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Synthesis and use of trifluoromethylthiolated ketenimines  
Thomas Guérin,[a] Nadiia V. Pikun,[b] Ryutaro Morioka,[c] Armen Panossian,[a] Gilles Hanquet*[a] and 
Frédéric R. Leroux*[a] 
Abstract: The synthesis of trifluoromethylthiolated ketenimines is 
herein described. They are easily synthesized from the corresponding 
α-trifluoromethylthiolated oximes upon activation with triflic anhydride 
and a base. The presumed nitrilium ion resulting from the Beckmann 
rearrangement is deprotonated to lead to the key intermediate, whose 
stability brought by the fluorinated substituent was unforeseeable. The 
reaction of these new building blocks with a variety of nucleophiles 
affords a vast array of cyclic and acyclic products bearing the valuable 
SCF3 moiety. 

Decades of chemical research have shown that the fluorine atom 
and the fluorine-containing motifs profoundly impact the structure, 
reactivity and function of organic and inorganic molecules.[1] 
Fluorine-containing compounds are nowadays synthesized in 
pharmaceuticals, agrochemicals, polymers and electronic 
research on a routine basis. As an example, it is well established 
that fluorine atom(s) and/or fluoroalkyl group(s) can lead to many 
beneficial effects in a biologically active molecule.[2, 3]   In the past 
decade, fluorine chemistry greatly expanded with insightful 
contributions from research groups aiming at developing novel 
synthetic methods and reagents for the regio- and stereoselective 
introduction of fluorine or fluorine-containing groups into 
molecular scaffolds. Indeed, the fluorine chemistry field is still 
developing at a rapid pace and one of the current challenges is 
the search for Emergent Fluorinated Substituents (EFS) that 
would not only give new reactivity and functions to man-made 
molecules but also eventually lead to improved biological activity 
or even a novel mode of action. Such EFS are based on carbon 
(e.g. CHF2), on carbon linked to a heteroatom e.g. (O-CF3, S-CF3), 
or based on sulfur (e.g. SF5). From an industrial perspective, it 
should be noted that CHF2, OCF3, SF5 and SCF3 groups are quite 
rarely encountered and there is an urgent need to develop 
academic as well as industrial viable approaches towards 
scaffolds substituted by these EFS.[4] 
The ways of introducing the EFSs are important as they are 
clearly cost-determining in a chosen synthetic route. In the early 
stage of drug development, the late-stage introduction of 
fluorinated moieties in advanced synthetic intermediates is highly 
desirable and various methods are now available; however, this 
late-stage introduction is tedious and relies on expensive  

Scheme 1. Context of the present work. 

reagents.[5] On the other hand, most fluorinated compounds are 
often produced on an industrial scale from simple starting building 
blocks.[2a-d] Ketenimines are very versatile intermediates, capable 
of undergoing a variety of reactions such as nucleophilic additions 
and pericyclic reactions (Scheme 1, A).[6] Among them fluorinated 
ketenimines are understudied, most likely as only few synthetic 
methods are available to prepare them. As a matter of fact since 
the seminal work of Knunyants in 1965 on 
bis(trifluoromethyl)arylketenimines, [7] only the trifluoromethyl and 
bis(difluoro) derivatives by, respectively, Katagiri in 2009[8] and 
Wang in 2019[9] were reported (Scheme 1, B). The SCF3 
substituent has witnessed in recent years a huge interest and 
different methods for its direct introduction by means of 
electrophilic, nucleophilic as well as radical sources have been 
assessed.[10] Therefore, we decided to try to access a ketenimine 
bearing the SCF3 moiety to further complete the range of 
fluorinated ketenimines available (Scheme 1, C). Access to 
ketenimine 1a was envisioned to be possible through the 
Beckmann rearrangement of ketoxime 2a. Treatment of 2a with 
one equivalent of triflic anhydride in toluene, in the presence of 
two equivalents of Hünig’s base led to a stable intermediate 
whose mass in GC-MS matched 1a’s. The reaction was highly 
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exothermic and, if carried out under air, the major product was 
amide 3 (Scheme 2) resulting from water addition onto the 
electrophilic sp carbon of 1a. All signs seemed to be strongly 
indicating of the effective formation of the desired ketenimine 1a. 
Furthermore, the reaction of 1a with picric acid led to amide 4, 
presumably through Meisenheimer complex B produced after 
intramolecular cyclization of imidate A (Scheme 2). A solution of 
1a under argon turned out to be stable for several days as 
indicated by GC-MS monitoring, yet any attempt to isolate it failed, 
leading to amide 3.  

Scheme 2. Synthesis of 1a and its reaction with oxygen-centered nucleophiles. 
 
Though rather inclined to believe in the ketenimine nature of 1a, 
we had to further characterize it. Although less coherent with the 
formation of 3 and 4, we could not totally exclude 1a to be actually 
azirine 5 produced by a Neber rearrangement, and isomassic to 
1a. NMR leaned on the ketenimine side as the upfield proton was 
likely vinylic, despite its adjacent carbon being very shielded. 
Nevertheless, infrared analysis cleared all remaining doubt by 
showing a clear band at 2028 cm-1, characteristic of the stretching 
band νN=C=C.[6a] Thus we are proposing the mechanism to be as 
follows (Scheme 3): first the oxime is converted into its triflic ether 
derivative I. I then undergoes a Beckmann rearrangement, the 
phenyl group migrates onto the nitrogen as the triflate anion 
departs, to form II, a mesomeric form of nitrilium III. II, or III is then 
deprotonated by the remaining equivalent of base to form 
ketenimine 1a. 

Scheme 3. Spectral data of 1a (13C NMR shifts in blue and 1H in yellow, in ppm, 
in C6D6) and a plausible mechanism for its formation. 
 
Next, we submitted various amines to the reaction with 
intermediate 1a. We were delighted to observe a very clean GC 
chromatogram in each occurrence with only the expected product 
obtained in the reaction. After a rapid screening of bases and 
oxime activators (see supporting information) we studied the 
scope of the reaction (Scheme 4). Primary amines gave modest 
yields (products 6-8, 10, 11), comparable to the one obtained with 
N,N-dimethylhydrazine (product 9). Secondary amines gave the 
corresponding amidines with better yields (12-15), that we 
attributed to their increased nucleophilicity. Modifying the aryl 
moiety for a p-anisyl group did not really affect the outcome of the 
reaction (8, 11) and we thus preferred to focus on the scope of 
nucleophiles. To our great pleasure thiols and phosphites react 
with 1a to give respectively thioimidate 16 and a-
aminophosphonate 17 (Scheme 4, A). In this last example, we 
believe the product forms via elimination of ethylene (Scheme 4, 
B).[11] We were also pleased to see that malonitrile could add to 
1a to form acrylonitrile 18. Several substrates, however, did not 
lead to the expected products. Indole left the ketenimine 1a 
unreacted while diethylphosphite led to a complex mixture. Unlike 
picric acid (see Scheme 2), aliphatic alcohols did not afford the 
corresponding imidates.  

Scheme 4. Scope of the nucleophiles affording acyclic products. [a] 3 equiv. of 
base were used. 
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We then envisioned using ambiphilic reagents, bearing both 
nucleophilic and electrophilic moieties in order to access the 
corresponding heterocyclic compounds after N- or C- 
cyclization.[6c] Our first attempts implied diverse salicylaldehydes 
derivatives. Although the reaction at room temperature was 
irreproducible, microwave conditions gave consistent results. Yet 
the isolated yield turned out to be quite poor, indeed product 19 
was obtained in only 23 % yield (Scheme 5). However, this 
methodology would provide the only alternative to access 3-
trifluoromethylthio coumarins (after hydrolysis) to the one 
described in the literature, using expensive AgSCF3.[12] 1a could 
react similarly with benzoic or formic hydrazides to form the 
corresponding 1,2,4-triazoles 20 and 21 resulting from N-
cyclization.  

Scheme 5. Reaction with ambiphilic reagents.  

Having established the feasibility to access heterocyclic 
compounds through N- or C-cyclization, we wondered whether 
the aniline group resulting from the 1,2-phenyl shift could be 
eliminated by the condensation of a second nucleophilic position 
on the coupling partner. Thus, we used 2-hydrazinopyridine and 
could indeed isolate [1,2,4]triazolo[4,3-a]pyridine 22 in 68 % yield 
(Scheme 6) from ketenimine 1b.  

Scheme 6. Reaction with a bisnucleophilic reagent. 

All of the aforementioned nucleophiles being well-defined 
electron-rich centers, we wondered if the reaction occurs with a 
masked nucleophile. For this we used trimethylsilyl azide in the 
hope to perform an azidotrimethylsilylation across one double 

bond of the ketenimine. Interestingly, the resulting product did not 
display the characteristic azide stretching band at ca. 2100 cm-1 
in infrared spectroscopy. Our product bearing a CH2SCF3 moiety 
according to 1H and 13C NMR, we believe that the distal nitrogen 
of TMSN3 acts as any other nucleophile and attacks the sp carbon 
of 1 to form 23 and, after N-cyclization, intermediate 24 that 
rearomatizes through protodesilylation in the presence of water to 
give the corresponding 4H-tetrazoles 25 and 26 (Scheme 7).  

Scheme 7. Reaction with TMSN3 and cyclization of the presumed imidoyl azide 
intermediate. 

In conclusion, we have developed a simple method to access 
trifluoromethylthiolated ketenimines. We could show that these 
unprecedented structures react under metal-free conditions with 
a variety of nucleophiles to form acyclic trifluoromethylthiolated 
products. When an electrophilic moiety is present on the 
nucleophilic reagent, trifluoromethylthiolated heterocycles can be 
synthesized, allowing for rapid structure diversification through 
the addition of a C-C-SCF3 unit. The reactivity of the ketenimines 
in other types of reactions is currently being explored in our 
laboratory. These original intermediates should likely prove to be 
useful in the synthesis of bioactive compounds. 
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We herein disclose the first synthesis of trifluoromethylthiolated ketenimines. They 
are quickly and easily formed from α-trifluoromethylthiolated oximes through a 
Beckmann rearrangement and deprotonation of the nitrilium intermediate. Their 
interest is exemplified by many reactions, such as the direct addition of several C-, 
O-, N-, S- and P-centered nucleophiles as well as their incorporation into valuable 
heterocycles through cascade reactions. 
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