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Divergent De Novo Synthesis of All Eight Stereoisomers of 2,3,6-

Trideoxyhexopyranosides and Their Oligomers  

Wangze Song,
a
 Yu Zhao,*

a,b
 John C. Lynch,

a
 Hyunjin Kim,

a
 and Weiping Tang*

a,c
  

All eight possible stereoisomers of 2,3,6-trideoxyhexopyranosides 

are prepared systematically from furan derivatives by a sequence 

of Achmatowicz rearrangement, Pd-catalysed glycosidation, and 

chiral catalyst-controlled tandem reductions. This sequence 

provides access to all possible stereoisomers of naturally occurring 

rhodinopyranosides, amicetopyranosides, disaccharide narbosine 

B, and other unnatural oligomeric 2,3,6-trideoxyhexopyranosides. 

It comprises a unique and systematic strategy for the de novo 

synthesis of deoxysugars. 

Carbohydrates play an important role in many biological processes.
1
 

Being able to access any stereoisomers systematically will greatly 

facilitate not only the study of the biological functions of 

carbohydrates but also the development of carbohydrate analogues 

as novel therapeutic agents. We herein report a divergent de novo 

synthetic strategy that allows us to access any possible mono- and 

oligomeric 2,3,6-trideoxyhexopyranosides at will.
2
 

Deoxyhexopyranosides
3
 such as rhodinose and amicetose 

(Figure 1) were found in numerous bioactive natural products.
4-8

 

Two isomeric disaccharides, 5 and 6, were isolated from FH-S 1577 

strain of Streptomyces from India and named as narbosine B.
9
 

Congeners of narbosine B such as narbosine D 7 showed distinct 

antiviral activity.
9
 As to oligosaccharides, there are 4096 possible 

stereoisomers for the tetrameric 2,3,6-trideoxyhexopyranoside 8, 

even though 2,3,6-trideoxyhexopyranose is one of the simplest 

hexoses.  

Among various strategies  developed for de novo synthesis of 

carbohydrates
11,12

 and O-glycosidation,
13

 particularly Pd-catalysed 

Tsuji-Trost allylic alkylation
14

  employed by several research 

groups,
14-18

 we are attracted by O’Doherty’s de novo synthetic 

strategy because of its predictability, efficiency, and versatility 

associated with the resulting enone functional group.
12, 20

 The 

power of this glycosidation method was elegantly demonstrated in 

the synthesis of several complex oligosaccharides recently.
21
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Figure 1. Natural and Unnatural 2,3,6-Trideoxyhexopyranosides  

Dihydropyranones 12 and 13 were prepared as the precursors 

of monomeric 2,3,6-trideoxy hexopyranosides according to the 

strategy developed by O’Doherty (Scheme 1).
17

 Alcohol 10 was 

obtained in nearly quantitative yield and 98% ee according to 

known protocols.
22

 Achmatowicz rearrangement converts furan 10 

to dihydropyranone 11.
23

 Following O’Doherty’s methods,
24

 benzyl 

glycosides 12 and 13 are prepared efficiently from the 

corresponding carbonates via Pd-π-allyl intermediates. Carbonate 

intermediates 14 was isolated in 59% yield under condition c, while 

carbonate intermediate 15 was isolated in 50% yield under 

condition e.
24

 The enantiomers of 12 and 13 were synthesized 

similarly by using (R,R)-ligand L2.  

Previously, the enantiomer of α-L-amicetopyranoside 16 

(Scheme 2) was prepared from ent-12 by a two-step sequence 

including a highly diastereoselective reduction of the ketone by 

NaBH4 at -78 
o
C and a diimide reduction of the alkene.

25
 The 

diastereoselectivity for the reduction of enone ent-13 to the 

corresponding allylic alcohols was about 1.5:1 under the condition 

of Luche reduction.
26

 To the best our knowledge, there is no direct 

one-step method that can provide access to 2,3,6-
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trideoxyhexopyranosides 16 to 19 from enones 12 or 13 

stereoselectively. We envisioned that a chiral catalyst-controlled 

tandem reduction could provide divergent products with high 

predictability.
27

 To achieve high stereoselectivity for each product, 

low intrinsic diastereoselectivity is highly desirable.
28

 Given the high 

efficiency and selectivity of Rh
III

-catalysed transfer hydrogenation of 

ketone 9, we investigated the reduction of enones 12 and 13 using 

achiral ligands. Both ketone and alkene groups were reduced and 

the diastereomeric ratios were less than 2:1 for the two pairs of 

alcohol products (Scheme 2).  

Me
O

O
OMe

O

OH
a)

a) [Cp*RhCl2]2 (0.05 mol%), (S,S)-Ts-DPEN L1 (0.12 mol%),

HCO2Na, 40 oC; b) NBS, NaOAc, NaHCO3; c) Boc2O, DMAP, -78oC;

d) Pd2(dba)3 (0.5 mol%), PPh3 (2 mol%), BnOH; e) Boc2O, NaOAc,

80oC.
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Scheme 1. Preparation of Precursors of Monomeric Hexopyranosides by O’Doherty’s 

De Novo Synthetic Strategy 

 

Scheme 2. Reduction of Enone Using Achiral Ligand 

When we switched to chiral ligands, we were pleased to find 

that a single stereoisomer was observed for products 16, 17, 18, 

and 19 depending on the choice of substrate and chiral ligand 

(Table 1). Similarly, products ent-16, ent-17, ent-18, and ent-19 

were prepared selectively from ent-12 and ent-13. In all cases, the 

(S,S)-ligand always yielded hydroxyl groups with S-configuration, 

while the (R,R)-ligand afforded R-configured secondary alcohols. 

The stereochemistry of the product is completely controlled by the 

chiral catalyst regardless the absolute or relative stereochemistry of 

the enone precursors. 

Table 1. Preparation of All Eight Stereoisomers of 2,3,6-Trideoxyhexopyranosides by 

Chiral Catalyst-Controlled Reductiona
 

Substrate Product Ligand  Yield (%)b 

12 16 L2 89 
12 17 L1 86 
13 18 L2 71 
13 19 L1 73 

ent-12 ent-17 L2 79 
ent-12 ent-16 L1 84 
ent-13 ent-19 L2 79 
ent-13 ent-18 L1 83 

a. Conditions: [Cp*RhCl2]2 (0.5 mol%), ligand (1.2 mol%), HCO2Na, 40 
oC; b. 

Isolated yield, dr > 20:1.  

We further examined the scope of this chiral catalyst-controlled 

divergent synthesis in more complex settings (Schemes 3 and 4). 

Naturally occurring disaccharides β-narbosine B 5 was synthesized 

for the first time from building blocks 15 and 14 derived from 

Achmatowicz rearrangement product 11 (Scheme 3). Natural 

product α-narbosine B 6 was prepared similarly. The spectral data 

and optical rotation of our synthetic 6 are in accordance with those 

reported by Trost.
10

 The (S,S)- ligand (L1) was employed to install all 

the hydroxyl groups with (S)-configuration in intermediates and 

products 5/6. 

Disaccharide 23, trisaccharide 24, and tetrasaccharide 25 were 

synthesized efficiently and stereoselectively from α-L-

amicetopyranoside 18 in a few steps (Scheme 4). The (R,R)-ligand 

(L2) was employed to install all the hydroxyl groups with R-

configuration in these oligosaccharides. The high fidelity of Pd-

catalysed glycosidation and chiral catalyst-controlled reduction 

allows the preparation of any one of the 4096 possible 

stereoisomeric tetrasaccharides, which complements to the 

approach developed by Rhee recently.
19

 

Scheme 3. Preparation of Naturally Occurring Disaccharides Narbosine B 
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Scheme 4. Preparation of Tetrasaccharide by the Sequence of Pd-Catalysed Allylic 

Alkylation and Chiral Catalyst-Controlled Reduction 

To understand the mechanism of the tandem reduction in more 

details, we studied the distribution of products using limited 

amount of sodium formate reducing agent (Scheme 5). A mixture of 

ketone 26, alcohol 18, and starting material 13 was obtained in 10%, 

40%, and 50% yields, respectively, based on NMR of the crude 

product. No allylic alcohol 27 was observed by NMR. This suggests 

that the 1,4-reduction is much faster than the 1,2-reduction of 

enone 13. The ratio of 26/18 also indicates that the reduction of 

ketone 26 is faster than the 1,4-reduction of enone 13. 

Scheme 5. Reduction with Limited Amount of Reducing Agent 

In summary, we realized a divergent synthesis of all eight 

stereoisomers 2,3,6-trideoxyhexopyranosides. The sequence 

of Pd-catalysed glycosidation and chiral catalyst-controlled 

tandem reduction can lead to a systematic de novo synthesis 

of all stereoisomers of any oligomeric 2,3,6-

trideoxyhexopyranosides. We expect that the chiral catalyst-

directed divergent synthesis strategy can be extended to the 

divergent synthesis of other oligosaccharides and their 

analogues.  
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