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GRAPHICAL ABSTRACT

Abstract An efficient one-pot synthesis of a -hydroxy propargylic esters by chemoselective

reduction followed by transesterification using NaBH4 in combination with CeCl3 � 7H2O is

described.

Keywords NaBH4=CeCl3.7H2O; reduction; transesterification

INTRODUCTION

Propargylic alcohols and esters are versatile building blocks as they allow for
facile conversion to a variety of functional groups in the synthesis of allenes, lac-
tones, and heterocycles, which are part of biologically active molecules[1] such as
thrombin receptor antagonists[2] and reverse transcriptase inhibitors.[3] These key
intermediates can be obtained by various chemical methods, which include direct
coupling reaction[4] or coupling followed by reduction.[5] Selective 1,2-reduction of
conjugated aldehydes and ketones by NaBH4=CeCl3 � 7H2O are known.[6] Because
of its unique catalytic properties (i.e., inexpensive, nontoxic, and water tolerant),
catalyst CeCl3 � 7H2O was used as a potential Lewis acid which imparts high region-
and chemoselectivity[7] in organic transformations such as hydro oxacyclization of
unsaturated 3-hydroxy esters,[8] Michael addition,[9] esterification of phenolic
alcohols,[10] enamination of b-dicarbonyl compounds,[11] allylation of aldehydes,[12]
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dihydroxylation of unreactive olefins,[13] and Julia olefination of cyclopropyl
carbinols,[14] synthesis of N,N-disubtituted ureas,[15] and quinoline derivatives.[16]

Recently, Meng et al. developed the Ru-catalyzed enantioselective hydrogenation
of aromatic a-ketoesters with CeCl3 � 7H2O as an effective additive.[17] To prepare
racemic a-hydroxy propargylic esters as substrates[18] for Candida parapsilosis ATCC
7330, which is known to efficiently catalyze deracemization,[19] we followed the
reported procedure[5] using NaBH4=CeCl3 � 7H2O. Significantly, in addition to
reduction, a transesterfied product was formed; that is, reduction of methyl
2-oxo-phenylbut-3-ynoate in ethanol with NaBH4=CeCl3 � 7H2O resulted in the for-
mation of ethyl 2-hydroxy-4-phenylbut-3-ynoate. This interesting result prompted us
to study the importance of NaBH4=CeCl3 � 7H2O as a reducing cum transesterifiying
agent for various a-keto propargylic esters.

Esters are generally synthesized either from reaction of carboxylic acid with
alcohol[20] and=or by transesterification of an ester with an alcohol.[21] Poor solu-
bility of some acids in organic solvents makes transesterification more advantageous
than ester synthesis.[22] Transesterification is an important reaction as it used to pre-
pare organic intermediates in the synthesis of biologically important molecules and
also in the preparation of biodiesel.[21a,23] Thus, a number of useful procedures cat-
alyzed by a variety of protic and Lewis acids,[22,24] organic and inorganic bases,[25]

enzymes and antibodies[21c,26] have been developed for transesterification. However,
methods for the transesterification of a-keto esters[27] are rather few. Despite the
numerous methods of transesterification reported in literature, there is a constant
need to develop new protocols that require mild conditions, especially for com-
pounds with acid- and base-sensitive functionalities such as hydroxy, ester, and
alkyne moieties. To the best of our knowledge, there has been no report on transes-
terification of a-keto propargylic esters using NaBH4=CeCl3 � 7H2O. Earlier work
from our laboratory reported the reduction cum transesterification of b-keto esters
using NaBH4.

[28] Herein, we report an efficient one-pot reaction to obtain different
types of a-hydroxy propargylic esters from a -keto propargylic esters by using
NaBH4=CeCl3 � 7H2O in different alcohols at room temperature under mild reaction
conditions (Scheme 1).

RESULTS AND DISCUSSION

In a typical experiment, a-keto propargylic esters were treated with the desired
alcohols, and the corresponding reduced cum transesterfied products were obtained
in moderate to good yields. The results are summarized in Table 1. In optimization
studies, we tried the reaction with various concentration of NaBH4 for methyl

Scheme 1. Reduction cum transesterification of a-keto propargylic esters using NaBH4=CeCl3 � 7H2O.
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2-oxo-4-phenylbut-3-ynoate in ethanol (with 1.2 equiv. of CeCl3 � 7H2O in 3 h reac-
tion time). The yields obtained for 0.25, 0.5, 0.75, and 1.0 equiv. of NaBH4 were
53%, 71%, 61%, and 42% respectively. The reaction was not complete with 0.25

Table 1. Reduction cum transesterification of a-keto propargylic esters using NaBH4=CeCl3 � 7H2O

Entry

a

Solvent Product Time (h) Isolated yield (%)

1 CH3 CH3CH2OH 3 71

2 CH3 6 65

3 CH3 6 67

4 CH3 12 61

5 CH3 12 58

6 CH3 12 51

7 CH3CH2 CH3OH 3 69

8 CH3CH2 6 62

9 CH3CH2 12 63

10 CH3CH2 24 20

11 CH3CH2 12 41

12 CH3CH2 12 37

aMethyl 4-phenyl-2-oxobut-3-ynoate and ethyl 4-phenyl-2-oxobut-3-ynoate were synthesized according

to the literature report.[5]
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equiv., and 38% of starting material was recovered. With 0.75 and 1.0 equiv. of
NaBH4, the corresponding diol product was also observed in 17% and 39% yields
respectively because of the reduction of both keto and ester groups (Scheme 2). With
0.5 equiv., a maximum yield of 71% was observed because of the selective reduction
of the keto group. On the basis of these results, all the experiments were done with
0.5 equiv. of NaBH4.

According to these optimized reaction conditions, methyl 2-oxo-4-phenylbut-
3-ynoate on treatment with ethanol in the presence of NaBH4=CeCl3 � 7H2O led to
the corresponding reduced cum transesterfied product with 71% yield in 3 h due to
the good solubility of catalyst (entry 1). Furthermore, methyl 2-oxo-4-phenylbut-
3-ynoate with n-propanol, n-butanol, and iso-propanol gave the corresponding
transesterfied hydroxy (reduced) products with yields ranging from 61 to 67%
(entries 2–4). In the presence of allyl and propargyl alcohols, the formation of the
corresponding products, allyl 2-hydroxy-4-phenylbut-3-ynoate, and prop-2-ynyl
2-hydroxy-4-phenylbut-3-ynoate in 58% and 51% yield respectively (entries 5 and
6) were observed. These two compounds are reported here for the first time.

Ethyl 2-oxo-4-phenylbut-3-ynoate with methanol, n-propanol, and n-butanol
led to the formation of corresponding transesterfied reduced products in 62–69%
yields (entries 7–9) while with allyl and propargyl alcohols, the transesterfied reduced
products were isolated in 41% and 37% yields respectively (entries 11 and 12). With
iso-propanol, the reduction was completed within 15min, but the transesterfied pro-
duct was obtained only after 24 h in 20% yield (entry 10). Use of tert-butanol,
2-methoxyethonol, and benzyl alcohol with methyl and ethyl 2-oxo-4-phenylbut-
3-ynoate did not give the desired transesterfied product even after 24 h, possibly
because of the poor solubility of the catalyst but the reduced untransesterfied
product formed within 30min.

To ensure that CeCl3 � 7H2O facilitated the transesterification process, the reac-
tion (entry 1) was carried out in the absence of CeCl3 � 7H2O. The reaction did not
proceed even after 24 h. On the other hand, the same reaction in the absence of
NaBH4, after 24 h reaction time, gave only 18% of the transesterfied product without
reduction. The results of these experiments confirmed that both NaBH4 and
CeCl3 � 7H2O are necessary for the reduction cum transesterification reaction.

Mechanistically, NaBH4 alone acts as a soft reducing agent, and the active spe-
cies during the Luche reduction was believed to be an alkoxy borohydride, which in
combination with the hard Ce3þ cation acts as a hard reducing agent.[6c,29] The cerium
plays an important role as catalyst in the formation of alkoxy borohydrides and
increases the electrophilicity of the carbonyl carbon atom.[6c,29] From a mechanistic

Scheme 2. Reduction cum transesterification of methyl 2-oxo-4-phenylbut-3-ynoate using NaBH4/

CeCl3 � 7H2O.
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standpoint, cerium ions preferentially coordinate to the oxygen atom of solvent and
increase the acidity of the medium,[30] thus helping to activate the carbonyl carbon
of the ketone in the reduction and also activating the carbonyl carbon of the ester
in the transesterification (Scheme 3).

CONCLUSIONS

In conclusion, we have developed a highly efficient method for the chemoselec-
tive reduction and transesterification for a -keto propargylic esters mediated by
NaBH4=CeCl3 � 7H2O. The notable advantages of the procedure are (a) simple and
one-pot reaction, (b) easy availability and nontoxic nature of the reagent, (c) mild
reaction conditions (tolerance to sensitive functionalities such as hydroxy, ester,
and alkyne moieties during transesterification), (d) the solvents need not to be dried,
(e) CeCl3 can be used directly as its heptahydrate and no drying is needed, and (f)
neither inert atmosphere not the protection of hydroxy group is required.

EXPERIMENTAL

1H and 13C NMR spectra were recorded in CDCl3 solution on a Bruker
AV-400 spectrometer operating at 400 and 100MHz, respectively. Chemical shifts
are expressed in parts per million (ppm) values using tetramethylsilane (TMS) as
an internal standard. TLC was carried out on Kieselger 60 F254 aluminium sheets
(Merck1.05554). All chemicals were obtained from Aldrich and Merck.

General Procedure for the Reduction Cum Transesterification
Reaction

The a-keto propargylic ester (2.50mmol) was treated with the desired alcohol
(15ml) in the presence of NaBH4 (1.25mmol) and CeCl3 � 7H2O (3.13mmol) at room
temperature. The reaction was monitored by TLC, and after completion, excess alco-
hol was stripped off. The reaction mixture was quenched with dilute HCl and
extracted with dechloremethane (DCM). The organic layer was dried, concentrated,
purified by silica-gel column chromatography, and characterized by infrared (IR),
1H and 13C NMR, and high-resolution mass spectrometry (HRMS).

Scheme 3. Plausible mechanism.
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Some Selected Spectral Data of the Products

Allyl 2-Hydroxy-4-phenylbut-3-ynoate (entries 5 and 11). 1H NMR
(400MHz, CDCl3): d¼ 3.16 (1H, d, J¼ 7.2Hz), 4.78 (2H, m), 5.10 (1H, d,
J¼ 7.2Hz), 5.30 (1H, dd, J¼ 10.4Hz & 1.6Hz), 5.41 (1H, dd, J¼ 17.2Hz &
1.6Hz), 5.96 (1H, m), 7.31–7.33 (3H, m), 7.44–7.46 (2H, m). 13C NMR (100MHz,
CDCl3) : d 170.0, 131.9, 131.0, 128.9, 128.3, 121.7, 119.1, 85.6, 84.1, 67.0, 61.9. IR
(n, cm�1): 3451, 2926, 2155, 1742, 1602, 1489, 1445, 1263, 1197, 1079, 756. HRMS:
m=z, calcd. Mass: 239.0684 [(M þNa)þ]; found: 239.0689 [(M þNa)þ].

Prop-2-ynyl 2-Hydroxy-4-phenylbut-3-ynoate (entries 6 and 12). 1H
NMR (400MHz, CDCl3): d¼ 2.55 (1H, t, J¼ 2Hz), 3.08 (1H, d, J¼ 7.6Hz), 4.87
(2H, dq, J¼ 15.2Hz & 2Hz), 5.12 (1H, d, J¼ 7.6Hz), 7.29–7.36 (3H, m),
7.45–7.47 (2H, m). 13C NMR (100MHz, CDCl3): d 169.6, 132.1, 129.1, 128.4,
121.7, 86.2, 83.6, 76.5, 76.1, 62.1, 54.0 IR (n, cm�1): 3417, 3290, 2955, 2233, 2188,
2164, 1754, 1441, 1192, 1082, 994, 761. HRMS: m=z, calcd. Mass: 237.0528 [(M
þNa)þ], found: 237.0515 [(M þNa)þ].
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