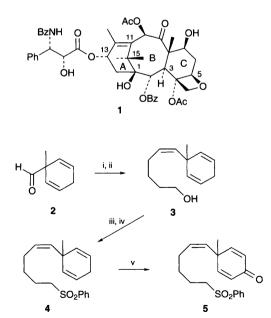
Facile construction of the bicyclo[6.4.0]dodecane system by the intramolecular Michael addition of sulfonyl carbanion

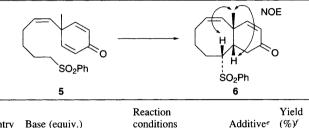
Masataka Ihara, Shuichi Suzuki, Yuji Tokunaga, Hiroshi Takeshita and Keiichiro Fukumoto*


Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

A bicyclo[6.4.0]dodecane system is synthesised *via* the intramolecular Michael addition of sulfonyl carbanion.

The potent antitumour agent taxol 1, a diterpene isolated from the Pacific yew tree (*Taxus brevifolia*),¹ is an attractive synthetic target for organic chemists. Many synthetic approaches to taxol and its analogues have been reported,² and recently the total synthesis of taxol has been accomplished by three groups.³ Nevertheless, an efficient method for the construction of the eight-membered ring (B-ring) has been a major problem. We report here a facile construction of the bicyclo[6.4.0]dodecane system *via* an intramolecular Michael addition of sulfonyl carbanion.

It is well known that the Michael addition of sulfonyl carbanion is a powerful method for carbon–carbon bond formation,⁴ especially for the synthesis of cyclopropane-carboxylates.⁵ However, its intramolecular version has not been reported. Therefore, we first examined the intramolecular Michael addition of the carbanion derived from sulfone **5** under various conditions.


The substrate 5 was prepared as follows (Scheme 1). Aldehyde 2^6 was converted into 3 by the Wittig reaction using Ph₃P+CH₂(CH₂)₃CH₂OBnBr^{-†} in the presence of BuLi, followed by reductive deprotection. Sulfenylation⁷ of 3 and the subsequent oxidation⁸ gave sulfone 4. The cyclohexa-2,5-diene moiety of 4 was oxidized with a catalytic amount of tetrapropylammonium perruthenate (TPAP) and 4-methyl-morphorine *N*-oxide (NMO)⁹,‡ to give 5.

Scheme 1 Reagents and conditions: i, $Ph_3P^+CH_2(CH_2)_3CH_2OBnBr^-$, BuLi, THF, $-78 \rightarrow 0$ °C; ii, Na, liq. NH₃, THF–Bu⁴OH (10:1), -78 °C (27% for 2 steps); iii, (PhS)₂, Bu₃P, pyridine (100%); iv, OXONE®, THF–MeOH–H₂O (3:1:) (95%); v, 10 mol% TPAP, NMO, 4 Å molecular sieves, MeCN (74% based on recovered starting material)

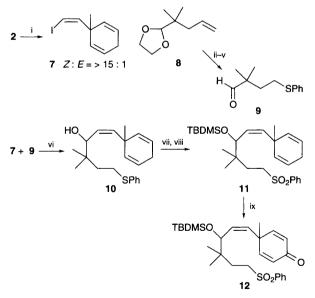
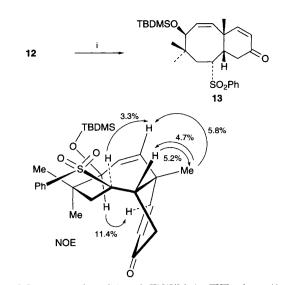

Results of the key reaction of 5 are summarized in Table 1. Treatment of 5 with LDA in the presence of HMPA gave a poor result (entry 1). When 5 was treated with $LiN(TMS)_2$ in the presence of HMPA, the bicyclic compound 6 was produced in

Table 1 Intramolecular Michael reaction of sulfone 5^a


Entry	Base (equiv.)		conditions	Additive	(%)
16	LDA	(2.2)	THF, $-50 \rightarrow 20 \text{ °C}$	HMPA	12
2 ^b	LiN(TMS)2	(2.0)	THF, $-78 \rightarrow 20 ^{\circ}\text{C}$	HMPA	48
36	LiN(TMS)2	(2.0)	THF, $-78 \rightarrow 20 \text{ °C}$		0
4 ^{<i>b</i>}	NaN(TMS) ₂	(2.0)	THF, $-78 \rightarrow 20 ^{\circ}\text{C}$		68
5 ^{<i>b</i>}	KN(TMS) ₂	(2.0)	THF-toluene ^d $-78 \rightarrow -30 \ ^{\circ}C$		72
6 ^c	KN(TMS) ₂	(1.2)	THF-toluened 0 °C		91

^{*a*} All reactions were quenched by sat. aq. NH₄Cl. ^{*b*} Sulfone was added to base. ^{*c*} Base was added to sulfone. ^{*d*} KN(TMS)₂-toluene was used. ^{*e*} 5 equiv. HMPA was used. ^{*f*} Isolated yield after purification by column chromatography on silica gel.

Scheme 2 Reagents and conditions: i, $ICH_2P^+Ph_3I^-$, $NaN(SiMe_3)_2$, THF, $-78 \rightarrow 20$ °C (68%); ii, 5 mol% OsO₄, $NaIO_4$, Et_2O-H_2O (1:1); iii, $NaBH_4$, MeOH, 0 °C (66% for 2 steps); iv, (PhS)₂, Bu₃P, pyridine (84%); v, AcOH-H₂O (4:1), 50 °C (95%); vi, Bu^LLi, THF, -78 °C (81%); vii, OXONE[®], Na_2HPO_4 , MeOH-H₂O (2:1) (91%); viii, TBDMS = tertbutyldimethylsilyl trifluoromethanesulfonate, 2,6-lutidine, CH₂Cl₂ (92%); ix, 20 mol% TPAP, NMO, 4 Å molecular sieves, MeCN (73%)

Chem. Commun., 1996 1801

Scheme 3 Reagents and conditions: i, KN(SiMe₃)₂, THF-toluene (4:1), 0 °C (100%)

48% yield as a single stereoisomer (the stereochemistry was determined by NOE measurements) (entry 2).§ However, in the absence of HMPA, the starting material was recovered (entry 3). On the other hand, NaN(TMS)₂ or KN(TMS)₂ was effective for the cyclization in the absence of HMPA (entries 4 and 5). The best result giving **6** in 91% yield was obtained by treatment with 1.2 equiv. of KN(TMS)₂ at 0 °C (entry 6).

Next, we tried the cyclization of sulfone 12 possessing the geminal dimethyl group and a hydroxy function at C-15 and C-11, respectively (taxane numbering). Sulfone 12 was prepared as described in Scheme 2. Vinyl iodide 7 was prepared from 2 by the Wittig reaction.¹⁰ Acetal 8^{11} was converted into aldehyde 9 by the usual protocol (oxidative cleavage of alkene, reduction, sulfenylation⁷ and deprotection). Coupling of the aldehyde 9 with iodide 7 was conducted in the presence of Bu⁴Li to afford alcohol 10. Oxidation of the sulfenyl group of 10, followed by protection with *tert*-butyldimethylsilyl group, gave 11. Oxidation of 11 with catalytic TPAP and NMO as above furnished 12.

With sulfone 12 in hand, treatment of 12 with $KN(TMS)_2$ under ice cooling as above provided the bicyclic compound 13 as a single stereoisomer in quantitative yield.§ The stereochemistry was determined by NOE spectra as shown in Scheme 3.

We gratefully acknowledge financial support from JSPS Research Fellowships for young scientists.

Footnotes

 \dagger This reagent was synthesized in 76% yield by treatment of 5-bromopentyl benzyl ether with Ph_3P.

[‡] This is the first report for the oxidation of allylic position using TPAP and Online NMO.

§ Selected physical and spectroscopic data for 6: mp 182.0-183.0 °C; ¹H NMR (500 MHz, C₆D₆) δ 7.88–7.78 (m, 2 H), 7.06–6.94 (m, 3 H), 6.03 (d, 1 H, J 9.8 Hz), 5.82 (d, 1 H, J 9.8 Hz), 5.31 (ddd, 1 H, J 11.6, 10.4, 7.9 Hz), 5.11 (d, 1 H, J 11.6 Hz), 3.43–3.37 (m, 1 H), 3.04 (dd, 1 H, J 16.5, 3.7 Hz), 2.89-2.83 (m, 1 H), 2.70 (dd, 1 H, J 16.5, 11.6 Hz), 2.27-2.19 (m, 1 H), 1.92-1.82 (m, 1 H), 1.81-1.73 (m, 1 H), 1.72-1.61 (m, 1 H), 1.29-1.11 (m, 2 H) and 0.95 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) & 198.5, 159.1, 138.2, 134.0, 133.6, 133.0, 129.5, 128.8, 126.0, 63.1, 42.3, 40.9, 36.4, 26.5, 25.6, 25.0 and 20.0; IR v(CHCl₃)/cm⁻¹ 1690, 1315 and 1160. For 13: ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.87 - 7.79 \text{ (m, 2 H)}, 7.64 - 7.58 \text{ (m, 1 H)}, 7.56 - 7.50 \text{ (m, 2 H)}, 7.56 - 7.50 \text{$ 2 H), 6.62 (dd, 1 H, J 10.4, 1.2 Hz), 6.10 (d, 1 H, J 10.4 Hz), 5.51 (dd, 1 H, J 12.2, 7.3 Hz), 5.36 (dd, 1 H, J 12.2, 1.8 Hz), 4.28 (dd, 1H, J 7.3, 1.8 Hz), 3.62-3.55 (m, 1 H), 3.42 (br d, 1 H, J 18.3 Hz), 3.28-3.20 (m, 1 H), 2.80 (dd, 1 H, J 18.3, 7.3 Hz), 1.81–1.74 (m, 1 H), 1.71 (dd, 1 H, J 16.5, 6.1 Hz), 1.44 (s, 3 H), 0.81 (s, 9 H), 0.71 (s, 3 H), -0.01 (s, 3 H), -0.05 (s, 3 H) and -0.06 (s, 3 H); ^{13}C NMR (75 MHz, CDCl₃) δ 197.1, 156.4, 140.4, 138.3, 134.0, 133.2, 129.42, 129.39, 128.1, 73.5, 62.7, 42.0, 40.3, 39.2, 34.9, 34.3, 30.2, 29.2, 25.7, 17.9, 16.4, -4.1 and -4.9; IR v (CHCl₃)/cm⁻¹ 1680, 1300 and 1150.

References

- M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon and A. T. McPhail, J. Am. Chem. Soc., 1971, 93, 2325.
- 2 K. C. Nicolaou, W.-M. Dai and R. K. Guy, Angew. Chem., Int. Ed. Engl., 1994, 33, 15; A. N. Boa, R. R. Jenkins and N. J. Lawrence, Contemp. Org. Synth., 1994, 1, 47.
- 3 R. A. Holton, H.-B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile and J. H. Liu, J. Am. Chem. Soc., 1994, 116, 1599; K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan and E. J. Sorensen, Nature, 1994, 367, 630; J. J. Masters, J. T. Link, L. B. Snyder, W. B. Young and S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 1995, 34, 1723.
- 4 N. S. Simpkins, Sulphones in Organic Synthesis, Pergamon Press, Oxford, 1993, p. 100.
- 5 J. Martel and C. Huynh, Bull. Soc. Chim. Fr., 1967, 985; M. Julia and A. G-Rouault, Bull. Soc. Chim. Fr., 1967, 1410; R. V. M. Campbell, L. Crombie, D. A. R. Findley, R. W. King, G. Pattenden and D. A. Whiting, J. Chem. Soc., Perkin Trans. 1, 1975, 897.
- 6 S. Arseniyadis, D. V. Yashunsky, M. M. Dorada, R. B. Alves, E. Toromanoff, L. Toupet and P. Potier, *Tetrahedron Lett.*, 1993, 34, 4927.
- 7 I. Nakagawa and T. Hata, Tetrahedron Lett., 1975, 1409; I. Nakagawa, K. Aki and T. Hata, J. Chem. Soc., Perkin Trans. 1, 1983, 1315.
- 8 B. M. Trost and D. P. Curran, Tetrahedron Lett., 1981, 22, 1287.
- 9 For review see: S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639.
- 10 D. Seyferth, J. K. Heeren, G. Singh, S. O. Grim and W. B. Hughes, J. Organomet. Chem., 1966, 5, 267; G. Stork and K. Zhao, Tetrahedron Lett., 1989, 30, 2173.
- 11 M. Ihara, Y. Ishida, M. Abe, M. Toyota, K. Fukumoto and T. Kametani, J. Chem. Soc., Perkin Trans. 1, 1988, 1155.

Received, 8th May 1996; Com. 6/03226E