

View Article Online View Journal

# Journal of Materials Chemistry A

# Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: G. Cheng, S. Xie, B. Lan, X. Zheng, F. Ye, M. Sun, X. Lu and L. Yu, *J. Mater. Chem. A*, 2016, DOI: 10.1039/C6TA04530H.



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/materialsA

## Journal Name

# ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/



Gao Cheng,<sup>a</sup> Shilei Xie,<sup>b</sup> Bang Lan,<sup>c</sup> Xiaoying Zheng,<sup>a</sup> Fei Ye,<sup>a</sup> Ming Sun,<sup>a</sup> Xihong Lu,<sup>b</sup>\* and Lin Yu<sup>a</sup>\*

To achieve high performance of fuel cells and metal-air batteries, searching the inexpensive and earth-abundant catalysts with enhanced activity and durability for oxygen reduction reaction (ORR) are currently pursued. Herein, threedimensional (3D)  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical star-like architectures with tunable crystal phase and desirable ORR activity were readily prepared by a facile hydrothermal method without any surfactants or templates. The effects of reaction temperature, anion type and dwell time on the morphologies of the MnO<sub>2</sub> products were studied in detail, and the possible formation mechanism of the 3D MnO<sub>2</sub> hierarchical stars was proposed. Due to the improved electrical conductivity and O<sub>2</sub> adsorption ability, the resulting  $\alpha$ -MnO<sub>2</sub> catalyst showed substantially enhanced ORR activity compared to the  $\epsilon$ -MnO<sub>2</sub> and bulk MnO<sub>2</sub> catalysts, with a more positive onset potential, larger limiting current density and better durability. Our results provide a facile chemical route towards phase-controlled synthesis of the 3D MnO<sub>2</sub> architectures, which can be served as the efficient catalysts for ORR-based applications.

#### Introduction

Published on 19 September 2016. Downloaded by Northern Illinois University on 21/09/2016 08:52:17.

The ever-growing demands for energy and environment protection have stimulated significant interests in the development of sustainable energy conversion and storage devices. Fuel cells and metal-air batteries are recognizing as the most promising energy conversion and storage devices for their theoretically high energy density and wide applications.<sup>1-5</sup> The essential to gain their optimal performance is to develop efficient electrocatalysts for the oxygen reduction reaction (ORR). Noble metal and its alloys are the most active ORR electrocatalysts,<sup>6,7</sup> but they are highly expensive and scarce. Alternatively, substantial efforts have been devoted to exploring the non-precious ORR electrocatalysts. Up to now, multifarious electrocatalysts such as transition-metal oxides,<sup>8-10</sup> doped carbons<sup>11,12</sup> and metal-N<sub>4</sub> chelates macrocycles<sup>13</sup> have been reported. Among them, manganese dioxide (MnO<sub>2</sub>) holds great promise as alternative and cost-effective electrocatalyst for ORR due to its low cost, environmental friendliness, structural diversity (e. g.,  $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ -, and  $\epsilon$ - type, etc.) and acceptable catalytic activity.<sup>14-19</sup> However, owing to the limited electrical conductivity (10<sup>-5</sup>-10<sup>-6</sup> S cm<sup>-1</sup>), the ORR activities of



To improve the ORR performance of MnO<sub>2</sub>, many strategies including nanostructuring,<sup>20</sup> integrating with highly conductive materials,<sup>21,22</sup> doping with cations,<sup>23,24</sup> coating with metal nanoparticles,<sup>25,26</sup> introducing native oxygen defects<sup>27</sup> and hydrogenation,<sup>28</sup> have been proposed. Among these strategies, designing MnO<sub>2</sub> nanostructures with rational architecture and desired phase have been emerging as one of the most effective approaches to boost their electrocatalytic ORR activity. For instance, free-standing and ultrathin  $\alpha$ -MnO<sub>2</sub> nanoflakes synthesized by a cationic surfactant assistant method showed a good ORR mass activity of 21  $\pm$  1.2 mA mg<sup>-1</sup> at 0.75 V vs. RHE.<sup>20</sup> The oxygen-deficient  $\beta$ -MnO<sub>2</sub> nanorods exhibited approximately 50 mV (vs. RHE) higher potential than the pristine  $\beta$ -MnO<sub>2</sub> nanorods.<sup>27</sup> Overall, these synthetic methods often require relatively complicated processes and the catalytic durability of these MnO<sub>2</sub>-based catalysts is not yet satisfactory. More importantly, the effect of the phase variation on the ORR activity of MnO<sub>2</sub> is still not clear since it is difficult to obtain similar MnO<sub>2</sub> morphology with different crystal phases through the current synthetic approaches. Therefore, the development of a facile and effective method to prepare nanostructured MnO<sub>2</sub> electrocatalysts with controllable crystal phase and morphology as well as high ORR activity is of great interest and greatly challenging.

CHEMISTRY

6TA04530H

DOI:

<sup>&</sup>lt;sup>a.</sup> Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China. E-mail: gych@gdut.edu.cn (Lin Yu).

<sup>&</sup>lt;sup>b.</sup> MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail: luxh6@mail.sysu.edu.cn (Xihong Lu).

<sup>&</sup>lt;sup>c.</sup> GuangDong MeiZhou Quality & Metrology Supervision and Testing Institution, Meizhou 514072, P. R. China.

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

View Article Online DOI: 10.1039/C6TA04530H



Fig. 1 XRD patterns and structural illustrations of the (a and b)  $\alpha$ -MnO<sub>2</sub> (consists of double chains of edge-sharing octahedra)<sup>33</sup> and (c and d)  $\epsilon$ -MnO<sub>2</sub> samples (consists of single and double MnO<sub>6</sub> octahedral chains)<sup>34</sup>: view along the c-axis.

Three-dimensional (3D) hierarchical architectures, assembling from one-dimensional (1D) or two-dimensional (2D) micro/nanoscale building blocks, not only can provide high surface area and fast pathway for ion diffusion and charge,<sup>29,30</sup> but also prevent ostwald ripening or agglomeration of the catalyst.<sup>31</sup> Such these features make them highly promising as electrocatalysts for ORR.32 Herein, we demonstrated for the first time that the facile synthesis of 3D star-like MnO<sub>2</sub> hierarchical architectures with tunable crystal phase based on a simple redox reaction and their implementation as advanced electrocatalysts for ORR. The novel 3D  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical stars were readily achieved by a direct redox reaction using KClO<sub>3</sub>/NaClO<sub>3</sub> and Mn(CH<sub>3</sub>COO)<sub>2</sub> as precursors under mild conditions. Significantly, the resulting MnO<sub>2</sub> hierarchical stars presented a close relationship between the phase and ORR activity. The  $\alpha$ -MnO<sub>2</sub> hierarchical stars exhibited substantially superior ORR performance than the ε-MnO<sub>2</sub> hierarchical stars in alkaline medium, with a more positive onset potential of 0.84 V and higher diffusion-limiting current of 5.67 mA cm<sup>-2</sup>. Furthermore, the  $\alpha$ -MnO<sub>2</sub> stars also had remarkably pronounced durability with more than 93.3 % retention after 10 h.

#### Results

Published on 19 September 2016. Downloaded by Northern Illinois University on 21/09/2016 08:52:17.

#### Structures and morphologies

As illustrated in Fig. S1, the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> star-like hierarchical architectures were prepared via a direct redox reaction by using KClO<sub>3</sub>/NaClO<sub>3</sub> and Mn(CH<sub>3</sub>COO)<sub>2</sub> as precursors under acidic conditions, respectively. X-ray diffraction (XRD) studies were firstly conducted to investigate the phase of the products (Fig. 1a and c). Interestingly, all the reflections for the sample obtained by using KClO<sub>3</sub> as the oxidant can be well indexed to a tetragonal  $\alpha$ -MnO<sub>2</sub> (JCPDS 44-0141), which possesses a 2 × 2 tunnel structure in Fig. 1b. When using NaClO<sub>3</sub> as the oxidant, a hexagonal  $\epsilon$ -MnO<sub>2</sub> (JCPDS 12-141) with an intergrowth of 1 × 1 tunnels and 1 × 2 tunnels (Fig. 1d) was obtained. This indicates that the crystal phase of the MnO<sub>2</sub> can be readily tuned by elaborately choosing the oxidant. Fig. 2 shows the typical field emission scanning electron microscopy (FESEM) images of the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples. Both the MnO<sub>2</sub> samples exhibit a homogenous 3D star-like hierarchical architecture that consists of six branches. The  $\alpha$ -MnO<sub>2</sub> hierarchical stars have a typical size of about 40-50  $\mu$ m (Fig. 2a), while the  $\epsilon$ -MnO<sub>2</sub> hierarchical stars have a typical size of 10-25 µm (Fig. 2c). Further observations reveal that every branch of both the MnO<sub>2</sub> samples is composed of parallel arrays of MnO<sub>2</sub> nanowires, and the angle between every pair of adjacent branches is nearly 60° (Fig. 2b and d). The surfaces of the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical stars are relatively smooth (Fig. S2). Additionally, the big difference between these two MnO<sub>2</sub> samples is that the length of the  $\alpha$ -MnO<sub>2</sub> branched nanowires (~ 25 µm) is substantially longer than that of the  $\varepsilon$ -MnO<sub>2</sub> branched nanowires (~ 13 µm). All these results fully confirmed that similar 3D MnO<sub>2</sub> hierarchical stars with controllable crystal phase were successfully prepared via this simple approach.

To acquire more detailed structural information of  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical stars, transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analyses were carried out. Fig. 3a and 3c show the typical TEM images of an individual six-branched  $\alpha$ -MnO<sub>2</sub> and



Fig. 2 FESEM images of the as-prepared MnO<sub>2</sub> samples: (a, b)  $\alpha$ -MnO<sub>2</sub> and (c, d)  $\epsilon$ -MnO<sub>2</sub>.

Published on 19 September 2016. Downloaded by Northern Illinois University on 21/09/2016 08:52:17.

#### Journal Name

ε-MnO<sub>2</sub> hierarchical star, respectively. The HRTEM image of a single nanowire on α-MnO2 branches shows two sets of lattice spacings of 4.89 Å and 2.74 Å with an angle of 73° that correspond to the (200) and (101) planes (Fig. 3b), suggesting that the nanowire grows along the [001] direction. The three bright spots from the circle could be well indexed to (-101), (101), and (400) planes (inset of Fig. 3b). The zone axis is [010]. The SAED pattern also confirms that the nanowire is a single crystal of  $\alpha$ -MnO<sub>2</sub>. Fig. 3d shows the HRTEM image of a single  $\varepsilon$ -MnO<sub>2</sub> nanowire. The lattice spacings of 2.42 Å and 2.42 Å with an angle of 60° are in good agreement with the (100) and (010) planes, indicating the nanowire has a growth direction along of [001]. The three bright spots in the SAED pattern (inset of Fig. 3d) could be corresponded to the (-110), (010), and (100) planes. Additionally, the  $\varepsilon$ -MnO<sub>2</sub> nanowire is also single crystalline, which is confirmed by the well-arranged spots in the SAED pattern.

Precise control the reaction parameters such as the reaction temperature, dwell time and anion type are the key factors for the formation of uniform hierarchical nanostructures, since these parameters significantly affect their nucleation and growth process. As shown in Fig. S3, various reaction temperatures (120, 140 and 180 °C) were applied to study the effect of temperature on the morphology of the MnO<sub>2</sub> products with other parameters unchanged. At lower reaction temperatures (120 and 140 °C), the products prepared by using KClO<sub>3</sub> as the oxidant are both the urchin-like MnO<sub>2</sub> nanostructures (Fig. S3a and S3b), while the products obtained by using NaClO<sub>3</sub> as the oxidant are both made up of the urchin-like MnO<sub>2</sub> nanostructures (Fig. S3d and S3e). In general, increasing the reaction temperature will facilitate the homogeneous nucleation and growth of nanostructures,<sup>35</sup> thus



Fig. 3 TEM images and HRTEM images of (a, b)  $\alpha$ -MnO<sub>2</sub> and (c, d)  $\epsilon$ -MnO<sub>2</sub> hierarchical stars. The insets show the corresponding SAED patterns.

#### ARTICLE

the uniform 3D MnO<sub>2</sub> hierarchical stars can be formed liat 160 °C. However, when the reaction demperature After ther increased to 180 °C, only rod-like MnO<sub>2</sub> nanostructures are observed for the products prepared by using the two different oxidants (Fig. S3e and S3f). This is because higher temperature (180  $^{\circ}$ C) leads to a faster nucleation and growth of nanostructures, which can destroy the star-like shapes during the violently reaction.<sup>36</sup> Similar results were obtained for  $\alpha$ -MnO<sub>2</sub> flower-like particles and CoOOH flower-like nanostructures synthesized at moderate temperature.<sup>36,37</sup> Moreover, we also investigated the effect of anion on the morphology of the MnO<sub>2</sub> products. With other conditions kept the same, the 3D MnO<sub>2</sub> hierarchical stars with six branches of MnO<sub>2</sub> nanowires can't be observed when the other kinds of anions  $(SO_4^{2^-}, Cl^- \text{ and } NO_3^-)$  were used in our system (Fig. S4), indicating the CHCOO<sup>-</sup> play a key role in the formation of the MnO<sub>2</sub> star-like shapes. Under the hydrothermal system, the carbonyl groups from CH<sub>3</sub>COO<sup>-</sup> could form hydrogen bond with the surface OH groups of the MnO<sub>2</sub> nanostructures.<sup>38</sup> Thus the lateral growth of MnO<sub>2</sub> can be restricted through the steric effects, resulting in the MnO2 nanowires with high aspect ratios of the MnO<sub>2</sub> hierarchical stars.<sup>39</sup>

In order to understand the formation mechanism of these MnO<sub>2</sub> hierarchical stars, time-dependent studies were performed and the results are shown in Fig. S5 and Fig. S6. Based on the FESEM results of the 3D MnO<sub>2</sub> star-like hierarchical architectures after various reaction times, we proposed these MnO<sub>2</sub> hierarchical stars may grow according to a "nucleation-growth" process. In the early stage, primary nucleation occurs in solution, followed by producing lots of MnO<sub>2</sub> units spontaneously. Afterward, aggregation of the MnO<sub>2</sub> units will then occur to generate relatively small 3D MnO<sub>2</sub> nanostructures. Since the difference in the redox potentials between  $ClO_3^-/Cl$  and  $MnO_2/Mn^{2+}$  is small (~ 0.227 eV), the reaction may proceed very mildly, allowing the MnO<sub>2</sub> intermediates to grow slowly and homogeneously. Then, the nanorods growing from the core start to convert to the nanowires with high aspect ratios, and the 3D MnO2 nanostructures evolve into the novel star-like hierarchical nanostructures. Finally, prolonged reaction time results in the formation of the MnO<sub>2</sub> hierarchical stars. A similar process has been observed in the formation of 3D MnO2 nanostructures under the hydrothermal method.<sup>34,40</sup> In our experiments, the reaction conditions remained the same except for the type of oxidizing reagent. Generally, the size of the inorganic cations is believed to have a critical impact on the formation of different  $MnO_2$  crystal phases. The cations with large sizes (such as K<sup>+</sup>,  $Rb^+$  and  $Ba^{2+}$ ) can serve as a template to stabilize the 2  $\times$  2 tunnel structure, while the Na<sup>+</sup> ions are beneficial for the synthesis of the MnO<sub>2</sub> structure with an intergrowth of 1  $\times$  1 and 1  $\times$  2 tunnels.<sup>40</sup> Therefore, the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical stars with tunable crystal phase can be readily obtained under our synthesis conditions. Electrocatalytic results

ournal of Materials Chemistry A Accepted Manusc



**Fig. 4** (a) CV curves of the MnO<sub>2</sub> catalysts in both N<sub>2</sub>-saturated and O<sub>2</sub>-saturated 0.1 M KOH solution; (b) Polarization curves of bulk MnO<sub>2</sub>,  $\epsilon$ -MnO<sub>2</sub>,  $\alpha$ -MnO<sub>2</sub> and Pt/C at 1600 rpm; (c) K-L plots of the different samples at 0.45 V. (d) Electron transfer number and H<sub>2</sub>O<sub>2</sub> production yield determined from RRDE data.

The electrocatalytic activity of the MnO<sub>2</sub> samples for the ORR was tested in 0.1 M KOH solution saturated with high-purity O<sub>2</sub>. Fig. 4a compares the typical cyclic voltammograms (CVs) of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars,  $\epsilon$ -MnO<sub>2</sub> hierarchical stars and bulk MnO<sub>2</sub> (Fig. S7) in N<sub>2</sub>- and O<sub>2</sub>- saturated solution at a scan rate of 50 mV s<sup>-1</sup>. The CV curves of the three MnO<sub>2</sub> samples in N<sub>2</sub>-saturated solution exhibit no obvious peaks, while the CV curves in the O<sub>2</sub>-saturated have a distinct cathodic peak. Note that the cathodic peak for  $\alpha$ -MnO<sub>2</sub> sample is located at 0.72 V, which is more positive than those of  $\varepsilon$ -MnO<sub>2</sub> sample (0.69 V) and bulk MnO<sub>2</sub> (0.64 V), indicating the superior electrocatalytic activity of the α-MnO<sub>2</sub> sample. The ORR activity of the asprepared  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> catalysts were further characterized using rotational ring-disk-electrode (RRDE) at different rotating speeds. These results were also compared with those of bulk MnO2 and Pt/C (20 wt%). As shown in Fig. S8, all these catalysts exhibit substantial rise in limiting current densities as the rotation speeds continually enhance due to the increased mass transport at the electrode surface. Fig. 4b compares the typical LSV curves of the different catalysts recorded at 1600 rpm in 0.1 M KOH solution saturated with O2. Significantly, the  $\alpha$ -MnO<sub>2</sub> hierarchical stars yielded a more positive onset potential (Eonset) and larger limiting current density (around 0.84 V and 5.67 mA cm<sup>-2</sup>, respectively) than those of the  $\epsilon$ -MnO<sub>2</sub> hierarchical stars (around 0.80 V and 5.28 mA cm<sup>-2</sup>, respectively) and bulk MnO<sub>2</sub> (around 0.75 V and 5.10 mA cm<sup>-2</sup>, respectively). In addition, the half-wave potential  $(E_{1/2})$  for  $\alpha$ -MnO<sub>2</sub> sample is ~ 0.72 V, which is the highest of the three MnO<sub>2</sub> samples. The electrocatalytic performances ( $E_{\text{onset}}$  and  $E_{1/2}$ ) of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars are comparable to those of recently reported non-precious ORR catalysts, which are summarized in Table S1. However, compared with the Pt/C catalyst, the ORR activity of the α-MnO<sub>2</sub> hierarchical stars is not ideal and still needed to improve. Fig. 4c depicts the Koutecky-Levich (K-L) curves derived from rotation-ratedependent currents at 0.45 V, showing a good linearity for both

 $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples. The corresponding slopes are very similar for the Pt/C, implying an applated (quasi-4600) electron mechanism for these two MnO<sub>2</sub> samples.

The electron transfer number (n) and peroxide yields  $(y_{peroxide})$ are two indicators to evaluate the ORR catalytic performance. As shown in Fig. 4d, the determined yield of peroxide species and n vary with disk potential. From 0.4 to 0.8 V, n is well approaches 3.81 for the  $\alpha$ -MnO<sub>2</sub> sample and 3.77 for the  $\epsilon$ -MnO<sub>2</sub> sample, again confirming the ORR with both of the two MnO<sub>2</sub> samples is an apparent quasi-four-electron process. Moreover, the  $y_{peroxide}$  for  $\alpha$ -MnO<sub>2</sub> sample is substantially lower than those of  $\varepsilon$ -MnO<sub>2</sub> sample and bulk MnO<sub>2</sub>, further indicating the superior ORR activity of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars. Fig. S9 shows the Tafel plots of the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples. Obviously, two Tafel slopes can be observed for both MnO<sub>2</sub> samples at high and low overpotentials, respectively. The small Tafel slope is advantageous for practical catalytic applications, since it leads to a rapid increase of ORR rate with overpotential.<sup>41</sup> The calculated Tafel slopes for the α-MnO<sub>2</sub> sample are about 78 mV/dec in low overpotential range and 138 mV/dec in high overpotential range, which are distinctly smaller than those of the ε-MnO<sub>2</sub> sample (95 mV/dec in low overpotential range and 141 mV/dec in high overpotential range). This indicates the faster ORR reaction kinetics of the α-MnO<sub>2</sub> sample.

Besides the excellent catalytic activity, the  $\alpha$ -MnO<sub>2</sub> hierarchical stars also show favourable catalytic stability in alkaline solution (Fig. 5). In a continuous polarization period of 10 h, more than ~ 93.3 % of the initial current is retained for the  $\alpha$ -MnO<sub>2</sub> catalyst, while only ~ 78.7 % retention for the  $\epsilon$ -MnO<sub>2</sub> catalyst and ~ 64.5 % for the bulk  $MnO_2$ . This present stability also outperforms the value of the Pt/C catalyst for ORR (~ 87.9 % retention after 10 h). The high durability of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars could be attributed to their unique 3D star-like morphology constructed by nanowires, providing some advantage against particulate agglomeration.42 However, the durability of the ε-MnO<sub>2</sub> hierarchical stars is not ideal, which may be ascribed to its unstable chemical stability causing by a trace amount of dissolved MnO2.43,44 The gradual decay of reduction current may be due to the chemical stability of the catalysts during the ORR test. Moreover, the  $\alpha$ -MnO<sub>2</sub>



Fig. 5 Chronoamperometry of the catalysts maintained at a constant potential of 0.5 V in  $O_2$  saturated 0.1 M KOH.

Published on 19 September 2016. Downloaded by Northern Illinois University on 21/09/2016 08:52:17.

#### Journal Name

hierarchical stars were further examined by a CV test from 0.2 to -0.7 V for 2000 cycles at a scan rate of 100 mV s<sup>-1</sup>. As shown in Fig. S10, there is a negative shift of ~ 29 mV in the  $E_{1/2}$  value at 1600 rpm after the CV test.

In alkaline solutions, the ORR contains a series of complex electrocatalytic reactions, which is involved in several electron transfer steps. On the surface of metal catalysts, the ORR mechanism is proposed to follow by a four-electron (4e<sup>-</sup>) pathway or a two-electron (2e<sup>-</sup>) pathway.<sup>23,43</sup> As we known, MnO<sub>2</sub> exhibits outstanding activity toward the HO<sub>2</sub><sup>-</sup> decomposition and/or reduction, thus the ORR pathway on the surface of MnO<sub>2</sub> could be recognized as an apparent 4e<sup>-</sup> reduction mechanism involving the following steps:<sup>45,46</sup>

$$\begin{array}{r} MnO_2 + H_2O + e^- \leftrightarrow MnOOH + OH^-\\ MnOOH + O_2 \leftrightarrow MnOOH \cdots O_{2,ads}\\ MnOOH \cdots O_{2,ads} + e^- \leftrightarrow HO_2^- + MnO_2\\ HO_2^- + H_2O + 2e^- \leftrightarrow 3OH^-\\ Or HO_2^- \leftrightarrow OH^- + O_2 \end{array}$$

Accordingly, we can speculate that the ORR pathway on the surface of the 3D  $MnO_2$  hierarchical stars also follows the apparent 4e<sup>-</sup> reduction mechanism because of their RRDE results (high values of n and low yields of HO<sub>2</sub><sup>-</sup>). The adsorbed O<sub>2</sub> to replace adsorbed OH<sup>-</sup> is considered to be the rate-limiting step of this mechanism.<sup>45</sup>

The ORR performance is largely determined by the surface area, morphology, size, composition and crystal structure of the  $MnO_2$  catalysts. To gain the insights into the enhanced ORR performance of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars, various physicochemical characterization techniques were performed. Fig. S11 displays the N<sub>2</sub> adsorption-desorption isotherms of the two MnO<sub>2</sub> samples. It can be seen that both of the two MnO<sub>2</sub> samples show a characteristic of type II isotherm pattern with a hysteresis loop of type H3, suggesting the existence of slit-shaped capillaries with parallel plates.<sup>47</sup> Additionally, the Brunauer-Emmett-Teller (BET) surface areas were measured to



**Fig. 6** XPS spectra of (a) Mn 3s and (b) O 1s for  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples; (c) O<sub>2</sub>-TPD profiles of the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples; (d) Comparison of the I-V curves of the two MnO<sub>2</sub> samples.

be 14.9 and 17.8 m<sup>2</sup> g<sup>-1</sup> for  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub>, we spectively, and the average pore diameter calculated by Barrete Transfer Halenda (BJH) method for  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> is about 12.10 and 13.55 nm (Fig. S12). Generally, the electrocatalyst with larger surface area may have more active sites on its surface for the contact with the reactants, resulting in the higher ORR activity.<sup>26</sup> However, our results reveal that the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples have close surface area and pore size, which suggests the difference in ORR activities between the two MnO<sub>2</sub> samples may be due to the other factors such as the O<sub>2</sub> adsorption affinity and electrical conductivity.<sup>46</sup>

X-ray photoelectron spectroscopy (XPS) was employed to determine the chemical state of the surface Mn and O elements. Fig. S13 shows the core level Mn 2p XPS spectra of the  $\alpha$ -MnO<sub>2</sub> and ε-MnO<sub>2</sub> samples. Two peaks, corresponding to the binding energies (BEs) of Mn 2p<sub>3/2</sub> and Mn 2p<sub>1/2</sub>, are observed in the Mn 2p spectra. The BEs values of Mn 2p<sub>3/2</sub> for both two MnO<sub>2</sub> samples are larger than 642.0 eV, indicating their oxidation states are close to +4.48,49 The typical Mn 3s XPS spectra of the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples are presented in Fig 6a. The energy separation ( $\Delta E$ ) of  $\alpha$ -MnO<sub>2</sub> sample (4.61 eV) is larger than that of  $\varepsilon$ -MnO<sub>2</sub> sample (4.50 eV), revealing the Mn oxidation state in  $\alpha$ -MnO<sub>2</sub> sample is lower than the  $\epsilon$ -MnO<sub>2</sub> sample.<sup>50</sup> Detailed studies have shown that the multiplet splitting energy ( $\Delta E$ ) of the Mn 3s decreases monotonically with the increase of the average oxidation state (AOS) of Mn element.<sup>51</sup> The AOS for the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> samples can be calculated to be 3.74 and 3.87, respectively.<sup>52,53</sup> Thus, the  $\alpha$ - $MnO_2$  may have more surface oxygen vacancies than  $\varepsilon$ - $MnO_2$ according to the principle of electroneutrality, indicating more multivalent Mn cations in  $\alpha$ -MnO<sub>2</sub> hierarchical stars.<sup>42,54</sup> On the other hand, the O1s spectra can be fitted into three peaks (Fig. 6b). The peaks at 529.7 eV, 531.1 eV and 533.4 eV are corresponding to the lattice oxygen (O<sub>latt</sub>), surface absorbed oxygen ( $O_{ads}$ ) and adsorbed  $H_2O$  ( $H_2O_{ads}$ ), respectively.<sup>28</sup> After making quantitative analysis, the ratio of O<sub>ads</sub>/O<sub>latt</sub> for α-MnO<sub>2</sub> (0.38) is bigger than that of the  $\varepsilon$ -MnO<sub>2</sub> (0.32), implying a stronger interaction between the α-MnO<sub>2</sub> hierarchical stars and adsorbed oxygen species since the surface oxygen vacancies can be the active centers in adsorbing the oxygen molecules. The O1s XPS spectra results indicate that the  $\alpha$ -MnO<sub>2</sub> sample possesses higher  $O_2$  adsorption affinity than the  $\varepsilon$ -MnO<sub>2</sub> sample. As indicated in the proposed ORR pathway, the strong adsorption of  $O_2$  on the active centers can be expected to promote the rate-limiting step, leading to the faster kinetics of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars.<sup>24</sup>

The O<sub>2</sub> temperature-programmed desorption (O<sub>2</sub>-TPD) spectra of the  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical stars were collected in Fig. 6c to further understand their O<sub>2</sub> adsorption affinities. On the whole, the oxygen desorption peaks below 400 °C are attributed to the release of O<sub>ads</sub>, while the desorption peaks above 400 °C are caused by the release of O<sub>latt</sub>.<sup>55,56</sup> Accordingly, the  $\alpha$ -MnO<sub>2</sub> sample displays much stronger peak from 150 to 400 °C corresponding to the O<sub>ads</sub> species than that of the  $\epsilon$ -MnO<sub>2</sub> sample, indicating that O<sub>2</sub> is preferentially absorbed on  $\alpha$ -MnO<sub>2</sub> hierarchical stars. This improved O<sub>2</sub> adsorption capability of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars again

Manu

nal of Materials Chemistry A Accepted

#### Journal Name

confirms the above XPS results, which is highly favorable for promoting the rate of ORR.<sup>57</sup> Moreover, we measured the electrical conductivity of the as-prepared MnO<sub>2</sub> samples by two-point current-potential (I-V) curves in a typical two electrode system. As illustrated in Fig. 6d, the current density of the  $\alpha$ -MnO<sub>2</sub> sample is substantially higher than that of the  $\epsilon$ -MnO<sub>2</sub> sample at the same potential, demonstrating the  $\alpha$ -MnO<sub>2</sub> hierarchical stars possess superior conductivity. The enhanced electrical conductivity of the  $\alpha$ -MnO<sub>2</sub> hierarchical stars can be ascribed to its higher concentration of surface oxygen vacancies, leading to the fast electron transfer and reduce electrode polarization during the ORR process.<sup>50</sup>

#### Conclusions

ARTICLE

In summary, 3D  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical stars with similar morphology and desirable phase have been successfully synthesized via a facile redox reaction, and their possible formation mechanism were seriously investigated. It was found that the reaction temperature, anion type and dwell time played a significant role in controlling the morphologies of the MnO<sub>2</sub> products. These 3D hierarchical stars offer abundant active sites on the surface of the MnO2 and prevent their aggregation as well as facilitate the O<sub>2</sub>/electrolyte diffusion during the oxygen reduction process. Benefiting from the improved O<sub>2</sub> adsorption capability and conductivity, the  $\alpha$ -MnO<sub>2</sub> hierarchical stars presented remarkably enhanced ORR activity compared to the ε-MnO<sub>2</sub> hierarchical stars and the bulk MnO<sub>2</sub>. It achieved a more positive ORR onset potential of 0.84 V and higher diffusion-limited current of 5.67 mA cm<sup>-2</sup> with excellent longterm durability. Our present findings not only afford a reliable synthetic approach to precisely prepare the 3D MnO<sub>2</sub> hierarchical architectures with different crystallographic forms for studying the phase-ORR activity of the electrocatalysts, but also provide new insights into design high-efficient MnO<sub>2</sub> catalysts for ORR.

#### Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21306026, 21576054, 21403306), the Scientific Project of Guangdong Province (2014A010106030, 2016A010104017), the Foundation of Higher Education of Guangdong Province (2013CXZDA016, 2013LYM0024, 2015KTSCX027).

#### Notes and references

- 1 L. Qian, L. Gu, L. Yang, H. Yuan and D. Xiao, *Nanoscale*, 2013, **5**, 7388.
- 2 W. Huang, H. Wang, J. Zhou, J. Wang, P. N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S. T. Lee and H. Dai, *Nat. Commun.*, 2015, 6, 10035.
- 3 L. Jin, L. Xu, C. Morein, C.-h. Chen, M. Lai, S. Dharmarathna, A. Dobley and S. L. Suib, *Adv. Funct. Mater.*, 2010, **20**, 3373.

- 4 H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui and H. Dai, *Energy Environ. Sci.*, 2012, 5, 793 Jol: 10.1039/C6TA04530H
- 5 Z. L. Wang, D. Xu, J. J. Xu and X. B. Zhang, *Chem. Soc. Rev.*, 2014, **43**, 7746.
- 6 M. K. Debe, Nature, 2012, 486, 43.
- 7 L. Zhang, M. Wei, S. Wang, Z. Li, L.-X. Ding and H. Wang, *Chem. Sci.*, 2015, 6, 3211.
- 8 J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang and L. Guo, *Sci. Rep.*, 2013, **3**, 2300.
- 9 D. Chen, C. Chen, Z. M. Baiyee, Z. Shao and F. Ciucci, *Chem. Rev.*, 2015, **115**, 9869.
- 10 J. Xiao, C. Chen, J. Xi, Y. Xu, F. Xiao, S. Wang and S. Yang, *Nanoscale*, 2015, **7**, 7056.
- 11 Y. Meng, D. Voiry, A. Goswami, X. Zou, X. Huang, M. Chhowalla, Z. Liu and T. Asefa, J. Am. Chem. Soc., 2014, 136, 13554.
- 12 J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park and S. H. Joo, *J. Am. Chem. Soc.*, 2014, **136**, 8875.
- 13 Z. Chen, D. Higgins, A. Yu, L. Zhang and J. Zhang, *Energy Environ. Sci.*, 2011, 4, 3167.
- 14 W. Xiao, D. Wang and X. W. Lou, J. Phys. Chem. C, 2010, 114, 1694.
- 15 R. B. Valim, M. C. Santos, M. R. V. Lanza, S. A. S. Machado, F. H. B. Lima and M. L. Calegaro, *Electrochim. Acta*, 2012, 85, 423.
- 16 K. Selvakumar, S. M. Senthil Kumar, R. Thangamuthu, K. Ganesan, P. Murugan, P. Rajput, S. N. Jha and D. Bhattacharyya, J. Phys. Chem. C, 2015, 119, 6604.
- 17 L. Li, X. Feng, Y. Nie, S. Chen, F. Shi, K. Xiong, W. Ding, X. Qi, J. Hu, Z. Wei, L.-J. Wan and M. Xia, *ACS Catalysis*, 2015, 5, 4825.
- 18 I. M. Mosa, S. Biswas, A. M. El-Sawy, V. Botu, C. Guild, W. Song, R. Ramprasad, J. F. Rusling and S. L. Suib, *J. Mater. Chem. A*, 2016, 4, 620.
- 19 Y. Meng, W. Song, H. Huang, Z. Ren, S. Y. Chen and S. L. Suib, J. Am. Chem. Soc., 2014, 136, 11452.
- 20 C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews, F. Huo, T. Sritharan and Z. Xu, *Chem. Commun.*, 2014, **50**, 7885.
- 21 J. S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu and J. Cho, *Nano letters*, 2011, **11**, 5362.
- 22 T. N. Lambert, D. J. Davis, W. Lu, S. J. Limmer, P. G. Kotula, A. Thuli, M. Hungate, G. Ruan, Z. Jin and J. M. Tour, *Chem. Commun.*, 2012, 48, 7931.
- 23 I. Roche, E. Cha net, M. Chatenet and J. Vondr &, J. Phys. Chem. C, 2007, 111, 1434.
- 24 D. J. Davis, T. N. Lambert, J. A. Vigil, M. A. Rodriguez, M. T. Brumbach, E. N. Coker and S. J. Limmer, *J. Phys. Chem. C*, 2014, **118**, 17342.
- 25 W. Sun, A. Hsu and R. Chen, J. Power Sources, 2011, 196, 4491.
- 26 F. Cheng, Y. Su, J. Liang, Z. Tao and J. Chen, *Chem. Mater.*, 2010, **22**, 898.
- 27 F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han and J. Chen, Angew. Chem., Int. Ed., 2013, 52, 2474.
- 28 T. Zhang, F. Cheng, J. Du, Y. Hu and J. Chen, Adv. Energy. Mater., 2015, 5, 1400654.
- 29 Z. Sun, J. H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y. M. Kang and S. X. Dou, *J. Am. Chem. Soc.*, 2011, 133, 19314.
- 30 R. Chen, H.-Y. Wang, J. Miao, H. Yang and B. Liu, *Nano Energ.*, 2015, **11**, 333.
- 31 Y. Xu and B. Zhang, Chem. Soc. Rev., 2014, 43, 2439.
- 32 Y. Fan, P.-F. Liu, Z.-W. Zhang, Y. Cui and Y. Zhang, J. Power Sources, 2015, 296, 282.
- 33 E. M. Benbow, S. P. Kelly, L. Zhao, J. W. Reutenauer and S. L. Suib, *J. Phys. Chem. C*, 2011, **115**, 22009.
- 34 Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow and S. L. Suib, *Adv. Funct. Mater.*, 2006, **16**, 549.

Published on 19 September 2016. Downloaded by Northern Illinois University on 21/09/2016 08:52:17.

View Article Online DOI: 10.1039/C6TA04530H

- Journal Name
- 35 J. Yuan, W.-N. Li, S. Gomez and S. L. Suib, J. Am. Chem. Soc., 2005, **127**, 14184.
- 36 Y. Wang, M. Liu, K. Li, A. Zhang and X. Guo, *CrystEngComm*, 2015, **17**, 3636.
- 37 W. J. Lan, C. C. Kuo and C. H. Chen, *Chem. Commun.*, 2013, 49, 3025.
  38 Q. Zhang, X. Cheng, X. Feng, G. Qiu, W. Tan and F. Liu, *J.*
- 38 Q. Zhang, X. Cheng, X. Feng, G. Qiu, W. Tan and F. Liu, J. Mater. Chem., 2011, 21, 5223.
   30 D. L. L. X. T. Li, C. Chem. M. S. E. V. O. S. Li, M. S. E. Y. C. S. Li, M. S. E. Y. C. S. Li, M. S. Li, M
- 39 B. Lan, L. Yu, T. Lin, G. Cheng, M. Sun, F. Ye, Q. Sun and J. He, ACS Appl. Mater. Interfaces, 2013, 5, 7458.
- 40 R. Ghosh, X. Shen, J. C. Villegas, Y. Ding, K. Malinger and S. L. Suib, *J. Phys. Chem. B*, 2006, **110**, 7592.
- 41 J. Du, Y. Pan, T. Zhang, X. Han, F. Cheng and J. Chen, J. Mater. Chem., 2012, 22, 15812.
- 42 X. Han, T. Zhang, J. Du, F. Cheng and J. Chen, *Chem. Sci*, 2013, **4**, 368.
- 43 W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich and Y. Shao-Horn, *Energy Environ. Sci.*, 2015, **8**, 1404.
- 44 R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. L. Stephens and I. Chorkendorff, *ChemElectroChem*, 2014, **1**, 2075.
- 45 K. A. Stoerzinger, M. Risch, B. Han and Y. Shao-Horn, *ACS Catalysis*, 2015, **5**, 6021.
- 46 F. Cheng and J. Chen, Chem. Soc. Rev., 2012, 41, 2172.
- 47 X. Tang, Y. Li, J. Chen, Y. Xu and W. Shen, *Micropor. Mesopor. Mater.*, 2007, **103**, 250.
- 48 H. C. Genuino, Y. Meng, D. T. Horvath, C.-H. Kuo, M. S. Seraji, A. M. Morey, R. L. Joesten and S. L. Suib, *ChemCatChem*, 2013, 5, 2306.
- 49 M. Özacar, A. S. Poyraz, H. C. Genuino, C.-H. Kuo, Y. Meng and S. L. Suib, *Appl. Catal.*, A, 2013, **462-463**, 64.
- 50 T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu and Y. Tong, *Nano Energ.*, 2014, 8, 255.
- 51 J.-K. Chang, M.-T. Lee, W.-T. Tsai, M.-J. Deng and I. W. Sun, *Chem. Mater.*, 2009, **21**, 2688.
- 52 M. Sun, B. Lan, T. Lin, G. Cheng, F. Ye, L. Yu, X. Cheng and X. Zheng, *CrystEngComm*, 2013, **15**, 7010.
- 53 J. Hou, Y. Z. Li, M. Mao, L. Ren and X. Zhao, ACS Appl. Mater. Interfaces, 2014, 6, 14981.
- 54 Y. Ma, R. Wang, H. Wang, J. Key and S. Ji, J. Power Sources, 2015, **280**, 526.
- 55 V. P. Santos, M. F. R. Pereira, J. J. M. Órfão and J. L. Figueiredo, *Top. Catal.*, 2009, **52**, 470.
- 56 Y.-G. Yin, W.-Q. Xu, Y.-F. Shen, S. L. Suib and C. L. O'Young, *Chem. Mater.*, 1994, 6, 1803.
- 57 F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao and J. Chen, *Nat Chem*, 2011, **3**, 79.

## **Graphical Abstract**

## Phase Controllable Synthesis of Three-Dimensional Star-like MnO<sub>2</sub>

Hierarchical Architectures as Highly Efficient and Stable Oxygen

### **Reduction Electrocatalysts**

Gao Cheng,<sup>a</sup> Shilei Xie,<sup>b</sup> Bang Lan,<sup>c</sup> Xiaoying Zheng,<sup>a</sup> Fei Ye,<sup>a</sup> Ming Sun,<sup>a</sup> Xihong Lu<sup>b</sup>\* and Lin

Yu<sup>a</sup>\*

<sup>a</sup>Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher

Education Institutions, School of Chemical Engineering and Light Industry,

Guangdong University of Technology, Guangzhou 510006, P. R. China.

E-mail: gych@gdut.edu.cn (Lin Yu).

<sup>b</sup>MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and

Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

E-mail: luxh6@mail.sysu.edu.cn (Xihong Lu).

<sup>c</sup>GuangDong MeiZhou Quality & Metrology Supervision and Testing Institution, Meizhou 514072, P. R. China.



Three-dimensional (3D)  $\alpha$ -MnO<sub>2</sub> and  $\epsilon$ -MnO<sub>2</sub> hierarchical star-like architectures were readily prepared by a facile hydrothermal method without any surfactants or templates. The as-obtained  $\alpha$ -MnO<sub>2</sub> catalyst showed substantially enhanced ORR activity compared to the  $\epsilon$ -MnO<sub>2</sub> catalyst, which can be served as efficient catalysts for ORR-based applications.