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A Divergent and Concise Total Synthesis of (-)-Lycoposerramine R 
and (+)-Lycopladine A  

Sheng Chen, Jinming Wang and Fayang G. Qiu*
 

A concise, asymmetric and divergent synthesis of 

lycoposerramine R and lycopladine A is presented. The synthesis 

features a palladium-catalyzed cycloalkenylation of a silyl enol 

ether for assembling the 5/6-hydrindane system and generating 

a quaternary carbon center in one step. 

 

Club mosses, such as Lycopodium complanatum and 

Lycopodium carinatum, are a rich source of structurally 

complex and biologically active alkaloids (Figure 1).
1−3 

Lycoposerramine-R (1), isolated by Takayama and co-workers 

in 2009, was characterized to have a previously unknown 

skeleton consisting of a fused tetracyclic ring system with four 

chiral centers, a pyridone ring, and cis-fused hydrindane.
4
 Its 

simplified pyridine congener lycopladine A (2) was isolated 

from L. complanatum in 2006 and showed modest cytotoxicity 

against murine lymphoma cells.
5
 During the past decade, 

owing to their compact structures as well as the biological 

activities, these alkaloids have aroused the interest of a large 

number of research groups, whose studies have culminated in 

the completion of several elegant total syntheses of some 

lycopodium alkaloids and some new synthetic methodologies 

for assembling their core structures.
6
 To date, 4 total 

syntheses have been reported 
 
for lycoposerramine R (1)

6h-

k
and 7 for lycopladine A (2), respectively.

6l-r 

 

Figure 1 The structures of lycoposerramine R, lycopladine A, 

and fawcettimine 

 

In this paper, we report a facile, alternative entry to these 

alkaloids that involves some novel chemistry involving a palladium-

catalyzed cycloalkenylation of a silyl enol ether,
7 

a reaction that we 

believe will have general utility. As shown in the retrosynthetic 

analysis (Scheme 1), we reasoned that both lycoposserramine R (1) 

and lycopladine A (2) might be constructed from the common 

intermediate RS-1 through several different transformations. 

Intermediate RS-1 in turn might be accessed from silyl enol ether 

RS-2 via a sequence of a palladium-catalyzed cycloalkenylation of 

silyl enol ether followed by a SeO2/TBHP oxidation. Silyl enol ether 

RS-2 might be obtained from a stereoselective conjugate addition 

of a Grignard reagent RS-4 prepared from commercial 4-bromo-1-

butene
8
 to an α,β-unsaturated carbonyl compound RS-3, followed 

by trapping the enolate with TMSCl, while RS-3 could be derived 

from the readily accessible phenylsulfide 1
9
 via the introduction of a 

C3 unit. 

 

Scheme 1. Retrosynthetic analysis of (-)-lycoposerramine R (1) 

and (+)-lycopladine A (2). 

Based on the above analysis, the synthetic strategy seemed 

feasible. Thus, alkylation of enolate of 1 (Scheme 2) with iodide 2
10 

afforded phenylsulfenyl ketone 3 as a diastereomeric mixture (dr = 
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2.6:1) in 65% yield, oxidation of which with m-CPBA at -78
o
C 

followed by warming to room temperature afforded enone 4
6q

. 

After the copper(I)-mediated conjugate addition of the Grignard 

reagent freshly prepared from 4-bromo-1-butene to enone 4 to 

generate an enolate, TMSCl was added at -20
 o

C to yield silyl enol 

ether 5 in 85% overall yield.  

At this stage, we began to investigate the key cycloalkenylation 

(Table 1). Surprisingly, treatment of the silyl enol ether 5 with 

stoichiometric amounts of palladium acetate in dry THF yielded exo-

olefin 6 along with endo-olefin 6a in 35% and 17% yileds, 

respectively. After many unfruitful attempts, it was found that 

when treated with 10 mol%  of palladium acetate in dry DMSO  

 

Scheme 2. Synthesis of silyl enol ether 5. 

Table 1. Palladium-Catalyzed Cycloalkenylation of 5. 

 

Entry Catalyst (equiv) Solvent Temp 

 

Additives (equiv) 6 (%) 6a (%) 

1 PdCl2(PPh3)2 (1.0 ) THF RT - 0 0 

2 Pd(CF2COOH)2 

(1.0 ) 

THF RT - trace trace 

3 PdCl2 (1.0) THF RT - 23 10 

4 Pd(OAc)2 (1.0) THF RT - 35 17 

5 Pd(OAc)2 (0.1) THF RT Cu(OAc)2
.H2O (1.0 ) 

 

6 2 

6 Pd(OAc)2 (0.1) 

 

THF RT Ag2CO3 (1.0 ) 

 

6 2 

7 Pd(OAc)2 (0.1) 

 

THF RT benzoquinone (1.0) 6 2 

8 Pd(OAc)2 (0.1) 

 

DMSO RT O2 33 16 

9 Pd(OAc)2 (0.1) DMSO 45oC O2 48 26 

under a balloon pressure of oxygen at 45
o
C, silyl enol ether 5 

underwent the cycloalkenylation and exo-olefin 6 was obtained in 

48% yield together with endo-olefin 6a in 26% yield. Allylic 

oxidation of 6 using SeO2/TBHP, followed by Dess–Martin oxidation 

yielded the desired key intermediate 7 in 63% yield. Treatment of 

the endo-olefin 6a with m-CPBA, followed by Al(Oi-Pr)3 and 

oxidation by Dess-Martin reagent yielded 7 in 58% yield (Scheme 3).  

 

Scheme 3. Synthesis of key intermediate 7. 

Addition of 2-(phenylsufinyl)acetamide
11 

to intermediate 7 in the 

presence of sodium hydride, followed by treatment with 

methanolic hydrogen chloride, resulted in the formation of 

intermediate 8 in 62% yield (Scheme 4). Removal of the benzyl 

group by treatment with 10% Pd/C in EtOH under a hydrogen 

atmosphere gave intermediate 9 (85%). Dess-Martin oxidation of 

this alcohol yielded ketoaldehyde 10 (92%), which when treated 

with ammonium acetate in the presence of NaBH3CN in methanol 

at room temperature for 24 h afforded (-)-lycoposerramine R (1) in 

65% yield. Synthetic (-)-lycoposerramine R (1) was identical in all 

respects to the natural product. 

 

Scheme 4. Total synthesis of (-)-lycoposerramine R (1). 

With intermediate 7 in hand, the synthesis of (+)-lycopladine A 

(2) was investigated (Scheme 5). When treated with (N-

vinylimino)phosphorene
12

 in dry benzene at 90
o
C in a sealed tube, 

intermediate 7 underwent cyclization to afford intermediate 11 in 

65% yield. Finally, removal of the benzyl group in 11 gave (+)-

lycopladine A (2) (70%). The synthetic (+)-lycopladine A (2) showed 
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identical spectroscopic properties in all respects to the natural 

product. 

 

Scheme 5. Total synthesis of (+)-lycopladine  A (2). 

In summary, by using a divergent strategy we have developed a 
concise, asymmetric  total synthesis of both (–)-lycoposerramine-R 

(1) and (+)-lycopladine A (2) from known phenylsulfide 1 in 9 and 7 

steps, respectively. The key features of the current synthesis 

include a palladium-catalyzed cycloalkenylation of silyl enol ether 5 
for assembling the 6,5-fused hydrindane and generating a 

quaternary carbon center in one step. The application of these 

synthetic studies to an enantioselective synthesis of the related 

fawcettimine-type alkaloid 3 will be reported in due course. 
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