Dalton Transactions

An international journal of inorganic chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: K. Lemoine, R. Moury, J. Lhoste, A. Ribaud, M. Leblanc, J. Grenèche, J. Tarascon and V. Maisonneuve, *Dalton Trans.*, 2020, DOI: 10.1039/D0DT01310B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/dalton

View Article Online

View Journal

Stabilization of a mixed iron vanadium based Hexagonal Fungsten

Bronze hydroxyfluoride HTB- $(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}$ as positive

electrode for lithium-ion batteries

Kévin Lemoine,^a Romain Moury,^a Jérôme Lhoste,^a Annie Hémon-Ribaud,^a Marc Leblanc,^a Jean-Marc Grenèche,^a Jean-Marie Tarascon,^{b,c} Vincent Maisonneuve^{a*}

^a Institut des Molécules et des Matériaux du Mans, UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

^b Collège de France, Chaire de Chimie du Solide et de l'Energie, UMR 8260 CNRS, 11 Place Marcelin Berthelot, 75231 Paris, France

c Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459,
80039 Amiens, France

Kévin Lemoine present address: Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Abstract

In our search for novel insertion compounds for Li-based batteries, we have identified a new mixed iron vanadium based Hexagonal Tungsten Bronze (HTB) type phase. Its synthesis involves two steps which consist first of preparing the mixed metal hydrate fluoride $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ by a microwave assisted thermal process, followed by a thermal treatment under air to obtain the metastable HTB- (Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} hydroxyfluoride. ⁵⁷Fe Mössbauer spectrometry demonstrates TOT310B

Dalton Transactions Accepted Manuscript

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

the presence of oxidation states Fe^{2+} and Fe^{3+} in $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ as opposed to only Fe³⁺ in HTB-(Fe_{0.55}V_{0.47})F_{2.67}(OH)_{0.33}. Moreover Mössbauer spectra recorded at 77 K reveal that none of the compounds shows magnetic ordering owing to the presence of V³⁺ distributed over the crystallographic sites of Fe³⁺. Complementary Xray spectroscopy and Rietveld refinement further confirm the successful synthesis of HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}. Electrochemically-wise, HTBthe new $(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}$ shows a first discharge capacity of 181 mAh.g⁻¹ with 67% of this capacity remaining upon cycling. Unlike HTB-FeF_{2.66}(OH)_{0.34} the structure remains stable after the first discharge confirming the positive effect of the vanadium in the HTB network.

1. Introduction

Improving both the energy density and power rate of present Li-ion batteries together with their sustainability while preserving safety is nowadays a major research challenge.^{1,2} To achieve this goal, hope is placed on all-solid-state batteries, which by virtue of using a Li metal negative electrode and a solid electrolyte could lead to both

energy density and safety improvements, respectively. However, interface problems 1013108

remain to be solved prior such an option could become a practical reality. Meanwhile, the LiFePO₄-based lithium-metal-polymer battery technology presently on the market provides a midway solution since it enhances safety owing to the use of a solventfree PEO polymeric membrane.³⁻⁵ In contrast, this technology does not fully capitalize on the use of Li negative electrode, which must be in large excess because of some dead mossy Li forming upon cycling. Furthermore, it is penalized by its mandatory operation at 55°C to reach sufficient ion conduction in the electrolyte for ensuring good performances. As a whole, besides enhancing the coulombic plating-stripping efficiency of the Li-electrode another way to enhance the energy of Li-polymer batteries is to design better positive electrodes bearing in mind that they can be Lifree content, as opposed to the Li-ion technology, since they use a Li negative electrode. Let us simply recall that Li-free V₂O₅ was the positive electrode material early used in the development of Li-polymer batteries, thus a greater opening of the materials field to explore.

Within this context, FeF_3 with a theoretical capacity of 237 mAh.g⁻¹ and an anticipated high operational voltage due to the presence of the very electronegative

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

fluorine element has been intensively explored.⁶⁻¹¹ Three polymorphs exist for 15 ebg T01310B The most thermodynamically stable one adopts the rhombohedral ($R\overline{3}c$) ReO₃ type structure¹² and simultaneously shows the closest packing, hence being the most prone to limited Li⁺ diffusivity. In contrast, the two other polymorphs, namely pyrochlore (Pyr-FeF₃, $Fd\overline{3}m$)¹³ with 3D open network and Hexagonal Tungsten Bronze (HTB-FeF₃, *Cmcm*)¹⁴ with 1D channels along the *c* axis, are metastable and display open frameworks.¹⁰ These metastable structures can be synthesized with water molecules within the framework.¹⁵ Recently, we have succeeded in preparing a water-free (HTB-FeF_{2.67}(OH)_{0.33}) by thermal dehydration of $Fe_3F_8(H_2O)_2$ which exhibits an experimental capacity of 170 mAh.g⁻¹ vs. Li⁺/Li.¹⁶ Following this strategy, we have also explored the effect of mixing 3d transition metals (TM) on the electrochemical properties of new amorphous oxyfluorides obtained by thermal treatment of the hydrated M^2 +Fe³⁺₂F₈(H₂O)₂ (M^2 + = Mn, Co, Ni, Cu) and found attractive electrochemical properties.^{17,18} The iron-vanadium hydrated fluoride $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ was studied as well and interestingly, we showed that during its thermal decomposition an intermediate phase is formed with HTB structure type. The hydrate adopts the monoclinic C2/m Fe₃F₈(H₂O)₂ structure type which is built up from

Dalton Transactions

HTB sheets (Figure 1a). Its 3D structure can be described by perovskite and a view Article Online

 $_{\infty}[M^{3+}F_4]$ connected to each other by isolated $M^{2+}_2F_4(H_2O)_2$ octahedra (Figure 1b).^{19,20} At this stage, we should recall that vanadium trifluorides were only found in ReO₃ and pyrochlore packing^{12,21} and that were tested as a cathode material in LIB and NIB batteries.^{6,22} Herein we report on the microwave assisted solvothermal synthesis of $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ followed by a proper thermal treatment to unravel the first example of mixed iron vanadium based fluoride (Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} with a framework HTB. We precisely defined its formulation and structure from combined XRD refinements, thermogravimetric measurements (TGA), Rietveld Energy Dispersive X-ray spectroscopy (EDX), and Mössbauer spectrometry, while its electrochemical activity towards Li⁺ (181 mAh.g⁻¹) was deduced by assembling HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}/Li cells.

Page 5 of 28

Figure 1. View of the HTB sheet (a) and projection along b of the structure of $Fe_{1.6}V_{1.4}F_8(H_2O)_2$ (b).

2. Methodology

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

2.1 Experimental Methods

The mixed metal fluoride $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ is synthesized by solvothermal reaction using a MARS-5 microwave Digestion System (CEM Corp.) from the starting reactants $FeCl_2 \cdot 4H_2O$ (98%, Alfa Aesar), VCl_3 (Alfa Aesar), absolute methanol (99.8%, Sigma Aldrich), deionized water and hydrofluoric acid solution "HF" (27.6 mol.L⁻¹, 48%, Riedel De Haen). The safe use of highly hazardous concentrated HF solutions requires wearing gloves (neoprene) and handling inside a fume hood. The concentration [Fe²⁺] + [V³⁺] was fixed equal to 0.1 mol.L⁻¹ and the Fe²⁺/V³⁺/HF/MeOH

ratio equal to 1/2/44/699. The mixture was inserted in Teflon autoclaves and stirred TO1310B for 30 min then heated at 160°C for 1 h with stirring. After cooling, the light brown powder product was filtered, washed with 2 mL of ethanol and dried overnight under air at 100°C. A partial oxidation of Fe²⁺ into Fe³⁺ ions due to the presence of water leads to the formulation $Fe^{2+}Fe^{3+}_{0.64}V^{3+}_{1.36}F_8(H_2O)_2$. This product was then inserted in a furnace under ambient air and heated at 280°C, during 1 h (heating/cooling rate of 2°C/min). After cooling to room temperature, a dark brown hydroxyfluoride resulted with the formulation $(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}$. It is also worth to emphasize that after the thermal treatment; all the phases are immediately outgassed at ambient temperature under secondary vacuum ($P < 10^{-5}$ bar) and stored in a glove box prior being characterized.

2.2 Characterization Methods

2.2.1 Structural and chemical compositions

X-ray diffraction patterns were collected in the range $8^{\circ} \le 2\theta \le 150^{\circ}$ on a Panalytical MPD-PRO diffractometer equipped with a linear X'celerator detector with CuK_a (1.541 Å). In some cases, the CoK_a radiation (1.789 Å) was used to avoid the X-ray

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

fluorescence. Rietveld refinements were performed by using the Fullprof profile TO1310B refinement program.^{23,24} For the temperature dependant diffraction the Anton Parr reactor chamber XRK 900 heating device was used with an alumina sample holder, the temperature was allowed to equilibrate for 15 min prior to the measurement.

⁵⁷Fe Mössbauer measurements were performed in transmission geometry with a 925 MBq γ-source of ⁵⁷Co/Rh mounted on a conventional constant acceleration drive. The velocity of the source was calibrated using α -Fe as the standard at RT. The samples with 5 mg Fe/cm² were prepared from a softly milled powder. Data were fitted using the MOSFIT program²⁵ involving quadrupolar components with lorentzian lines. The isomer shift values are referred to that of α -Fe at RT.

SEM images of the powders were obtained using a JEOL microscope (JSM 6510 LV). Acceleration voltages varied between 20 and 30 kV as a function of the analyzed samples. Elementary quantitative microanalyses were performed using an Energy Dispersive X-ray (EDX) OXFORD detector with Aztec software.

2.2.2 Thermal analyses

The thermogravimetric (TGA) experiments were carried out with a thermoanalyzer 1310B SETARAM TGA 92 with a heating rate of 2°C.min⁻¹ from room temperature up to 900°C under ambient air and dry air (Alphagaz, mixture of oxygen (20%) with nitrogen (80%), H₂O < 3 ppm).

X-ray thermodiffraction (HT-XRD) experiments were performed under dry air flow in an Anton Parr XRK 900 high temperature furnace with the diffractometer already described. The samples were heated from 40°C to 600°C at a heating rate of 10°C min⁻¹. X-ray diffraction patterns were recorded in the 5-60° range with a scan time of 10 min at 10°C intervals from room temperature to 400°C and 50°C intervals from 400°C to 600°C.

The powder of $Fe^{2+}Fe^{3+}_{0.64}V_{1.36}F_8(H_2O)_2$, was heated in a furnace (Nabertherm LT 3/12/P330) at a heating rate of 3°C.min⁻¹ from room temperature to T ≤ 300°C under ambient atmosphere and were cooled at room temperature. Then, IR spectra were collected *ex-situ* (20°C intervals) between 40 cm⁻¹ and 4000 cm⁻¹ with a scan time of 2 min with an ALPHA FT-IR Spectrometer.

2.2.3 Electrochemistry characterizations

The electrochemical activity against lithium was evaluated using a Swagelok Linmetal rolling cell. Electrodes were composed of 80% active materials and 20% carbon-SP (super pure) as the conductive agent; they were ball-milled using a SPEX Miller 800 at 875 cycles/min for 15 minutes. The area of the electrode was 1 cm² with a loading mass of 8 mg. The electrolyte was the commercial LP30 (1M LiPF₆). The cell was cycled between 2 and 4 V versus Li⁺/Li at C/20 current density.

2. Results and discussion

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

2.1. Synthesis and characterization of the hydrated fluoride

Our group recently developed a new solvothermal method assisted by microwave heating to synthesize under mild conditions pure hydrated fluorides of general formulae *M*Fe₂F₈(H₂O)₂.¹⁷ Herein we implemented this strategy for the preparation of the mixed 3d TM starting with a ratio Fe²⁺:V³⁺ of 1:2. The as-synthesized hydrate fluoride was studied by ⁵⁷Fe Mössbauer spectrometry to establish the Fe valence states (**Figure 2a**). The spectrum collected at 300 K can be clearly interpreted as a quadrupolar hyperfine structure with two paramagnetic components consisting of well resolved doublets with Lorentzian profiles. The asymmetrical profile of the right line

corresponding to the ferrous component can solely be fitted with two quadrupole T01310B doublets, resulting from disordered chemical atomic environments. The refined (mean) values of the characteristic hyperfine parameters (**Table 1**) reveal clearly both valence states Fe^{2+} and Fe^{3+} , with a molar ratio $Fe^{3+}/Fe^{2+} = 0.64$.

Figure 2. ⁵⁷Fe Mössbauer spectra recorded at 300 K and 77 K on $Fe_{1.64}V_{1.36}F_8(H_2O)_2$; the red line corresponds to Fe^{2+} and the blue line to Fe^{3+} (a), Rietveld refinement of the structural model with the diffraction pattern (b) of $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ at room temperature.

Interestingly, the spectrum recorded at 77 K does not reflect the expected magnetic order previously observed for Fe³⁺ below 157 K in M^{2+} Fe³⁺₂F₈(H₂O)₂ phases, with the

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

typical splitting in Zeeman sextet. Instead, it shows two paramagnetic components, rousing confirming the analysis made on the 300 K spectrum. *A priori*, the presence of V³⁺ on Fe³⁺ crystallographic sites explains the magnetic order reduction, namely the weakening of the Fe-Fe interactions by the presence of V³⁺ ions. Consequently, instead of the expected formulation $Fe^{2+}V^{3+}_2F_8(H_2O)_2$ we obtained $Fe^{2+}Fe^{3+}_{0.64}V^{3+}_{1.36}F_8(H_2O)_2$ denoted $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ hereafter. In fact, during the synthesis, part of Fe²⁺ is oxidized to Fe³⁺ due to the water content in aqueous HF.

Table 1. Refined values of hyperfine parameters of $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ phase at 300 K and 77 K

Temperature		Fe ⁿ⁺	δ ± 0.01	∆E Q ± 0.01	τ ± 0.01
300 K	2	Fe ³⁺	0.46	0.58	0.39
	doublets	Fe ²⁺	<1.33>	<1.74>	0.61
77 K	2	Fe ³⁺	0.57	0.40	0.39
	doublets	Fe ²⁺	<1.45>	<3.09>	0.61

 δ and ΔE_{Q} are given in mm.s $^{-1}$

Diffraction pattern recorded on the as-synthesized phase reveals a structure isotypic to $Fe_3F_8(H_2O)_2$ that can be indexed with the C2/m space group. Rietveld refinement was performed using the atomic positions of $Fe_3F_8(H_2O)_2$ (ISCD-38366); the

occupancy factor for the shared 4f Wyckoff position for Fe³⁺ and V³⁺ was: fixed/by rotation using the Mössbauer spectrometry results. 4f Wyckoff position for V³⁺ have been chosen considering bond valence calculations (**Table S3**), and careful inspection of M-(O/Ow/F) distances. A reliable fit with acceptable agreement factors (R_B/R_f = 0.039/0.057) was obtained (**Figure 2b**). Structural parameters obtained after refinement are gathered in **Tables S1** and **S2**.

2.2. Thermal decomposition

The precursor $Fe_{1.64}V_{1.36}F_8(H_2O)_2$ was then subjected to thermal treatment and its structural and water content evolutions were followed by *in situ* XRD and TGA analysis. **Figure 3a** displays the thermodiffractograms obtained on the hydrated phase, it can be seen that this phase is stable up to 220 °C, and starts its dehydration at 240°C giving the formulation stated now and discussed later HTB- $(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}$. The temperature range of stability for this HTB hydroxyfluoride is between 240 and 280°C. Above 280°C a mixture between HTB and a new unknown phase up to 400°C is observed (Figure S1) and at 500°C only hematite Fe₂O₃ is left. Owing to the absence of vanadium based crystalline phase

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

above 500°C we can suggest the sublimation of a vanadium phase like MOF₃₀3with rolline sublimation temperature of 480°C, or VF₃.²⁶ The thermogravimetric measurement (**Figure 3b**) shows a total weight loss of 63.8 % starting above 200°C. Combining the previous thermal analysis with HT-XRD, the following decomposition reactions can be suggested. Equation (1) is valid in the temperature range [220-280°C] and Equation (2) in the range [280-500°C].

$$Fe_{1.64}V_{1.36}F_8(H_2O)_2 + 1/4O_2 \rightarrow 3(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} + 3/2H_2O$$
 (1)

 $Fe_{0.55}V_{0.45}F_{2.67}(OH)_{0.33} + 0.495H_2O \rightarrow 0.45VF_3 + 0.275Fe_2O_3 + 1.32HF$ (2)

Figure 3. Thermal evolution of X-ray diffraction patterns (Cu Ka) under dry air (a) and

thermogravimetric curve under dry air (b) of $Fe_{1.6}V_{1.4}F_8(H_2O)_2$.

Dalton Transactions

Despite a narrow temperature window of stability, the HTB-phase was successfully TO1310B isolated by heating the hydrated fluoride during 1 h at 280°C under ambient air. In order to follow the dehydration process, ex situ FTIR experiment at different temperatures were performed (Figure S2). The FTIR spectrum at 160°C presents two bands: one broad, between 3000 and 3500 cm⁻¹ corresponding to OH stretching modes and one sharp at 1625 cm⁻¹ characteristic of water bending mode. As the temperature increases, these absorption bands decrease, confirming water removal, while two new intense peaks at 1090 and 1170 cm⁻¹ raise. These bands are attributed to hydroxyl deformation bands that involve metal oxygen bonds. Vimont et *al.* have demonstrated that these bands are a coupling of in-plane bending $\delta(OH)$ and v(M-O) vibration in HTB metal hydroxyfluorides.²⁷ These results would evidence the formation of a metal hydroxyfluoride.

Mössbauer experiments were carried out at 300 K and 77 K on the as-obtained phase to determine the valence states and the environment of 57 Fe (**Figure 4a**) after the thermal treatment. The spectra consist of a single broadened and asymmetrical line which can be perfectly described by means of two main paramagnetic doublets plus a minor doublet corresponding to FeF₂ impurity (2 mol%). The refined values of

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

the hyperfine parameters, summarized in **Table 2**, reveal the presence of only one rossies valence state for Fe³⁺ in two different environments. Because the crystallographic structure consists only of octahedral units, the significantly different values of the isomer shift suggest different chemical environments: the first environment with the smallest quadrupole splitting (0.24 mm.s⁻¹) and the highest isomer shift (0.48 mm.s⁻¹) corresponds to a regular FeF₆ octahedron whereas the second one, with the quadrupole splitting of 0.70 mm.s⁻¹ and a weaker isomer shift (0.39 mm.s⁻¹) is attributed to an asymmetric octahedron with either hydroxide or fluorine at the vertexes.^{16,28,29}

Figure 4. ⁵⁷Fe Mössbauer spectra recorded at 300 K and 77 K Dot no.159 $B \oplus TO1310B$ (Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}, (a) and EDX elemental mapping of HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} (b).

The reported magnetic order temperature for fluorides having the HTB type structure alike FeF₃ is of \approx 97 K whereas in our experiment, the spectrum at 77 K exhibits only two paramagnetic components, meaning that the magnetic order temperature is lowered.^{15,30} This feature would confirm the presence of V³⁺ on Fe³⁺ crystallographic sites. To discard phase segregation which would corroborate the atomic distribution between V³⁺ and Fe³⁺, EDX spectroscopy on the stabilized HTB hydroxyfluoride was performed by SEM (**Figure 4b**). A homogenous dispersion of both metals without phase segregation was noticed with Fe³⁺/V³⁺ ratio close to 1.

Table 2. Refined values of the hyperfine parameters of $Fe_{0.55}V_{0.45}F_{2.67}(OH)_{0.33}$ at 300 K and 77 K.

Temperature		Fe ⁿ⁺	δ ± 0.01	ΔE _Q ± 0.01	τ ± 0.01
300 K	3 doublets	Fe ³⁺	0.48	0.24	0.39
			0.39	0.70	0.59
		Fe ²⁺	1.15	1.72	0.02

		F a ³ +	0.57	0.26	0.39	View Article Online DOI: 10.1039/D0DT01310B
77 K	3 doublets	гe	0.51	0.71	0.59	
		Fe ²⁺	1.25	2.92	0.02	_

 δ and ΔE_Q are given in mm.s⁻¹

A diffraction pattern was recorded on the stabilized phase to confirm the mixed iron vanadium based HTB type structure (**Figure 5a**). The pattern was indexed using $P6_3/$ m instead of the original space group Cmcm for HTB-FeF₃ (Table S3) in order to better estimate the Fe-F distances, as described by Leblanc et al. and further confirmed by Lemoine et al.^{16,31} Rietveld refinement was performed with V³⁺ sharing the 6g Wyckoff position of Fe³⁺ (Mössbauer result) and with a partial occupancy of the 12i Wyckoff position of fluorine atoms F(2) by oxygen atoms fixed at 16.7% to comply with the OH/F ratio established by TGA, structural parameters are gathered in **Table 3.** The occupancy of V^{3+} and Fe^{3+} on 6g Wyckoff positions was fixed with respect to Equation 1. As HTB structure easily absorbs water during sample preparation, we added water molecules within the hexagonal channels on the Wyckoff position 2a, giving satisfactory fit with agreement factors (R_B/R_f = 0.086/0.099). A lack of intensity is observed on (002) ($2\theta = 27.4^{\circ}$) reflection possibly due to either preferred orientation or to the high degree of freedom of water

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

displacement within the cavity. Structural parameters after refinement are gathered in TO1310B Table 4. FTIR, Mössbauer spectrometry, EDXS and XRD confirm the successful

stabilization of the first vanadium based fluoride HTB type structure (Figure 5b).

 $K\alpha_2$) (a) and view of structure (b) of HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}·nH₂O.

Table 3. Data collection and structural parameters of HTB-

 $(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}\cdot nH_2O$ obtained by powder diffraction.

Formulation	(Fe _{0.55} V _{0.45})F _{2.67} (OH) _{0.33} ·0.1H ₂ O	Distances (Å)
System / Space Group	hexagonal / P6 ₃ /m	
a (Å), c (Å)	7.391(1), 7.557(1)	2x (Fe/V)-F(1) = 1.89(1)
V (ų), Z	357.5(1), 6	2 x (Fe/V)-F(2)/O(2) = 1.91(9)
Wavelength (Å)	CoKα	2 x (Fe/V)-F(2)/O(2) = 1.94(13)
ρ _{calc.} (g.cm ⁻³)	ρ _{calc.} (g.cm ⁻³) 3.081	
2θ (°)	5 – 150	$Ow^{-1}(1)/O(1) = 5.20(0)$
Unique refl.	366	Valence

Refined param.	15	View Article Online DOI: 10.1039/D0DT01310E
R _p / R _{wp}	0.436 / 0.251	$\Sigma V(1)/E_{2}(1) = \pm 2.21$
R _B / R _f	0.084 / 0.081	2v(1)/Fe(1) = +5.51
χ ²	2.13	

Table 4. Atomic positions and isotropic displacement parameters of HTB-

 $(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} \cdot 0.1H_2O.$

Atome	Site	X	у	Z	τ	B_{eq} (Å ²)
Fe(1)	6g	1/2	0	0	0.546	1.7(1)
V(1)	6g	1/2	0	0	0.454	1.7(1)
F(1)	6h	0.505(5)	-0.017(4)	1/4	1	4.6(3)
F(2)	12i	0.210(13)	-0.206(13)	-0.001(5)	0.833	4.6(3)
O(2)	12i	0.210(13)	-0.206(13)	-0.001(5)	0.167	4.6(3)
Ow(1)	2a	0	0	3/4	0.30	6.9(1)

 τ stands for occupancies

Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM.

2.3. Electrochemical evaluation

Cylic voltammetry charge-discharge measurements were performed on Li-half cells using either the hydrated fluoride or the HTB hydroxyfluoride as the positive electrode. The cells were cycled between 2 and 4 V vs Li⁺/Li at a rate of C/20 (**Figure 6**). The low cutoff voltage (2 V) was chosen to avoid irreversible conversion into metallic Fe that is known to happen in these types of phases below $\approx 1.9 \text{ V}.^{22}$ The HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} phase can uptake during the first discharge more than

Dalton Transactions

0.7 Li⁺ (e.g. \approx 180 mAh.g⁻¹) while Fe_{1.64}V_{1.36}F₈(H₂O)₂ barely uptake 0.04 dci⁺1(Figure TO1310B) 6a). This indicates that water molecules hinder Li⁺ diffusivity within the hydrated fluoride, as already noticed.¹⁶ Turning back to the capacity of (Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} it drops to 123 mAh.g⁻¹ and remains constant up to the 10th cycle (Figure 6b), the maximum we have tried. The large capacity loss (≈ 30%) between the first discharge and first charge exceeds what is usually found in intercalation compounds. Electrolyte or electrode decomposition are usually responsible for such large capacity losses, but the constancy of the capacity retention once the first cycle is achieved, does not support this explanation.³² The diffraction pattern (Figure 6c) exhibits the most intense HTB peaks at 13.8, 23.5 and 27.9° for HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}, still persisting after the discharge to 2 V with a visible shift in lower angle values especially for the peaks corresponding to the (110), (002), (130), (112) and (220) reflections attesting the lithium insertion in the structure. A broadening of these Bragg peaks results probably from an amorphization and would explain the irreversible trapping (0.2 Li⁺) occurring through the first cycle. Such trapping was also evidenced in previous works on HTB-hydroxyfluoride through in situ XRD measurements¹⁶ and PDF analyses by Dambournet *et al.* in which $FeF_{2,2}(OH)_{0,8}O_{x/2} \square_{x/2}$ collapse yielding

Dalton Transactions Accepted Manuscript

disordered rutile and rock salt structure types.33,34 The remaining HTB: network TO1310B

suggests the positive effect of vanadium in preventing the phase transition from the HTB structure to the more thermodynamically stable allotropic varieties of FeF₃¹⁶ that was observed for FeF_{2.67}(OH)_{0.33} (Figure 6c). Such positive effect of vanadium within Published on 13 May 2020. Downloaded by Uppsala University on 5/14/2020 8:40:24 AM. the HTB structure was also studied and observed with other 3d elements like Ti,^{35,36} Co37 or Mn.38,39 4.5 a) 4.0 3.5

First discharge and charge voltammetric curves Figure 6. Li⁺/Li for VS Fe_{1.64}V_{1.36}F₈(H₂O)₂ and HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} (a) and cyclic voltammetry curves of HTB-(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} (b) at C/20, XRD patterns of HTB-

 $(Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}$ before and after the first discharge to 2 V with (hkl)indices to 13.8°, 24.7° and 27.6° Bragg peaks, (c) and HTB-FeF_{2.67}(OH)_{0.33} after the first discharged to 2V compared to theoretical XRD pattern of ReO₃-FeF₃ and HTB-FeF₃ (d).

3. Conclusion

We have reported the synthesis of the first vanadium based HTB fluoride (Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33} via a controlled dehydration reaction. It crystallizes, as deduced by Rietveld refinement, in the $P6_3/m$ space group confirming the HTB type structure with hexagonal channels. The distribution of vanadium/iron at the crystallographic sites belonging to the HTB structure ((Fe_{0.55}V_{0.45})F_{2.67}(OH)_{0.33}) was restrained from Mössbauer spectrometry. This phase can uptake 0.7 Li⁺ in discharge, of which only 0.5 can be removed in charge, the irreversibility (≈ 0.2 Li⁺) having probably been most associated with partial amorphization of the structure or a reduction of the coherent diffraction domains. In addition, XRD analysis has demonstrated the advantage of vanadium in stabilizing the metastable HTB network which was partially preserved in the first discharge. An obvious extension of this work

will be to further manipulate the chemistry of this phase by selecting the appropriate online cationic substituent and its correct content to stabilize HTB against its partial amorphization during discharge to take advantage of its full capacity.

Conflicts of interest

There are no conflicts to declare.

Acknowledgments

The authors acknowledge the French Research Ministry for the doctoral grant to KL and the platforms of IMMM "Diffusion et Diffraction des Rayons-X" and "Microscopy".

References

1 J.M. Tarascon, M. Armand, Nature, 2001, 414, 359-367.

2 M. Armand, J.M. Tarascon, Building better batteries, *Nature*, 2008, **451**, 652-657.

3 L. Damen, J. Hassoun, M. Mastragostino, B. Scrosati, J. Power Sources, 2010, 195, 6902-6904.

4 P. Hovington, M. Lagacé, A. Guerfi, P. Bouchard, A. Mauger, C.M. Julien, M. Armand, K. Zaghib, *Nano Lett.*, 2015, **15**, 2671-2678.

5 A. Mauger, M. Armand, C.M. Julien, K. Zaghib, J. Power Sources, 2017, 353, 333-342.

6 H. Arai, S. Okada, Y. Sakurai, J. I. Yamaki, J. Power Sources, 1997, 68, 716-719.

7 F. Badway, F. Cosandey, N. Pereira, G.G. Amatucci, J. Electrochem. Soc., 2003, 150, A1209-A1218.

8 F. Badway, F. Cosandey, N. Pereira, G.G. Amatucci, J. Electrochem. Soc., 2003, 150, A1318-A1327.

9 M.A. Reddy, M. Fichtner, Elsevier, 2015, pp. 51-76.

10 D.E. Conte, N. Pinna, Mater. Renew. Sust. Energy, 2014, 3, 37.

11 H. Groult, A. Tressaud, Chem. Commun., 2018, 54, 11375-11382.

12 K.H. Jack, V. Gutmann, Acta Cryst., 1951, 4, 246-249.

13 R. De Pape, G. Ferey, Mater. Res. Bull., 1986, 21, 971-978.

14 C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, J. Am. Chem. Soc., 2013, **135**, 11425-11428.

15 M. Leblanc, G. Ferey, P. Chevallier, Y. Calage, R. De Pape, J. Solid State Chem., 1983, 47, 53-58.

16 K. Lemoine, L. Zhang, D. Dambournet, J.-M. Grenèche, A. Hémon-Ribaud, M. Leblanc, O.J. Borkiewicz, J.-M. Tarascon, V. Maisonneuve, J. Lhoste, *Chem. Mater.*, 2019, **31**, 4246-4257.

17 K. Lemoine, L. Zhang, J.-M. Grenèche, A. Hémon-Ribaud, M. Leblanc, A. Guiet, C. Galven, J.-M. Tarascon, V. Maisonneuve, J. Lhoste, *J. Phys. Chem. C*, 2019, **123**, 21386-21394.

18 K. Lemoine, J. Lhoste, A. Hémon-Ribaud, N. Heidary, V. Maisonneuve, A. Guiet, N. Kornienko, *Chem. Sci.*, 2019, **10**, 9209-9218.

19 E. Herdtweck, Z. Anorg. Allg. Chem., 1983, 501, 131-136.

20 M. Leblanc, G. Ferey, Y. Calage, R. De Pape, J. Solid State Chem., 1984, 53, 360-368.

21 K. Barthelet, J. Marrot, D. Riou, G. Férey, J. Solid State Chem., 2001, 162, 266-269.

22 M. Nishijima, I.D. Gocheva, S. Okada, T. Doi, J. I. Yamaki, T. Nishida, *J. Power Sources*, 2009, **190**, 558-562.

23 A. Le Bail, H. Duroy, J.L. Fourquet, Mater. Res. Bull., 1988, 23, 447-452.

24 J. Rodríguez-Carvajal, Physica B: Condensed Matter, 1993, 192, 55-69.

25 J.M. Greneche, J. Linares, F. Varret, Y. Laligant, G. Ferey, J. Magn. Magn. Mater., 1988, 73, 115-122.

26 L.E. Trevorrow, J. Phys. Chem., 1958, 62, 362-362.

27 A. Vimont, J.-C. Lavalley, L. Francke, A. Demourgues, A. Tressaud, M. Daturi, J. Phys. Chem. B, 2004, 108, 3246-3255.

28 N. Louvain, A. Fakhry, P. Bonnet, M. El-Ghozzi, K. Guérin, M.-T. Sougrati, J.-C. Jumas, P. Willmann, *CrystEngComm*, 2013, **15**, 3664-3671.

29 M. Duttine, D. Dambournet, N. Penin, D. Carlier, L. Bourgeois, A. Wattiaux, K.W. Chapman, P.J. Chupas, H. Groult, E. Durand, A. Demourgues, *Chem. Mater.*, 2014, **26**, 4190-4199.

30 Y. Calage, M. Leblanc, G. Ferey, F. Varret, J. Magn. Magn. Mater., 1984, 43, 195-203.

31 M. Leblanc, R. De Pape, G. Ferey, J. Pannetier, Solid State Commun., 1986, 58, 171-176.

32 T. Krahl, F. M. Winkelmann, A. Martin, N. Pinna, E. Kemnitz, Chem. Eur. J., 2018, 24.

33 D. Dambournet, K.W. Chapman, M. Duttine, O. Borkiewicz, P.J. Chupas, H. Groult, *ChemistryOpen*, 2015, 443-447.

34 M. Burbano, M. Duttine, B.J. Morgan, O.J. Borkiewicz, K.W. Chapman, A. Wattiaux, A. Demourgues, H. Groult, M. Salanne, D. Dambournet, *J. Phys. Chem. Lett.*, 2019, **10**, 107-112.

35 Z. Yang; Z. Zhang, Y. Yuan, Y. Huang, X. Wang, X. Chen, S. Wei, *Current Applied Physics*, 2016, 16, 905-913.

36 S. Wei, X. Wang, R. Yu, R. Zhang, M. Liu; Z. Yang, H. Hu, J. Alloys Compd., 2017, 702, 372-380.

37 Z. Zhang; Z. Yang; Y. Li; X. Wang, J. Phys. Chem. Solids, 2018, 123, 87-96.

38 J. Ding, X. Zhou, H. Wang, J. Yang, Y. Gao, J. Tang, ACS App. Mater. & Inter 2019/ev14/ticle Online 3852-3860.

39 Y. Lu; S. Huang, Z. Zhang, X. Huang, L. Lan, L. Lu, S. Li, J. Li, C. Pan, F. Zhao, *Ionics*, 1-8.

The first mixed iron vanadium hydroxyfluoride ($(Fe_{0.53}V_{0.47})F_{2.67}(OH)_{0.33}$) with a Hexagonial Article Online Tungsten Bronze (HTB) network was synthesized. The HTB structure possesses 1D channels allowing lithium insertion and recovering. Its electrochemical evaluation as positive electrode reveals a capacity of 181 mAh.g⁻¹. Unlike pure iron hydroxyfluoride (FeF_{2.66}(OH)_{0.34}) the HTB network is partially maintained upon cycling.

