Synthesis and Antitumor Activities of 2-(Substituted)phenyl-1,2,4-triazolo[1,5-*a*]pyridines

Guolin Zhang and Yongzhou Hu

Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China

Email: guolinzhang@zju.edu.cn
Received April 19, 2006

$$H_3C$$
 H_3C
 H_3C

Twenty-three 2-(substituted)phenyl-1,2,4-triazolo[1,5-a]pyridines have been synthesized by cycloadditison reaction between N-amino methylpyridinium mesitylenesulfonates and substituted benzonitriles under the presence of potassium hydroxide at room temperature. The structures of all products were confirmed by 1 H NMR, MS and elemental analyses. The antitumor activities of these compounds were evaluated against human ovary cancer cell line (HO-8910) in vitro by MTT method. The preliminary results showed that compound 1e (IC₅₀ 28 μ M) and compound 1e (IC₅₀ 31 μ M) exhibited stronger antitumor activities than cisplatin (IC₅₀ 35 μ M) in vitro. Hence, 1e and 1e have potential antitumor activities and are worth further investigation.

J. Heterocyclic Chem., 44, 919 (2007).

INTRODUCTION

It was well known that many compounds containing triazolopyridine skeleton have interesting bioactivities [1]. For example, 8-amino-2-aryl-1,2,4-triazolo[1,5-a]pyridine-6-carboxyl amide derivatives were proved to inhibit the human adenosine 2a (hA2a) receptor [2], the 1,2,4-triazolo[3,4-a]pyridine was considered as a constrained template for fibrinogen receptor (GPIIb/IIIa) antagonists [3]. Recently, 2-aryl-1,2,4-triazolo[1,5-a]pyridines have been found to have pregnancy interceptive activity [4]. The mechanism of pregnancy interceptive activity was cell apoptosis to cause luteolysis [5]. Because tumor cells grow vigorously like embryo cells, we are interested in whether or not 1,2,4-triazolo[1,5-a]pyridines have antitumor activities. Therefore, twenty-three compounds of 2-(substituted)phenyl-1,2,4-triazolo[1,5-a]pyridines

been synthesized and their antitumor activities have been evaluated. The most promising compounds were 2-(4-benzyloxyphenyl)-8-methyl-1,2,4-triazolo[1, 5-a]pyridine **1e** and 2-(4-benzyloxyphenyl)-5-methyl-1,2,4-triazolo[1,5-a]pyridine **1w**. To the best of our knowledge, the antitumor activities of 1,2,4-triazolo[1,5-a]pyridine derivatives have not been yet reported in the literature.

RESULTS AND DISCUSSION

Scheme 1 outlines the synthetic sequences employed in our laboratories for the preparation of **1a-1w**. N-Amination of methylpyridines **2** with *O*-mesitylenesulfonyl hydroxylamine (MSH) afforded *N*-amino methylpyridinium mesitylenesulphonates **3**. Subsequently, 1,3-dipolar cycloaddition reaction between **3** and aromatic nitriles in the presence of potassium hydroxide solution gave target compounds **1a-1w**. Physical properties and

Scheme 1

 Table 1

 Physical and Analytical Data of Compounds 1a-1w

Compound	R_1	R_2	R_3	R ₄	Mp (°C)	Yield %	Molecular Formula	Analysis % Calcd./Found		
					(- /			C	Н	N
1a	Н	Н	OMe	Н	123-125	43	$C_{14}H_{13}N_3O$	70.28	5.48	17.56
								70.25	5.46	17.57
1b	Н	Н	OEt	Н	128-129	46	$C_{15}H_{15}N_3O$	71.13	5.97	16.59
								71.14	6.00	16.57
1c	Н	Н	OBu-n	Н	106-108	42	$C_{17}H_{19}N_3O$	72.57	6.81	14.94
1d	11	11	Cl	11	102 105	40	C II CIN	72.50	6.73	14.86
10	Н	Н	CI	Н	193-195	40	$C_{13}H_{10}ClN_3$	64.07 64.05	4.14 4.13	17.24 17.28
1e	Н	Н	OBz	Н	116-118	40	$C_{20}H_{17}N_3O$	76.17	5.43	13.32
ıc	11	11	ODZ	11	110-110	40	C201117113O	76.25	5.39	13.23
1f	Н	Н	Н	Н	100-101	44	$C_{13}H_{11}N_3$	74.62	5.30	20.08
							-15 11 5	74.65	532	20.05
1g	Н	Н	NMe_2	H	190-192	46	$C_{15}H_{16}N_4$	71.40	6.39	22.21
								71.42	6.38	22.24
1h	Н	OMe	OMe	Н	154-156	50	$C_{15}H_{15}N_3O_2$	66.90	5.61	15.60
								66.92	5.59	15.54
1i	Н	OC	$^{\circ}H_{2}O$	Н	155-157	46	$C_{14}H_{11}N_3O_2$	66.40	4.38	16.59
4.	**	014	014	014	127 120	40	C II N O	66.42	4.35	16.61
1j	Н	OMe	OMe	OMe	127-129	40	$C_{16}H_{17}N_3O_3$	64.20 64.21	5.72 5.70	14.04 14.01
1k	OMe	Н	Н	Н	123-125	35	$C_{14}H_{13}N_3O$	70.28	5.48	17.56
1K	ONIC	11	11	11	123-123	33	C ₁₄ 11 ₁₃ 1 \ 3O	72.26	5.47	17.57
11	Н	OMe	Н	Н	99-101	41	$C_{14}H_{13}N_3O$	70.28	5.48	17.56
							- 14 15 .5 -	72.30	5.47	17.54
1m	OMe	Н	Н	H	96-98	36	$C_{14}H_{13}N_3O$	70.28	5.48	17.56
								72.30	5.50	17.58
1n	Н	OMe	H	H	143-144	40	$C_{14}H_{13}N_3O$	70.28	5.48	17.56
			0.5			4.5	G ** ** 0	72.29	5.50	17.53
10	Н	Н	OEt	Н	145-147	46	$C_{15}H_{15}N_3O$	71.13	5.97	16.59
1р	Н	Н	OBu-n	Н	110-112	48	$C_{17}H_{19}N_3O$	71.16 72.57	6.00 6.81	16.60 14.94
1p	11	11	ODu-II	11	110-112	40	C ₁₇ 11 ₁₉ 1 \ 3O	72.62	6.78	14.92
1q	Н	Н	OBz	Н	172-174	33	$C_{20}H_{17}N_3O$	76.17	5.43	13.32
1							- 20 17 -3 -	76.19	5.42	13.33
1r	Н	Н	NMe_2	H	>250	38	$C_{15}H_{16}N_4$	71.40	6.39	22.21
								71.44	6.37	22.22
1s	Н	OMe	OMe	Н	136-138	46	$C_{15}H_{15}N_3O_2$	66.90	5.61	15.60
								66.93	5.62	15.57
1t	Н	OC	$^{\circ}H_{2}O$	Н	196-198	49	$C_{14}H_{11}N_3O_2$	66.40	4.38	16.59
1	11	OM-	OM-	OM-	169 170	16	CHNO	66.44	4.37	16.58
1u	Н	OMe	OMe	OMe	168-170	46	$C_{16}H_{17}N_3O_3$	64.20 64.21	5.72 5.70	14.04 13.99
1v	Н	Н	Н	Н	139-141	53	$C_{13}H_{11}N_3$	74.62	5.30	20.08
11	11	-11	-11		155-141	55	C13**111**3	74.65	5.31	20.05
1w	/	/	/	/	124-126	34	$C_{20}H_{17}N_3O$	76.17	5.43	13.32
							20 17 -3 -	76.14	5.42	13.29

elemental analyses data of 1a-1w are summarized in Table 1.

The antitumor activities of 1a-1w were evaluated against human ovary cancer cell line (HO-8910) in vitro by MTT method [6]. The results are summarized in Table 2. The IC₅₀ value represents the drug concentration (μ M) required to inhibit the cell growth by 50%. The preliminary results showed that some synthetic compounds exhibited activities against human ovary cancer cell line (HO-8910) in vitro. The most promising compounds were 2-(4-benzyloxyphenyl)-8-methyl-1,2,4-

triazolo[1,5-a]pyridine **1e** and 2-(4-benzyloxyphenyl)-5-methyl-1,2,4-triazolo[1,5-a]pyridine **1w**. Their IC₅₀ values were 28 μ M and 31 μ M, respectively. They are more potent than cisplatin (IC₅₀ 35 μ M) and are worth farther investigation.

EXPERIMENTAL

Melting points were recorded on a BUCHI melting point B-540 apparatus and are uncorrected. ¹H NMR spectra were determined in CDCl₃ on a Bruker 400 MHz or 500 MHz

Compound	1a	1b	1c	1d	1e	1f	1g	1h	1i
$IC_{50} \mu M$	920	*	*	*	28	*	*	*	*
Compound	1j	1k	11	1m	1n	10	1p	1q	1r
$IC_{50} \mu M$	*	618	*	*	958	*	*	*	*
Compound	1s	1t	1u	1v	1w	cisplatin			
$IC_{50} \mu M$	1400	*	237	212	31	35			

Table 2
Antitumor Activities of Compounds 1a-1w

spectrometer with SiMe₄ as the internal standard. J values are given in Hz. Mass spectral data were obtained by electron ionization (70 eV) on HP5989B instrument. N-Aminomethylpyridinium mesitylenesulfonates were prepared by the procedure described in reference [7]. Column chromatography purifycations were carried out using silica gel (200-300 mesh) with hexane-EtOAc.

General Procedure for the Synthesis of 2-(substituted)-phenyl-1,2,4-triazolo[1,5- α]pyridines (1a-1w). A solution of 3.08 g (10 mmol) N-amino methylpyridinium mesitylene-sulfonate (3) and 10 mmol substituted benzonitrile dissolved in 15 ml of ethanol was cooled by ice-water then 5.2 ml of 2 M KOH was added dropwise. After the addition was complete, the solution was allowed to warm to room temperature and continued to stir for an additional 24 hours. Most of the ethanol was evaporated under reduced pressure. The residual was extracted with CHCl₃ (3 x 10 ml). The CHCl₃ layer was dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The residue was purified by column chromatography to afford the target compound.

2-(4-Methoxyphenyl)-8-methyl-1,2,4-triazolo[1,5-a]pyridine (1a). This compound was obtained as a white solid. ¹H nmr:2.71 (s, 3H, 8-CH₃), 3.90 (s, 3H, 4-OCH₃), 6.90 (t, 1H, 6-H, J=6.9Hz), 7.02 (d, 2H, phenyl protons, J=8.8Hz), 7.27 (d, 1H, 7-H, J= 6.9Hz), 8.25 (d, 2H, phenyl protons, J=8.8Hz), 8.45 (d, 1H, 5-H, J=6.9Hz); ms: m/z 239 (M⁺).

2-(4-Ethoxyphenyl)-8-methyl-1,2,4-triazolo[1,5-*a*]**pyridine (1b).** This compound was obtained as a white solid. ¹H nmr:1.45 (t, 3H, -CH₂CH₃, J=7.0Hz), 2.70 (s, 3H, 8-CH₃), 4.11 (q, 2H, -OCH₂, J=7.0Hz), 6.89 (t, 1H, 6-H, J=6.9Hz), 7.00 (d, 2H, phenyl protons, J=8.8Hz), 7.26 (dd, 1H, 7-H, J=0.8, 6.9Hz), 8.23 (d, 2H, phenyl protons, J=8.8Hz), 8.43 (d, 1H, 5-H, J= 6.9Hz); ms: m/z 253 (M⁺).

2-(4-Butoxyphenyl)-8-methyl-1,2,4-triazolo[1,5-a]pyridine (**1c**). This compound was obtained as a white solid. ¹H nmr: 1.02 (t, 3H, CH₃, J=7.5Hz), 1.54 (m, 2H, -CH₂CH₃), 1.82 (m, 2H, -CH₂CH₂CH₂CH₂CH₃), 2.71 (s, 3H, 8-CH₃), 4.06 (t, 2H, -OCH₂CH₂-CH₂CH₃, J=6.5Hz), 6.89 (t, 1H, 6-H, J=7.0Hz), 7.02 (d, 2H, phenyl protons, J=8.8Hz), 7.27 (d, 1H, 7-H, J=7.0Hz), 8.24 (d, 2H, phenyl protons, J=8.8Hz), 8.44 (d, 1H, 5-H, J=7.0Hz); ms: m/z 281 (M⁺).

2-(4-Chlorophenyl)-8-methyl-1,2,4-triazolo[1,5-*a*]**pyridine (1d).** This compound was obtained as a white solid. ¹H nmr: 2.70 (s, 3H, 8-CH₃), 6.93 (t, 1H, 6-H, J=6.9Hz), 7.30 (d, 1H, 7-H, J=6.9Hz), 7.46 (d, 2H, phenyl protons, J=8.6Hz), 8.25 (d, 2H, phenyl protons, J=8.6Hz), 8.45 (d, 1H, 5-H, J= 6.9Hz); ms: m/z 243 (M⁺), 245 (M+2)⁺.

2-(4-Benzyloxyphenyl)-8-methyl-1,2,4-triazolo[1,5-*a*]pyridine (1e). This compound was obtained as a white solid. ¹H nmr:

2.69 (s, 3H, 8-CH₃), 5.14 (s, 2H, -OCH₂), 6.89 (d, 1H, 6-H, J=6.9Hz), 7.09 (d, 2H, phenyl protons, J=8.6Hz), 7.26 (br s, 1H, 7-H), 7.34 (m, 1H, Ar-H),7.40 (dd, 2H, phenyl protons, J=7.4, 7.6Hz), 7.46 (d, 2H, Ar-H, J=7.4Hz), 8.24 (d, 2H, phenyl protons, J=8.6Hz), 8.43 (d, 1H, 5-H, J=6.8Hz) ms: m/z 315 (M⁺).

2-Phenyl-8-methyl-1,2,4-triazolo[1,5-a]pyridine (1f). This compound was obtained as a white solid. ¹H nmr: 2.70 (s, 3H, 8-CH₃), 6.90 (t, 1H, 6-H, J=6.9Hz), 7.27 (br s, 1H, 7-H), 7.51 (m, 3H, phenyl protons), 8.30 (m, 2H, phenyl protons), 8.45 (d, 1H, 5-H, J=6.9Hz). ms: m/z 209 (M⁺).

2-(4-Dimethylaminophenyl)-8-methyl-1,2,4-triazolo[1,5-*a***]-pyridine (1g).** This compound was obtained as a yellow solid.
¹H nmr: 2.69 (s, 3H, 8-CH₃), 3.05 (s, 6H, -N(CH₃)₂), 6.81 (d, 2H, phenyl protons, J=8.8Hz), 6.85 (t, 1H, 6-H, J=6.9Hz), 7.23 (d, 1H, 7-H, J=6.9Hz), 8.17 (d, 2H, phenyl protons, J=8.8Hz), 8.43 (d, 1H, 5-H, J=6.9Hz). ms: m/z 252 (M⁺).

2-(3,4-Dimethoxyphenyl)-8-methyl-1,2,4-triazolo[1,5-a]-pyridine (1h). This compound was obtained as a white solid. ¹H nmr: 2.69 (s, 3H, 8-CH₃), 3.95 (s, 3H, 4-OCH₃), 4.03 (s, 3H, 3-OCH₃), 6.87 (t, 1H, 6-H, J=6.9Hz), 6.97 (d, 1H, phenyl proton, J=8.4Hz), 7.24 (d, 1H, 7-H, J=6.9Hz),7.83 (d, 1H, phenyl proton, J=1.8Hz), 7.90 (dd, 1H, phenyl proton, J=1.8, 8.4Hz), 8.43 (d, 1H, 5-H, J=6.9Hz). ms: m/z 269 (M⁺).

2-(3,4-Methylenedioxyphenyl)-8-methyl-1,2,4-triazolo[1,5-*a*]**pyridine (1i).** This compound was obtained as a white solid. ¹H nmr: 2.67 (s, 3H, 8-CH₃), 6.03 (s, 2H, -CH₂-), 6.88 (t, 1H, 6-H, J=6.9Hz), 6.92 (d, 1H, phenyl proton, J=8.1Hz), 7.25 (m, 1H, 7-H), 7.76 (d, 1H, phenyl proton, J=1.6Hz), 7.86 (dd, 1H, phenyl proton, J=1.6, 8.1Hz), 8.42 (d, 1H, 5-H, J= 6.9Hz). ms: m/z 253 (M⁺).

2-(3,4,5-Trimethoxyphenyl)-8-methyl-1,2,4-triazolo[1,5-a]-pyridine (1j). This compound was obtained as a white solid. ¹H nmr: 2.72 (s, 3H, 8-CH₃), 3.92 (s, 3H, 4-OCH₃), 4.01 (s, 6H, 3-OCH₃ and 5-OCH₃), 6.88 (t, 1H, 6-H, J=6.9Hz), 7.26 (d, 1H, 7-H, J=6.9Hz), 7.85 (s, 2H, phenyl protons), 8.20 (d, 1H, 5-H, J=6.9Hz). ms: m/z 299 (M⁺).

2-(2-Methoxyphenyl)-8-methyl-1,2,4-triazol[1,5-*a*]pyridine (**1k**). This compound was obtained as a white solid. ¹H nmr: 2.69 (s, 3H, 8-CH₃), 3.96 (s, 3H, 2-OCH₃), 6.88 (t, 1H, 6-H, J=6.6Hz), 7.07 (m, 2H, phenyl protons), 7.26 (d, 1H, 7-H, J=6.6Hz), 7.43 (t, 1H, Ar-H, J= 7.2Hz), 8.07 (dd, 1H, phenyl ptoton, J=1.2, 7.2Hz), 8.50 (d, 1H, 5-H, J= 6.6Hz). ms: m/z 239 (M⁺).

2-(3-Methoxyphenyl)-8-methyl-1,2,4-triazolo[1,5-a]pyridine (1l). This compound was obtained as a white solid. ¹H nmr: 2.70 (s, 3H, 8-CH₃), 3.93 (s, 3H, 3-OCH₃), 6.90 (t, 1H, 6-H, J=6.9Hz), 7.01 (dd, 1H, phenyl proton, J=2.4, 7.9Hz), 7.26 (dd, 1H, 7-H, J=0.6, J= 6.9Hz), 7.40 (t, 1H, phenyl proton, J=7.9Hz), 7.84 (s, 1H, Ar-H), 7.90 (d, 1H, phenyl proton, J=7.9Hz), 8.45 (d, 1H, 5-H, J=6.9Hz). ms: m/z 239 (M⁺).

^{*:} The IC₅₀ values were more than 1500 µM.

- **2-(2-Methoxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a***]pyridine (1m**). This compound was obtained as a white solid. ¹H nmr: 2.49 (s, 3H, 7-CH₃), 3.92 (s, 3H, 2-OCH₃), 6.83 (dd, 1H, 6-H, J=1.4, 6.9Hz), 7.02 (dd, 1H, phenyl proton, J=2.2, 8.0Hz), 7.43 (t, 1H, phenyl proton, J=8.0Hz), 7.51 (s, 1H, 8-H), 7.81 (d, 1H, phenyl proton, J=2.2Hz), 7.87 (d, 1H, phenyl proton, J=8.0Hz), 8.45 (d, 1H, 5-H, J=6.9Hz). ms: m/z 239 (M⁺).
- **2-(3-Methoxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a*]pyridine (1n). This compound was obtained as a white solid. ¹H nmr: 2.49 (s, 3H, 7-CH₃), 3.92 (s, 3H, 3-OCH₃), 6.83 (dd, 1H, 6-H, J=1.4, 6.9Hz), 7.02 (dd, 1H, phenyl proton, J=2.1, 8.1Hz), 7.40 (t, 1H, phenyl proton, J=8.1Hz), 7.51 (s, 1H, 8-H), 7.81 (d, 1H, phenyl proton, J=2.1Hz), 7.87 (d, 1H, phenyl proton, J=8.1Hz), 8.45 (d, 1H, 5-H, J=6.9Hz). ms: m/z 239 (M⁺).
- **2-(4-Ethoxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a*]pyridine (**10**). This compound was obtained as a white solid. ¹H nmr: 1.45 (t, 3H, -CH₃, J=6.9Hz), 2.48 (s, 3H,7-CH₃), 4.10 (q, 2H, -CH₂CH₃, J=6.9Hz), 6.79 (dd, 1H, 6-H, J=1.5, 6.9Hz), 6.99 (d, 2H, phenyl protons, J=8.7Hz), 7.47 (d, 1H, 8-H, J=0.7Hz), 8.18 (d, 2H, phenyl protons, J=8.7Hz), 8.43 (d, 1H, 5-H, J=6.9Hz). ms: m/z 253 (M⁺).
- **2-(4-Butoxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a*]**pyridine** (**1p).** This compound was obtained as a white solid. ¹H nmr: 0.99 (t, 3H, -CH₂CH₃, J=7.4Hz), 1.52 (m, 2H, -CH₂CH₃), 1.81 (m, 2H, -CH₂CH₂CH₃), 2.49 (s, 3H, 7-CH₃), 4.03 (t, 2H, -OCH₂-, J=6.5Hz), 6.81 (dd, 1H, 6-H, J=1.1, 6.9Hz), 7.00 (d, 2H, phenyl protons, J=8.8Hz), 7.50 (s, 1H, 8-H), 8.19 (d, 2H, phenyl protons, J=8.8Hz), 8.43 (d, 1H, 5-H, J=6.9Hz). ms: m/z 281 (M⁺).
- **2-(4-Benzyloxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a***]pyridine (1q).** This compound was obtained as a white solid. $^1\mathrm{H}$ nmr: 2.50 (s, 3H, 7-CH $_3$), 5.14 (s, 2H, -CH $_2$), 6.82 (dd, 1H, 6-H, J=1.3, 6.9Hz), 7.10 (d, 2H, phenyl protons, J=8.8Hz), 7.34-7.50 (m, 6H, 8-H and phenyl protons), , 8.21 (d, 2H, phenyl protons, J=8.8Hz), 8.44 (d, 1H, 5-H, J=6.9Hz). ms: m/z 315 (M $^+$).
- **2-(4-Dimethylaminophenyl)-7-methyl-1,2,4-triazolo[1,5-***a*]**-pyridine (1r).** This compound was obtained as a yellow solid. ¹H nmr: 2.46 (s, 3H, 7-CH₃), 3.03 (s, 6H, -N(CH₃)₂), 6.74 (dd, 1H, 6-H, J=1.5, 6.9Hz), 6.80 (d, 2H, phenyl protons, J=8.9Hz), 7.44 (s, 1H, 8-H), 8.13 (d, 2H, phenyl protons, J=8.9Hz), 8.40 (d, 1H, 5-H, J=6.9Hz). ms: m/z 252 (M⁺).
- **2-(3,4-Dimethoxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a*]**-pyridine (1s).** This compound was obtained as a white solid. ¹H nmr: 2.49 (s, 3H, 7-CH₃), 3.96 (s, 3H, 4-OCH₃), 4.02 (s, 3H, 3-OCH₃), 4.02 (s, 3H, 3-OCH₃

- OCH₃), 6.81 (dd, 1H, 6-H, J=1.6, 6.9Hz), 6.98 (d, 1H, phenyl proton, J=8.4Hz), 7.49 (s, 1H, 8-H), 7.79 (d, 1H, phenyl proton, J=1.9Hz), 7.88 (dd, 1H, phenyl proton, J=1.9, 8.4Hz), 8.44 (d, 1H, 5-H, J=6.9Hz). ms: m/z 269 (M⁺).
- **2-(3,4-Methylenedioxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a*]**pyridine (1t).** This compound was obtained as a white solid. ¹H nmr: 2.49 (s, 3H, 7-CH₃), 6.04 (s, 2H, -OCH₂), 6.81 (dd, 1H, 6-H, J=1.6, 6.9Hz), 6.92 (d, 1H, phenyl proton, J=8.1Hz), 7.48 (s, 1H, 8-H), 7.73 (d, 1H, phenyl proton, J=1.6Hz), 7.82 (dd, 1H, phenyl proton, J=1.6, 8.1Hz), 8.43 (d, 1H, 5-H, J=6.9Hz). ms: m/z 253 (M⁺).
- **2-(3,4,5-Trimethoxyphenyl)-7-methyl-1,2,4-triazolo[1,5-***a***]-pyridine (1u).** This compound was obtained as a white solid. ¹H nmr: 2.50 (s, 3H, 7-CH₃), 3.88 (s, 3H, 4-OCH₃), 4.00 (s, 6H, 3 and 5-OCH₃), 6.84 (d, 1H, 6-H, J=6.8Hz), 7.53 (m, 3H, 8-H and phenyl protons), 8.45 (d, 1H, 5-H, J=6.8Hz). ms: m/z 299 (M⁺).
- **2-Phenyl-7-methyl-1,2,4-triazolo[1,5-a]pyridine (1v).** This compound was obtained as a white solid. ¹H nmr: 2.49 (s, 3H, 7-CH₃), 6.83 (dd, 1H, 6-H, J=1.6Hz, J=6.9Hz), 7.48 (m, 4H, 8-H and phenyl protons), 8.27 (m, 2H, phenyl protons), 8.46 (d, 1H, 5-H, J= 6.9Hz). ms: m/z 209 (M⁺).
- **2-(4-Benzyloxyphenyl)-5-methyl-1,2,4-triazolo[1,5-***a***]pyridine (1w).** This compound was obtained as a white solid. ¹H nmr: 2.83 (s, 3H, 5-CH₃), 5.15 (s, 2H, -CH₂), 6.81 (d, 1H, 6-H, J=7.0Hz), 7.10 (d, 2H, phenyl protons, J=8.8Hz), 7.35 (t, 1H, 7-H, J=7.0Hz), 7.40-7.44 (m, 3H, phenyl protons), 7.47 (d, J=7.4Hz, 2H, phenyl protons), 7.62 (d, 1H, 8-H, J=7.0Hz), 8.27 (d, 2H, phenyl protons, J=8.8Hz). ms: m/z 315 (M⁺).

REFERENCES

- [1] Jones, G. Advances in Heterocyclic Chemistry. 2002, 83, 1.
- [2] Guba, W.; Nettekoven, M.; Puellmann, B.; Reimer C.; Schmitt, S. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 3307.
- [3] Lawson, E. C.; Hoekstra, W. J.; Addo, M. F.; Andrade-Gordon, P. B.; Damiano, P.; Kauffman, J. A.; Mitchell J. A.; Maryanoff, B. E. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 2619.
 - [4] Liu T.; Hu, Y. Z. Bioorg. Med. Chem. Lett. 2002, 12, 2411.
- [5] Yang, B.; Cao, L.; Fang R. Y.; Gu, Z. P. Eur. J. Pharmac. 1999, 380, 1452.
- [6] Lin, S.; Liu, H.; Yan, W.; Zhang, L.; Bai N.; Ho, C. T. Bioorg. Med. Chem., 2005, 13, 2783.
- [7] Tamura, Y.; Minamikawa, J.; Miki Y.; Ikeda, M. Tetrahedron Lett., 1972, 40, 4133.