5a-c

Cryptands are usually prepared by acylation of diazacrown ethers with diacid chlorides under high dilution conditions followed by reduction of the resulting macrobicyclic diamides.² Recently, this procedure has been adopted for the synthesis of cryptands consisting in the alkylation of N,N'-dimethyldiazacrown ethers with dihalides under high pressure and subsequent demethylation of quaternary cryptands.³ Some other procedures for the preparation of cryptands are described.⁴ However, all of them are performed under anhydrous conditions, which complicates the large-scale preparation of cryptands.

Macroheterocycles; XXXIX. A Convenient Synthesis of Polyaza-oxa Cryptands

N.G. Lukyanenko,* S.S. Basok, L.K. Filonova

A. V. Bogatsky Physico-Chemical Institute, Academy of Sciences of the Ukrainian SSR, 86, Chernomorskaya doroga, Odessa, 270080, USSR

A convenient procedure is proposed for the synthesis of cryptands by the alkylation of bis-N-(2-tosylaminoethyl)diaza-crown ethers with dibromides in the two-phase system: aqueous sodium hydroxide/toluene.

Table. Diaza-crown ethers 2, Cryptants 4, 5

Prod- uct	n	m	p	Yield (%)	mp (°C)	Molecular Formula ^a	1 H-NMR (CDCl ₃ /TMS) b δ , J (Hz)	$MS (70 \text{ eV})^c$ $m/z (M^+)$
2a	1	1	_	91	165167	$C_{26}H_{40}N_4O_6S_2$	2.31 (s, 6H, CH ₃); 2.50 (m, 12H, NCH ₂); 2.80 (m, 4H, CH ₂ NTs); 3.55 (t, 8 H, $J = 5.5$, OCH ₂); 6.75 (m, 2H, NH); 7.40 (m, 8H, C ₂ H ₄)	568
2b	1	2		75	66-67	$C_{28}H_{44}N_4O_7S_2$	2.20 (s, 6H, CH ₃); 2.43 (m, 12H, NCH ₂); 2.70 (m, 4H, CH ₂ NTs); 3.35 (m, 12H, OCH ₂); 5.70 (m, 2H, NH); 7.33 (m, 8H, C ₆ H ₄)	612
2c	2	2	-	98	112–115	$C_{30}H_{48}N_4O_8S_2$	2.30 (s, 6H, CH ₃); 2.50 (m, 12H, NCH ₂); 2.80 (m, 4H, CH ₂ NTs); 3.41 (m, 16H, OCH ₂); 5.87 (m, 2H, NH); 7.41 (m, 8H, C ₆ H ₄)	656
4a	1	1	1	81	60-63	$C_{30}N_{46}N_4O_7S_2$	2.33 (s, 6H, CH ₃); 2.40 (m, 12H, CH ₂ N); 3.31 (m, 20H, OCH ₂ , CH ₂ NTs); 7.00 (m, 8H, C ₆ H ₄)	638
4b	1	1	2	73	oil	$C_{32}H_{50}N_{4}O_{8}S_{2}$	2.33 (s, 6H, CH ₃); 2.43 (m, 12H, NCH ₂); 3.33 (m, 24H, OCH ₂ , CH ₂ NTs); 7.00 (m, 8H, C ₆ H ₄)	682
4 c	1	2	1	87	oil	$C_{32}H_{50}N_4O_8S_2$	2.33 (s, 6H, CH ₃); 2.63 (m, 12H, CH ₂ N); 3.40 (m, 24H, OCH ₂ , CH ₂ NTs); 7.4 (m, 8H, C ₆ H ₄)	682
4d	1	2	2	83	oil	$C_{34}H_{54}N_4O_9S_2$	2.30 (s, 6H, CH ₃); 2.67 (m, 12H, CH ₂ N); 3.45 (m, 28H, OCH ₂ , CH ₂ NTs); 7.43 (m, 8H, C_6H_4)	726
4e	2	2	1	87	oil	$C_{34}H_{54}N_4O_9S_2$	2.33 (s, 6 H, CH ₃); 2.60 (m, 12 H, CH ₂ N); 3.40 (m, 28 H, OCH ₂ , CH ₂ NTs); 7.33 (m, 8 H, C ₆ H ₄)	726
4f	2	2	2	84	48-50	$C_{36}H_{58}N_4O_{10}S_2$	2.37 (s, 6H, CH ₃); 2.67 (m, 12H, CH ₂ N); 3.67 (m, 32H, OCH ₂ , CH ₂ NTs); 7.35 (m, 8H, C_6H_4)	770
5a	1	1	1	60	oil	$C_{16}H_{34}N_4O_3$	2.20 (s, 2H, NH); 2.75 (m, 20H, CH ₂ N); 3.41 (m, 12H, OCH ₂)	330
5b	2	2	1	65	oil	$C_{20}H_{42}N_4O_5$	2.30 (8, 2H, NH); 2.60 (m, 20H, CH ₂ N); 3.47 (m, 16H, OCH ₂)	418
5e	1	2	2	55	oil	$C_{20}H_{42}N_4O_5$	2.53 (m, 20 H, CH ₂ N); 3.50 (m, 22 H, OCH ₂ , NH)	418

^a Satisfactory microanalysis obtained: C \pm 0.27, H \pm 0.17, N \pm 0.12. TLC analysis (neutral Al₂O₃, benzene, CHCl₃, *i*-PrOH, 8:5:0.1).

^b Recorded on a Tesla BS-467 spectrometer.

^c Obtained on a Varian-MAT 112 spectrometer.

We have previously shown the synthesis of aza-crown ethers under phase-transfer conditions. ⁵ As an extension of this procedure we report here a convenient preparation of novel cryptands with two nitrogen atoms in one of the bridges.

The reaction of diaza-12-crown-4 1a, diaza-15-crown-5 1b or diaza-18-crown-6 1c with N-tosylaziridine⁶ in acetonitrile results in bis-N-2-tosyl amino ethyl diaza-crown ethers 2a-c. Cryptands 4a-f were obtained in good yields by the reaction of bis-sulphonamides 2a-c with dibromides in a two-phase system consisting 50 % aqueous sodium hydroxide, toluene and tetra-n-butylammonium iodide as phase transfer catalyst. In the absence of the catalyst cryptands 4 are not formed.

The catalytic activity of the quaternary ammonium salts is decreased in the sequence: $(n\text{-}C_4H_9)_4N^+\text{I}^-\approx (n\text{-}C_4H_9)_4N^+\text{Br}^-> (n\text{-}C_4H_9)_4N^+\text{Cl}^-> (n\text{-}C_4H_9)_4N^+\text{HSO}_4^-> (C_2H_5)_3\text{CH}_2\text{C}_6\text{H}_5\text{N}^+\text{Cl}$. The high catalytic activity of tetra-*n*-butylammonium iodide and tetra-*n*-butylammonium bromide is perhaps due to their thermal stability in the alkali medium. ⁷

The tosyl groups in 4 may be readily removed with hydrogen bromide in glacial acetic acid as shown by the synthesis of cryptands 5a-c. Compounds 2, 4, 5 are characterized by microanalysis, mass- and ¹H-NMR spectra.

Bis-N-(2-tosylaminoethyl)diaza-crown ethers 2: General Procedure:

N-Tosylaziridine⁶ (0.05 mol) in dry CH₃CN (120 mL) is added dropwise for an h to the refluxing solution of diazacrown ether 1⁵ (0.025 mol) in CH₃CN (120 mL) under nitrogen. After removal of the solvent under reduced pressure diaza crown ethers 2a-c are purified by recrystallization from EtOH.

Bis-N-tosylcryptands 4; General Procedure:

Diaza-crown ether 2 (0.01 mol) and the corresponding dibromide 3 (0.01 mol) are added to the refluxing mixture of $\mathrm{Bu_4NI}$ (1 g, 2.7 mmol) in toluene (200 mL) and 50 % aq. NaOH (100 mL). The vigorously stirred mixture is heated under reflux for 12–16 h. The organic layer is separated and dried (MgSO₄). The solvent is evaporated and the crude product is purified by column chromatography on neutral alumina. Elution with benzene/CHCl₃/i-PrOH (8:5:0.1) gives the product, cryptand 4.

Cryptands 5; General Procedure:

Cryptand 4 (4.5 mmol), 30% HBr in glacial AcOH (25 g) and phenol (2.5 g, 26.5 mmol) are combined and stirred at 70°C for 8-10 h. The solution is poured into dry Et₂O (200 mL), the residual precipitate is dissolved in a minimum volume of water, basified with solid NaOH (to pH 10) and extracted with CHCl₃ (5×50 mL). The resultant extract is dried (MgSO₄), and the solvent is removed under reduced pressure. The cryptand 5 is obtained as a residue.

Received: 24 July 1987; revised: 17 November 1987

- For Part XXXVIII, see: Lukyanenko, N.G., Reder, A.S. Khim. Geterotsikl. Soedin. 1988, 135.
- (2) Dietrich, B., Lehn, J.M., Sauvage, J.P., Blanzat, J. Tetrahedron 1973, 29, 1629.
- (3) Pietraszkiewicz, M., Salanski, P., Jurczak, J. Tetrahedron 1984, 40, 2971.
 Pietrarzkiewicz, M., Salanski, P., Jurczak, J. Heterocycles 1985, 23,
- (4) Gokel, G. W., Korzeniowski, S. H. Macrocyclic Polyether Synthesis, Springer-Verlag, Berlin, 1982.
- (5) Bogatsky, A.V., Lukyanenko, N.G., Basok, S.S., Ostrovskaya, L.K. Synthesis 1984, 138.
- (6) Traylor, T.G. Chem. Ind. (London) 1963, 649.
- (7) Landini, D., Maia, A., Rampoldi, A. J. Org. Chem. 1986, 51, 3187.