{35}Cl) + 1]^+$ or $[M(^{76}Se^{79} Br^{37}Cl$ + 1]⁺ or [M(⁷⁴Se⁸¹Br³⁷Cl) + 1]⁺ (1.36), 211 (100). IR (neat): $\tilde{v} = 2982, 2936, 2904, 1585, 1568, 1467, 1441, 1381, 1245, 1163,$ 1007 cm^{-1} . 1095, 1051, 1024, HRMS: calcd. for C₁₃H₁₇⁷⁹Br³⁵ClO₃P⁸⁰Se [M]⁺ 445.8952; found 445.8954.

2-[(1Z)-2-(4-Bromophenylselanyl)-3-chloro-1-propenyl]-5,5-dimethyl-1,3,2-dioxaphosphorinane 2-Oxide [(Z)-2j]: According to the typical procedure II, the reaction of 1j (56.5 mg, 0.30 mmol) and pbromophenylselanyl chloride (161.9 mg, 0.60 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 2 h afforded (Z)-2j (99.6 mg, 72%) as a white solid; m.p. 125.9–126.4 °C (n-hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃): δ = 7.55–7.49 (m, 2 H), 7.48–7.42 (m, 2 H), 6.53 (dt, $J_1 = 15.0$, $J_2 = 1.5$ Hz, 1 H), 4.19–4.08 (m, 2 H), 3.98 (t, J = 1.5 Hz, 2 H), 3.96–3.85 (m, 2 H), 1.13 (s, 3 H), 1.04 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 153.0 (d, J_{PC} = 7.3 Hz), 138.3, 132.8, 124.5, 124.1, 115.1 (d, J_{PC} = 191.0 Hz), 75.9, 75.8, 48.3 (d, J_{PC} = 22.9 Hz), 32.4 (d, J_{PC} = 6.0 Hz), 21.5, 21.3 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 10.3 ppm. MS (EI, 70 eV): m/z (%) = 462 [M(⁸²Se⁸¹Br³⁵Cl)]⁺ or [M(⁸²Se⁷⁹Br³⁷Cl)]⁺ or $[M(^{80}Se^{81}Br^{37}C1)]^+$ (3.30), 460 $[M(^{82}Se^{79}Br^{35}C1)]^+$ or $[M(^{80}Se^{81}Br^{35}Cl)]^+$ or $[M(^{80}Se^{79}Br^{37}Cl)]^+$ or $[M(^{78}Se^{81}Br^{37}Cl)]^+$ $(8.15), 458 [M(^{80}Se^{79}Br^{35}C1)]^+ \text{ or } [M(^{78}Se^{79}Br^{37}C1)]^+ \text{ or }$ $[M(^{78}Se^{81}Br^{35}C1)]^+$ or $[M(^{76}Se^{81}Br^{37}C1)]^+$ (9.17), 457 $[M(^{78}Se^{79}Br^{35}C1) + 1]^+$ or $[M(^{76}Se^{81}Br^{35}C1) + 1]^+$ or $[M(^{76}Se^{79}Br^{37}Cl) + 1]^+$ or $[M(^{74}Se^{81}Br^{37}Cl) + 1]^+$ (3.41), 456 $[M(^{78}Se^{79}Br^{35}Cl)]^+$ or $[M(^{76}Se^{81}Br^{35}Cl)]^+$ or $[M(^{76}Se^{79}Br^{37}Cl)]^+$ or $[M(^{74}Se^{81}Br^{37}C1)]^+$ (4.21), 223 (100). IR (KBr): $\tilde{v} = 3067, 2958,$ 2883, 1568, 1466, 1379, 1255, 1228, 1061, 1053 cm⁻¹. C₁₄H₁₇BrClO₃PSe (458.57): calcd. C 36.67, H 3.74; found C 36.95, H 3.88.

Reaction of 1j and *p***-BrC**₆**H**₄**SeCl in Anhydrous Chloroform:**^[5] Compound **1j** (75.4 mg, 0.40 mmol), followed by anhydrous chloroform

(1.3 mL), was placed in a dried Schlenk tube under nitrogen at room temperature. A solution of *p*-bromophenylselanyl chloride (108.5 mg, 0.40 mmol) in anhydrous chloroform (1.1 mL) was then added dropwise to the reaction mixture at room temp. within 5 min. Then the resulting mixture was stirred at 46 °C for 26 h. After evaporation and flash chromatography on silica gel (petroleum ether/ethyl acetate, 3:2), (*Z*)-**2**j (98.7 mg, 54%) was obtained as a white solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.56–7.50 (m, 2 H), 7.49–7.43 (m, 2 H), 6.54 (dt, J_1 = 15.0, J_2 = 1.5 Hz, 1 H), 4.20–4.09 (m, 2 H), 3.99 (t, J = 1.5 Hz, 2 H), 3.96–3.86 (m, 2 H), 1.13 (s, 3 H), 1.05 (s, 3 H) ppm. 13% of **1**j was recovered, as determined by ¹H NMR analysis of the crude product.

Dimethyl [(Z)-3-Chloro-2-(phenylselanyl)-1-propenyl]phosphonate [(Z)-2k]: According to the typical procedure II, the reaction of 1k (59.5 mg, 0.40 mmol) and PhSeCl (114.8 mg, 0.60 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 4 h afforded (Z)-2k(108.9 mg, 80%) as a liquid.^[5] ¹H NMR (300 MHz, CDCl₃): δ = 7.68–7.62 (m, 2 H), 7.44–7.29 (m, 3 H), 6.44 (dt, $J_1 = 13.5$, $J_2 =$ 1.5 Hz, 1 H), 3.96 (t, J = 1.5 Hz, 2 H), 3.82 (s, 3 H), 3.78 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 152.7 (d, J_{PC} = 6.9 Hz), 136.8, 129.5, 125.2, 115.0 (d, J_{PC} = 195.1 Hz), 52.6 (d, J_{PC} = 5.8 Hz), 48.4 (d, J_{PC} = 23.9 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 18.5 ppm. MS (EI, 70 eV): m/z (%) = 345 [M(⁸²Se³⁷Cl) + 1]⁺ (0.07), 344 $[M(^{82}Se^{37}Cl)]^+$ (0.48), 343 $[M(^{82}Se^{35}Cl) + 1]^+$ or $[M(^{80}Se^{37}Cl) + 1]^+ (0.45), 342 [M(^{82}Se^{35}Cl)]^+ \text{ or } [M(^{80}Se^{37}Cl)]^+$ (3.76), 341 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) + 1]^+$ (1.16), 340 $[M(^{80}Se^{35}Cl)]^+$ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (8.67), 339 $[M(^{77}Se^{37}Cl)]^+$ or $[M(^{78}Se^{35}Cl) + 1]^+$ or $[M(^{76}Se^{37}Cl) + 1]^+$ (1.03), 338 $[M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (4.16), 337 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (1.35), 336 [M(⁷⁶Se³⁵Cl)]⁺ or [M(⁷⁴Se³⁷Cl)]⁺ (1.43), 183 (100). IR (neat): $\tilde{v} = 3055, 2992, 2951, 2849, 1585, 1576, 1470, 1439, 1414,$ 1249, 1183, 1028 cm⁻¹. HRMS: calcd. for $C_{11}H_{14}{}^{35}ClO_3P^{80}Se$ [M]⁺ 339.9534; found 339.9524.

Reaction of 1k and PhSeCl in Anhydrous Chloroform:^[5] Compound **1k** (103.3 mg, 0.70 mmol), followed by anhydrous chloroform (2.0 mL), was placed in a dried Schlenk tube under nitrogen at room temperature. A solution of phenylselanyl chloride (134.8 mg, 0.70 mmol) in anhydrous chloroform (2.4 mL) was then added dropwise to the reaction mixture at room temp. within 5 min. Then the resulting mixture was stirred at 46 °C for 19 h. After concentration and flash chromatography on silica gel (petroleum ether/ethyl acetate, 3:1 to 2:1), (*Z*)-**2k** (167.5 mg, 71%) was obtained as a liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.66–7.60 (m, 2 H), 7.42– 7.28 (m, 3 H), 6.43 (dt, J_1 = 13.5, J_2 = 1.5 Hz, 1 H), 3.95 (t, J = 1.5 Hz, 2 H), 3.80 (s, 3 H), 3.76 (s, 3 H) ppm.

2-[(1Z)-3-Chloro-2-(phenylselanyl)-1-propenyl]-5,5-dimethyl-1,3,2-dioxaphosphorinane 2-Oxide [(Z)-2l). Large-Scale Reaction: According to the typical procedure II, the reaction of 1j (1.0336 g, 5.5 mmol)/THF (13 mL), PhSeCl (2.1070 g, 11.0 mmol)/THF (39 mL), and H_2O (5.2 mL) at 70 °C for 2 h afforded (Z)-2l (1.6716 g, 80%) as a white solid; m.p. 126.6-127.4 °C (n-hexane/ ethyl acetate). ¹H NMR (300 MHz, CDCl₃): δ = 7.71–7.60 (m, 2 H), 7.45–7.29 (m, 3 H), 6.52 (d, J = 15.0 Hz, 1 H), 4.13 (dd, $J_1 =$ 13.8, $J_2 = 11.1$ Hz, 2 H), 3.99 (t, J = 1.5 Hz, 2 H), 3.92 (t, J =10.4 Hz, 2 H), 1.14 (s, 3 H), 1.04 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 153.6 (d, J_{PC} = 7.4 Hz), 136.8, 129.6, 129.5, 125.0, 114.0 (d, $J_{\rm PC}$ = 190.7 Hz), 75.9, 75.8, 48.4 (d, $J_{\rm PC}$ = 22.7 Hz), 32.4 (d, *J*_{PC} = 6.5 Hz), 21.5, 21.2 ppm. ³¹P NMR (121.5 MHz, CDCl₃): $\delta = 10.6$ ppm. MS (EI, 70 eV): m/z (%) = 385 [M(⁸²Se³⁷Cl) + 1]⁺ (0.13), 384 $[M(^{82}Se^{37}C1)]^+$ (0.86), 383 $[M(^{82}Se^{35}C1) + 1]^+$ or $[M(^{80}Se^{37}Cl) + 1]^+ (1.09), 382 [M(^{82}Se^{35}Cl)]^+ \text{ or } [M(^{80}Se^{37}Cl)]^+$

(6.59), 381 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) + 1]^+$ (2.54), 380 $[M(^{80}Se^{35}Cl)]^+$ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (15.37), 378 $[M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (7.48), 377 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (2.45), 376 $[M(^{76}Se^{35}Cl)]^+$ or $[M(^{74}Se^{37}Cl)]^+$ (2.51), 374 $[M(^{74}Se^{35}Cl)]^+$ (0.24), 223 (100). IR (KBr): $\tilde{v} = 3072$, 3012, 2971, 2894, 1575, 1471, 1439, 1262, 1057, 1008 cm⁻¹. C₁₄H₁₈ClO₃PSe (379.68): calcd. C 44.29, H 4.78; found C 44.35, H 4.89.

Reaction of Diethyl (1-Substituted allenyl)phosphonates with PhSeCl

Diethyl [(Z)-1-Chloro-2-(phenylselanyl)-2-hepten-3-yl]phosphonate [(Z)-2m] and 3-(n-Butyl)-2-ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2oxaphosphole 2-Oxide (3m): According to the typical procedure III, the reaction of PhSeCl (85.5 mg, 0.45 mmol) and 1m (69.2 mg, 0.30 mmol) in H₂O (0.6 mL) and dioxane (6.0 mL) at 70 °C for 3 h afforded a mixture of (Z)-2m and 3m, which was separated by double chromatography on silica gel to afford (Z)-2m (93.3 mg, 74%) and 3m (12.6 mg, 12%) [petroleum ether/ethyl acetate, 5:1 (first round) to 4:1 (second round)]. (Z)-2m: Liquid. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 7.70-7.63 \text{ (m, 2 H)}, 7.42-7.28 \text{ (m, 3 H)},$ 4.26-4.10 (m, 4 H), 4.00 (s, 2 H), 2.50-2.35 (m, 2 H), 1.58-1.44 (m, 2 H), 1.44–1.28 (m, 2 H), 1.36 (t, J = 7.1 Hz, 6 H), 0.91 (t, J =7.2 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 144.9 (d, J_{PC} = 9.2 Hz), 136.5, 134.1 (d, J_{PC} = 178.3 Hz), 129.2, 129.0, 128.0 (d, $J_{\rm PC}$ = 1.3 Hz), 62.1 (d, $J_{\rm PC}$ = 6.4 Hz), 42.4 (d, $J_{\rm PC}$ = 20.2 Hz), 32.3 (d, $J_{\rm PC}$ = 9.2 Hz), 32.0 (d, $J_{\rm PC}$ = 1.4 Hz), 22.8, 16.3 (d, $J_{\rm PC}$ = 6.4 Hz), 13.7 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 17.8 ppm. MS (EI, 70 eV): m/z (%) = 429 [M(⁸²Se³⁷Cl) + 1]⁺ (0.13), 428 $[M(^{82}Se^{37}Cl)]^+$ (0.50), 427 $[M(^{82}Se^{35}Cl) + 1]^+$ or $[M(^{80}Se^{37}Cl) +$ 1]⁺ (0.84), 426 $[M(^{82}Se^{35}Cl)]^+$ or $[M(^{80}Se^{37}Cl)]^+$ (3.29), 425 $[M(^{80}Se^{35}Cl) + 1]^+$ or $[M(^{78}Se^{37}Cl) + 1]^+$ (2.04), 424 $[M(^{80}Se^{35}-$ Cl)]⁺ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (7.08), 423 $[M(^{77}Se^{37}Cl)]^+$ or $[M(^{78}Se^{35}Cl) + 1]^+$ or $[M(^{76}Se^{37}Cl) + 1]^+$ (1.40), 422 $[M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (3.50), 421 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (1.35), 420 $[M(^{76}Se^{35}C1)]^+$ or $[M(^{74}Se^{37}C1)]^+$ (1.21), 419 $[M(^{74}Se^{35}Cl) + 1]^+$ (0.10), 418 $[M(^{74}Se^{35}Cl)]^+$ (0.11), 267 (100). IR (neat): $\tilde{v} = 3057, 2959, 2930, 2872, 1560, 1476, 1438, 1390, 1247,$ 1220, 1163, 1097, 1051, 1022 cm⁻¹. HRMS: calcd. for C₁₇H₂₆³⁵ClO₃P⁷⁴Se [M]⁺ 418.0533; found 418.0531. **3m**: Liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.62–7.55 (m, 2 H), 7.45–7.29 (m, 3 H), 4.34–4.27 (m, 2 H), 4.16–4.04 (m, 2 H), 2.56–2.26 (m, 2 H), 1.68-1.52 (m, 2 H), 1.47-1.31 (m, 2 H), 1.33 (t, J = 7.1 Hz, 3 H), 0.95 (t, J = 7.5 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 145.0 (d, $J_{PC} = 33.8 \text{ Hz}$), 136.0 (d, $J_{PC} = 4.5 \text{ Hz}$), 129.7, 129.5, 127.0 (d, J_{PC} = 154.9 Hz), 123.4, 71.4 (d, J_{PC} = 9.7 Hz), 63.0 (d, J_{PC} = 7.0 Hz), 30.1 (d, J_{PC} = 2.1 Hz), 27.2 (d, J_{PC} = 13.4 Hz), 22.6, 16.5 (d, J_{PC} = 5.1 Hz), 13.8 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 39.4 ppm. MS (EI, 70 eV): m/z (%) = 363 [M(⁸²Se) + 1]⁺ (0.73), $361 [M(^{80}Se) + 1]^+ (3.38), 359 [M(^{78}Se) + 1]^+ (2.09), 357$ $[M(^{77}Se)]^+$ or $[M(^{76}Se) + 1]^+$ (2.89), 362 $[M(^{82}Se)]^+$ (3.22), 360 $[M(^{80}Se)]^+$ (15.05), 358 $[M(^{78}Se)]^+$ or $[M(^{77}Se) + 1]^+$ (7.86), 356 $[M(^{76}Se)]^+$ (3.01), 93 (100). IR (neat): $\tilde{v} = 3056, 2958, 2931, 2872,$ 1601, 1578, 1464, 1440, 1388, 1344, 1264, 1163, 1100, 1044, 1009 cm⁻¹. HRMS: calcd. for $C_{15}H_{21}O_3P^{80}Se [M]^+$ 360.0394; found 360.0396.

Diethyl [(Z)-1-Chloro-2-(phenylselanyl)-2-hepten-3-yl]phosphonate [(Z)-2m] and 3-(*n*-Butyl)-2-ethoxy-4-(phenylselanyl)-2,5-dihydro-1,2oxaphosphole 2-Oxide (3m): According to the typical procedure II, the reaction of 1m (68.8 mg, 0.30 mmol) and PhSeCl (86.5 mg, 0.45 mmol) in THF (6 mL) and H₂O (0.6 mL) at 70 °C for 2 h afforded a mixture of (Z)-2m and 3m, which were separated by repeated chromatography on silica gel (petroleum ether/ethyl acetate, 5:1, twice) to afford pure (*Z*)-**2m** (72.2 mg, 57%) and **3m** (7.5 mg, 7%). (*Z*)-**2m**: Liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.72–7.65 (m, 2 H), 7.44–7.28 (m, 3 H), 4.28–4.12 (m, 4 H), 4.03 (s, 2 H), 2.52–2.38 (m, 2 H), 1.60–1.46 (m, 2 H), 1.43–1.30 (m, 2 H), 1.38 (t, *J* = 7.1 Hz, 6 H), 0.93 (t, *J* = 7.2 Hz, 3 H) ppm. **3m**: Liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.62–7.55 (m, 2 H), 7.45–7.29 (m, 3 H), 4.34–4.27 (m, 2 H), 4.16–4.04 (m, 2 H), 2.52–2.30 (m, 2 H), 1.68–1.52 (m, 2 H), 1.47–1.31 (m, 2 H), 1.33 (t, *J* = 7.1 Hz, 3 H), 0.96 (t, *J* = 7.5 Hz, 3 H) ppm.

Diethyl [(Z)-1-Chloro-2-(phenylselanyl)-2-buten-3-yl]phosphonate [(Z)-2n] and 2-Ethoxy-3-methyl-4-(phenylselanyl)-2,5-dihydro-1,2oxaphosphole 2-Oxide (3n): According to the typical procedure III, the reaction of 1n (57.7 mg, 0.30 mmol) and PhSeCl (86.5 mg, 0.45 mmol) in H₂O (0.6 mL) and dioxane (6.0 mL) at 70 °C for 3 h afforded a mixture of (Z)-2n and 3n, which were separated by repeated chromatography on silica gel (petroleum ether/ethyl acetate, 2:1, twice) to afford pure (Z)-2n (72.9 mg, 63%) and 3n (5.7 mg, 6%). (Z)-2n: Liquid. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.73-7.65$ (m, 2 H), 7.43–7.28 (m, 3 H), 4.24–4.08 (m, 4 H), 4.02 (s, 2 H), 2.06 (d, J = 13.5 Hz, 3 H), 1.38 (t, J = 6.9 Hz, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 145.0 (d, J_{PC} = 9.5 Hz), 136.8, 129.2, 129.1, 127.7, 127.2 (d, J_{PC} = 181.8 Hz), 62.1 (d, J_{PC} = 5.9 Hz), 42.6 (d, $J_{\rm PC}$ = 21.1 Hz), 17.8 (d, $J_{\rm PC}$ = 9.3 Hz), 16.3 (d, $J_{\rm PC}$ = 6.1 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 18.2 ppm. MS (EI, 70 eV): *m*/*z* $(\%) = 386 [M(^{82}Se^{37}Cl)]^+ (0.49), 385 [M(^{82}Se^{35}Cl) + 1]^+ \text{ or}$ $[M(^{80}Se^{37}Cl) + 1]^+ (0.77), 384 [M(^{82}Se^{35}Cl)]^+ \text{ or } [M(^{80}Se^{37}Cl)]^+$ (3.38), 383 [M(⁸⁰Se³⁵Cl) + 1]⁺ or [M(⁷⁸Se³⁷Cl) + 1]⁺ (1.43), 382 $[M(^{80}Se^{35}Cl)]^+$ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (7.53), 381 $[M(^{77}Se^{37}Cl)]^+$ or $[M(^{78}Se^{35}Cl) + 1]^+$ or $[M(^{76}Se^{37}Cl) + 1]^+$ (1.18), $380 [M(^{78}Se^{35}Cl)]^+$ or $[M(^{76}Se^{37}Cl)]^+$ or $[M(^{77}Se^{35}Cl) + 1]^+$ (3.72), $379 [M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (1.37), 378 [M(⁷⁶Se³⁵Cl)]⁺ or [M(⁷⁴Se³⁷Cl)]⁺ (1.31), 225 (100). IR (neat): $\tilde{v} = 3056, 2980, 2930, 2905, 1569, 1475, 1440, 1391, 1247,$ 1192, 1162, 1096, 1049 cm⁻¹. HRMS: calcd. for C₁₄H₂₀³⁵ClO₃P⁸⁰Se [M]⁺ 382.0004; found 382.0018. **3n**: Liquid. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.61-7.55$ (m, 2 H), 7.45-7.30 (m, 3 H), 4.38-4.31 (m, 2 H), 4.18–4.04 (m, 2 H), 1.99 (dt, $J_1 = 14.4$, $J_1 = 2.0$ Hz, 3 H), 1.34 (t, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 144.9 (d, J_{PC} = 33.3 Hz), 135.9, 129.8, 129.5, 123.4, 122.6 (d, J_{PC} = 158.2 Hz), 71.8 (d, J_{PC} = 8.9 Hz), 63.2 (d, J_{PC} = 6.5 Hz), 16.6 (d, J_{PC} = 5.3 Hz), 11.7 (d, J_{PC} = 14.3 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 39.6 ppm. MS (EI, 70 eV): m/z (%) = 321 [M(⁸²Se) + 1]⁺ (2.69), 319 $[M(^{80}Se) + 1]^+$ (14.40), 317 $[M(^{78}Se) + 1]^+$ (10.27), 320 [M(⁸²Se)]⁺ (19.09), 318 [M(⁸⁰Se)]⁺ (100), 316 [M(⁷⁸Se)]⁺ or [M $(^{77}\text{Se}) + 1]^+ (50.29), 315 [M(^{77}\text{Se})]^+ \text{ or } [M(^{76}\text{Se}) + 1]^+ (19.40), 314$ $[M(^{76}Se)]^+$ (19.40), 312 $[M(^{74}Se)]^+$ (1.92). IR (neat): $\tilde{v} = 3056, 2979,$ 2928, 2877, 2853, 1609, 1577, 1476, 1439, 1390, 1344, 1261, 1198, 1162, 1097, 1045, 1024 cm⁻¹. HRMS: calcd. for C₁₂H₁₅O₃P⁸⁰Se [M]⁺ 317.9924; found 317.9915.

Diethyl [(Z)-1-Chloro-2-(phenylselanyl)-2-decen-3-yl]phosphonate [(Z)-20] and 2-Ethoxy-3-(*n*-heptyl)-4-(phenylselanyl)-2,5-dihydro-1,2-oxaphosphole 2-Oxide (30): According to the typical procedure III, the reaction of 10 (81.6 mg, 0.30 mmol) and PhSeCl (85.7 mg, 0.45 mmol) in H₂O (0.6 mL) and dioxane (6 mL) at 70 °C for 3 h afforded a mixture of (Z)-20 and 30, which were separated by repeated chromatography on silica gel (petroleum ether/ethyl acetate, 5:1, twice) to afford pure (Z)-20 (95.5 mg, 69%) and 30 (11.0 mg, 9%). (Z)-20: Colorless liquid. ¹H NMR (300 MHz, CDCl₃): δ = 7.71–7.65 (m, 2 H), 7.42–7.28 (m, 3 H), 4.26–4.07 (m, 4 H), 4.01 (s, 2 H), 2.49–2.35 (m, 2 H), 1.57–1.44 (m, 2 H), 1.39–1.19 (m, 8 H), 1.37 (t, *J* = 7.2 Hz, 6 H), 0.87 (t, *J* = 6.6 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 144.9 (d, *J*_{PC} = 9.1 Hz), 136.6, 134.3 (d, *J*_{PC} = 178.9 Hz), 129.2, 129.0, 128.1, 62.1 (d, *J*_{PC} = 5.1 Hz),

42.5 (d, J_{PC} = 20.3 Hz), 32.7 (d, J_{PC} = 9.4 Hz), 31.7, 29.9, 29.7, 28.9, 22.6, 16.4 (d, J_{PC} = 5.8 Hz), 14.1 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 17.9 ppm. MS (EI, 70 eV): m/z (%) = 470 [M(⁸²Se³⁷-Cl)]⁺ (0.47), 469 $[M(^{82}Se^{35}Cl) + 1]^+$ or $[M(^{80}Se^{37}Cl) + 1]^+$ (0.72), 468 [M(⁸²Se³⁵Cl)]⁺ or [M(⁸⁰Se³⁷Cl)]⁺ (2.66), 467 [M(⁸⁰Se³⁵Cl) + 1]⁺ or $[M(^{78}Se^{37}Cl) + 1]^+ (1.66), 466 [M(^{80}Se^{35}Cl)]^+$ or $[M(^{78}Se^{37}Cl)]^+$ or $[M(^{77}Se^{37}Cl) + 1]^+$ (6.12), 465 $[M(^{77}Se^{37}Cl)]^+$ or $[M(^{78}Se^{35}Cl) + 1]^+$ or $[M(^{76}Se^{37}Cl) + 1]^+$ (1.23), 464 $[M(^{78}Se^{35}-$ C1)]⁺ or $[M(^{76}Se^{37}C1)]^+$ or $[M(^{77}Se^{35}C1) + 1]^+$ (3.16), 463 $[M(^{77}Se^{35}Cl)]^+$ or $[M(^{76}Se^{35}Cl) + 1]^+$ or $[M(^{74}Se^{37}Cl) + 1]^+$ (1.18), 462 $[M(^{76}Se^{35}Cl)]^+$ or $[M(^{74}Se^{37}Cl)]^+$ (1.05), 309 (100). IR (neat): \tilde{v} = 3056, 2956, 2927, 2856, 1560, 1469, 1439, 1390, 1248, 1197, 1163, 1097, 1051, 1024 cm⁻¹. HRMS: calcd. for $C_{20}H_{32}{}^{35}ClO_3P^{80}Se$ [M]⁺ 466.0943; found 466.0966. **30**: Colorless liquid. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 7.62-7.55 \text{ (m, 2 H)}, 7.45-7.30 \text{ (m, 3 H)},$ 4.38-4.25 (m, 2 H), 4.17-4.04 (m, 2 H), 2.58-2.28 (m, 2 H), 1.70-1.55 (m, 2 H), 1.43–1.20 (m, 11 H), 0.90 (t, *J* = 6.3 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 144.9 (d, J_{PC} = 33.6 Hz), 136.0, 129.7, 129.5, 127.1 (d, J_{PC} = 154.4 Hz), 123.5, 71.5 (d, J_{PC} = 9.1 Hz), 63.0 (d, $J_{\rm PC}$ = 7.1 Hz), 31.8, 29.6 (d, $J_{\rm PC}$ = 13.5 Hz), 29.0, 28.0 (d, J_{PC} = 2.1 Hz), 27.5 (d, J_{PC} = 12.6 Hz), 22.6, 16.5 (d, J_{PC} = 6.3 Hz), 14.1 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 39.4 ppm. MS (EI, 70 eV): m/z (%) = 405 [M(⁸²Se) + 1]⁺ (1.04), 403 $[M(^{80}Se) + 1]^+$ (6.43), 401 $[M(^{78}Se) + 1]^+$ (4.59), 404 [M(⁸²Se)]⁺ (4.97), 402 [M(⁸⁰Se)]⁺ (24.04), 400 [M(⁷⁸Se)]⁺ or [M $(^{77}\text{Se}) + 1]^+$ (11.82), 399 [M(^{77}Se)]⁺ or [M(^{76}Se) + 1]⁺ (5.35), 398 $[M(^{76}Se)]^+$ (4.79), 245 (100). IR (neat): $\tilde{v} = 3057, 2927, 2855, 1601,$ 1577, 1456, 1439, 1390, 1343, 1265, 1163, 1106, 1044 cm⁻¹. HRMS: calcd. for C₁₈H₂₇O₃P⁸⁰Se [M]⁺ 402.0863; found 402.0874.

Reaction of Diethyl (Multisubstituted allenyl)phosphonates with PhSeCI: The reactions of **1p** and **1r** with PhSeCI at 70 °C according to the typical procedure II are complicated. Thus, an alternative approach was used.

2-Ethoxy-4-(phenylselanyl)-2,5-dihydro-5,5-dimethyl-1,2-oxaphosphole 2-Oxide (3p). Typical Procedure IV: H₂O (0.6 mL) was added to a solution of PhSeCl (87.6 mg, 0.45 mmol) in THF (4.5 mL) at room temperature. Then a solution of 1p (62.9 mg, 0.3 mmol) in THF (1.5 mL) was added and the resulting mixture was stirred at room temp. for 3 h. The mixture was quenched with H₂O (5 mL) and extracted with diethyl ether $(3 \times 20 \text{ mL})$, washed with brine (5 mL), and dried with anhydrous Na₂SO₄. Filtration, concentration, and flash chromatography on silica gel (petroleum ether/ethyl acetate, 3:2) afforded **3p** (55.7 mg, 55%) as a liquid.^[11] ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3): \delta = 7.63-7.57 \text{ (m, 2 H)}, 7.48-7.35 \text{ (m, 3 H)},$ 5.25 (d, J = 28.2 Hz, 1 H), 4.12–3.94 (m, 2 H), 1.64 (s, 3 H), 1.58 (s, 3 H), 1.26 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 168.9 (d, J_{PC} = 23.3 Hz), 136.5, 130.1, 129.9, 125.3, 109.2 (d, J_{PC} = 161.9 Hz), 87.2 (d, J_{PC} = 8.3 Hz), 62.8 (d, J_{PC} = 6.4 Hz), 29.1 (d, J_{PC} = 2.9 Hz), 28.4 (d, J_{PC} = 1.9 Hz), 16.4 (d, J_{PC} = 5.9 Hz) ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 34.7 ppm. MS (EI, 70 eV): m/z (%) = 335 [M(⁸²Se) + 1]⁺ (4.08), 333 [M(⁸⁰Se) + 1]⁺ (12.64), 329 $[M(^{77}Se)]^+$ or $[M(^{76}Se) + 1]^+$ (20.13), 334 $[M(^{82}Se)]^+$ (20.41), 332 $[M(^{80}Se)]^+$ (98.89), 330 $[M(^{78}Se)]^+$ or $[M(^{77}Se) + 1]^+$ (56.92), 328 $[M(^{76}Se)]^+$ (20.10), 326 $[M(^{74}Se)]^+$ (2.43), 223 (100). IR (neat): $\tilde{v} = 3059, 2981, 2931, 1558, 1475, 1440, 1387, 1368, 1268,$ 1186, 1141, 1096, 1041 cm⁻¹.

3-(*n*-Butyl)-2-ethoxy-5-ethyl-4-(phenylselanyl)-2,5-dihydro-1,2-oxaphosphole 2-Oxide (3q): According to the typical procedure IV, the reaction of 1q (77.4 mg, 0.3 mmol) and PhSeCl (86.8 mg, 0.45 mmol) in H₂O (0.6 mL) and THF (6 mL) at 70 °C for 0.3 h afforded 3q (106.5 mg, 92%) (petroleum/ethyl acetate, 5:1 to 3:1) as a liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.53–7.46 (m, 2 H), 7.37–7.25 (m, 3 H), 4.57–4.47 (m, 1 H), 4.23–4.03 (m, 2 H), 2.59–2.30 (m, 2 H), 1.93–1.82 (m, 1 H), 1.62–1.44 (m, 3 H), 1.40–1.28 (m, 5 H), 0.94–0.87 (m, 3 H), 0.87–0.78 (m, 3 H) ppm. MS (EI, 70 eV): *m*/*z* (%) = 390 [M(⁸²Se)]⁺ (3.37), 388 [M(⁸⁰Se)]⁺ (13.22), 386 [M(⁷⁸Se)]⁺ or [M (⁷⁷Se) + 1]⁺ (7.35), 384 [M(⁷⁶Se)]⁺ (2.39), 389 [M(⁸⁰Se) + 1]⁺ (5.42), 387 [M(⁷⁸Se) + 1]⁺ (2.76), 385 [M(⁷⁷Se)]⁺ or [M (⁷⁶Se) + 1]⁺ (3.21), 189 (100). IR (neat): $\tilde{\nu}$ = 3057, 2961, 2932, 2873, 1597, 1577, 1477, 1439, 1386, 1324, 1262, 1163, 1141, 1097, 1039 cm⁻¹. C₁₇H₂₅O₃PSe (387.31): calcd. C 52.72, H 6.51; found C 52.69, H 6.60.

3-(n-Butyl)-2-ethoxy-5,5-dimethyl-4-(phenylselanyl)-2,5-dihydro-1,2oxaphosphole 2-Oxide (3r): According to the typical procedure IV, the reaction of 1r (77.9 mg, 0.3 mmol) and PhSeCl (86.6 mg, 0.45 mmol) in H₂O (0.4 mL) and THF (4 mL) at room temp. for 4 h afforded 3r (101.2 mg, 87%) (petroleum/ethyl acetate, 5:2) as a liquid. ¹H NMR (400 MHz, CDCl₃): δ = 7.43–7.38 (m, 2 H), 7.28– 7.22 (m, 3 H), 4.18-4.08 (m, 2 H), 2.40-2.17 (m, 2 H), 1.49 (s, 3 H), 1.46 (s, 3 H), 1.42–1.34 (m, 2 H), 1.32 (t, J = 7.0 Hz, 3 H), 1.23–1.17 (m, 2 H), 0.79 (t, J = 7.4 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.7 (d, J_{PC} = 31.1 Hz), 134.8 (d, J_{PC} = 145.0 Hz), 132.2, 129.5, 128.5 (d, J_{PC} = 1.5 Hz), 127.7, 87.9 (d, J_{PC} = 8.1 Hz), 62.7 (d, J_{PC} = 7.8 Hz), 29.6 (d, J_{PC} = 1.4 Hz), 28.3 (d, $J_{\rm PC}$ = 11.7 Hz), 28.1 (d, $J_{\rm PC}$ = 2.8 Hz), 27.4, 22.6, 16.5 (d, $J_{\rm PC}$ = 6.1 Hz), 13.6 ppm. ³¹P NMR (121.5 MHz, CDCl₃): δ = 34.5 ppm. MS (EI, 70 eV): m/z (%) = 390 [M(⁸²Se)]⁺ (2.69), 388 [M(⁸⁰Se)]⁺ (12.86), 386 $[M(^{78}Se)]^+$ or $[M(^{77}Se) + 1]^+$ (5.35), 384 $[M(^{76}Se)]^+$ (2.09), 389 $[M(^{80}Se) + 1]^+$ (4.58), 387 $[M(^{78}Se) + 1]^+$ (1.03), 121 (100). IR (neat): $\tilde{v} = 3059, 2980, 2958, 2932, 2871, 1597, 1577,$ 1477, 1460, 1439, 1365, 1267, 1224, 1144, 1041 cm⁻¹. HRMS: calcd. for C₁₇H₂₅O₃P⁸⁰Se [M]⁺ 388.0707; found 388.0712.

Supporting Information (see footnote on the first page of this article): ¹H, ¹³C, and ³¹P NMR spectra of all compounds.

Acknowledgments

Financial support from the Major State Basic Research Development Program (Grant No. G2009CB825300) and the Science and Technology Commission of Shanghai Municipality (No. 07DZ22937) is greatly appreciated. We thank Guofei Chen for reproducing the results presented in Entries 3 and 10 of Table 2, Entry 3 of Table 3, and Entry 1 of Table 4. S. M. is a Qiu Shi Adjunct Professor at Zhejiang University.

- [1] H. Guo, R. Qian, Y. Guo, S. Ma, J. Org. Chem. 2008, 73, 7934– 7938.
- [2] G. He, H. Guo, R. Qian, Y. Guo, C. Fu, S. Ma, *Tetrahedron* 2009, 65, 4877–4889.
- [3] For studies on allenyl sulfoxides and sulfones, see: a) S. Ma, Q. Wei, H. Wang, Org. Lett. 2000, 2, 3893–3895; b) S. Ma, H. Ren, Q. Wei, J. Am. Chem. Soc. 2003, 125, 4817–4830; c) G. He, C. Zhou, C. Fu, S. Ma, Tetrahedron 2007, 63, 3800–3805; d) C. Zhou, C. Fu, S. Ma, Tetrahedron 2007, 63, 7612–7616; e) C. Zhou, C. Fu, S. Ma, Angew. Chem. Int. Ed. 2007, 46, 4379–4381.
- [4] a) C. M. Angelov, T. N. Tancheva, *Zh. Obshch. Khim.* 1985, 55, 53–57; b) D. M. Mondeshka, C. N. Eancheva, C. M. Angelov, *Phosphorus Sulfur* 1987, 31, 89–99.
- [5] R. S. Macomber, G. A. Krudy, K. Seff, L. E. Rendón-Diazmirón, J. Org. Chem. 1983, 48, 1425–1430.
- [6] For the electrophilic cyclization of allenylphosphonates, see: a) C. Tancheva, M. Bogilova, D. Mondeshka, *Phosphorus Sulfur Silicon Relat. Elem.* 2000, *157*, 123–138; b) J. Yuan, X. Ruan, Y. Yang, X. Huang, *Synlett* 2007, *18*, 2871–2874; c) F. Yu, X.

FULL PAPER

Lian, J. Zhao, Y. Yu, S. Ma, J. Org. Chem. 2009, 74, 1130-1134.

- [7] For the nucleophilic addition of allenylphosphonates with amines, imidazole, and thiols, see: a) N. G. Khusainova, O. A. Mostovaya, E. A. Berdnikov, I. A. Litvinov, D. B. Krivolapov, R. A. Cherkasov, *Russ. J. Org. Chem.* 2005, *41*, 1260–1264; b) N. G. Khusainova, E. A. Berdnikov, O. A. Mostovaya, S. M. Rybakov, R. A. Cherkasov, *Russ. J. Org. Chem.* 2007, *43*, 1703–1705; c) M. Chakravarty, K. C. K. Swamy, *Synthesis* 2007, *20*, 3171–3178.
- [8] For phosphane-catalyzed annulations of allenylphosphonates, see: A. Panossian, N. Fleury-Brégeot, A. Marinetti, *Eur. J. Org. Chem.* 2008, 3826–3833.
- [9] For transition-metal-catalyzed reactions of allenylphosphonates or -phosphonic acid monoesters, see: a) H. Guo, Z. Zheng, F. Yu, S. Ma, Angew. Chem. Int. Ed. 2006, 45, 4997–5000; b)
 S. Ma, F. Yu, J. Zhao, Synlett 2007, 4, 583–586; c) F. Yu, X. Lian, S. Ma, Org. Lett. 2007, 9, 1703–1706; d) H. Guo, S. Ma, Adv. Synth. Catal. 2008, 350, 1213–1217.
- [10] a) S. Ma, Pure Appl. Chem. 2007, 79, 261–267; b) S. Ma, Acc. Chem. Res. 2009, 1679–1688.
- [11] a) C. M. Angelov, C. Z. Christov, Synthesis 1984, 664–667; b)
 D. D. Enchev, Heteroat. Chem. 2005, 16, 156–158.
- [12] Crystal data for (Z)-**2j**: C₁₄H₁₇BrClO₃PSe, M = 458.57, monoclinic, space group P2(1)/c, final R indices $[I > 2\sigma(I)]$: R1 = 0.0224, $wR_2 = 0.0515$, R indices (all data): R1 = 0.0244, $wR_2 = 0.0523$, a = 7.5062(2), b = 29.7734(7), c = 7.6014(2) Å, $\beta = 104.1470(10)^\circ$, V = 1647.28(7) Å³, T = 173(2) K, Z = 4, reflections collected/unique: 18865/2881 ($R_{int} = 0.0227$), number of observations [$I > 2\sigma(I)$]: 2707, parameters: 190. CCDC-739001 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.
- [13] Z. Gu, Y. Deng, W. Shu, S. Ma, Adv. Synth. Catal. 2007, 349, 1653–1656.

- [14] a) S. Ma, X. Hao, X. Huang, Org. Lett. 2003, 5, 1217–1219;
 b) S. Ma, X. Hao, X. Meng, X. Huang, J. Org. Chem. 2004, 69, 5720–5724;
 c) S. Ma, X. Hao, X. Huang, Chem. Commun. 2003, 1082–1083.
- [15] Although we have not yet been able to realize such (*Z*)-selenochlorination for 1,2-alkadienylphosphane oxides highly selectively, the formation of (*Z*)-selenochlorination products from allenylphosphane oxides as byproducts has been reported previously.^[2]
- [16] a) T. Wirth, "Organoselenium Chemistry" in *Topics in Current Chemistry 208*, Springer, Heidelberg, 2000; b) A. Krief in *Comprehensive Organometallic Chemistry II* (Eds.: E. V. Abel, F. G. A. Stone, G. Wilkinson), Pergamon Press, New York, 1995, vol. 11, chapter 13; c) C. Paulmier, "Selenium Reagents and Intermediates in Organic Synthesis" in *Organic Chemistry Series 4* (Ed.: J. E. Baldwin), Pergamon Press, Oxford, 1986.
- [17] a) C. W. Nogueira, G. Zeni, J. B. T. Rocha, *Chem. Rev.* 2004, 104, 6255–6285; b) G. Mugesh, W. du Mont, H. Sies, *Chem. Rev.* 2001, 101, 2125–2179; c) M. J. Parnham, E. Graf, *Prog. Drug Res.* 1991, 36, 9–47; d) C. W. Nogueira, E. B. Quinhones, E. A. C. Jung, G. Zeni, J. B. T. Rocha, *Inflammation Res.* 2003, 52, 56–63.
- [18] a) J. V. Comasseto, N. Petragnani, J. Organomet. Chem. 1978, 152, 295–304; b) J. V. Comasseto, L. W. Ling, N. Petragnani, H. A. Stefani, Synthesis 1997, 373–403; c) J. V. Comasseto, J. Organomet. Chem. 1983, 253, 131–181; d) G. Perin, E. J. Lenardão, R. G. Jacob, R. B. Panatieri, Chem. Rev. 2009, 109, 1277–1301.
- [19] a) T. Minami, J. Motoyoshiya, Synthesis 1992, 333–349; b) R. Engel, Chem. Rev. 1977, 77, 349–367; c) R. R. Breaker, G. R. Gough, P. T. Gilham, Biochemistry 1993, 32, 9125–9128; d) M. R. Harnden, A. Parkin, M. J. Parratt, R. M. Perkins, J. Med. Chem. 1993, 36, 1345–1355.
- [20] H. Altenbach, R. Korff, *Tetrahedron Lett.* 1981, 22, 5175–5178. Received: August 12, 2009
 Published Online: November 5, 2009