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Abstract—Mono- and bis(methylthiomethyl) substituted derivatives of cyclopentanone and cyclohexanone
were obtained on the basis of natural methylmercaptan via the alkylthiomethylation of ketones, and these deriv-
atives were converted into the corresponding y-hydroxysulfides and ketosulfones via reduction with sodium
borohydride and oxidation with hydrogen peroxide, respectively.
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The rational use of mercaptans, sulfides, and
thiophenes present in hydrocarbon feedstock is one of
the most important tasks of the gas-processing and oil-
refining industries. Thus, the alkylthiomethylation
(ATM) of ketones with sulfide—alkaline waste liquor
(SAW) [1, 2], which contains reactive sodium sulfide
and sodium mercaptides, makes it possible to obtain
various Y-ketosulfides differing in structure and proper-
ties [3-6] as products promising for practical applica-
tion and to simultaneously regenerate sodium hydroxide.

In this work, we studied the alkylthiomethylation of
cyclopentanone and cyclohexanone with a mixture of
formaldehyde and sodium methylmercaptide, which is
present in SAW, and obtained mono- and bis(methylth-
iomethyl) substituted ketones and their derivatives.

EXPERIMENTAL

The IR spectra of the compounds were recorded on
a Specord M-80 instrument (in film or vaseline oil), and
the '"H and '3C NMR spectra were measured on a
Brucker AM-300 spectrometer operating at frequencies
of 75 and 300 MHz, respectively, in CDCl; using TMS
as an internal standard. Gas-chromatographic analysis
was carried out on a Chrom-5 chromatograph using a
flame-ionization detector and a 1.2 m X 3 mm column
packed with SE-30 (5%)-coated Chromaton N-AW-
DMCS (0.16-0.20 mm) at a column temperature of
50-300°C; the carrier gas was helium. Gas chromato-
graphic—mass spectrometric (GC-MS) determinations
were performed with a Thermo Finnigan MAT 95 XP
instrument. The chromatographic separation conditions
were as follows: an HP-5MS column (5% dimethyl
phenyl methyl silicone, 95% dimethyl silicone) and
temperature programming from 50°C (5 min) to 280°C
(10 min) at a rate of 7°C/min. The sulfide and mercap-
tan sulfur contents were determined by means of poten-
tiometric titration with potassium iodate and diam-
minesilver nitrate, respectively [7].

To synthesize thio derivatives of cyclopentanone (1)
and cyclohexanone (2), we used a sulfide—alkaline
waste liquor (SAL) from the Orenburg gas-processing
plant containing 0.038 wt % sulfide and 3.20 wt % mer-
captide sulfur represented mainly by sodium methylm-
ercaptide (95%).

Synthesis of 2-(methylthiomethyl)cyclopentan-1-
one (3) and 2-(methylthiomethyl)cyclohexan-1-one
(4). Equimolar amounts of formaldehyde (46 ml of a
30% solution) and cyclopentanone (45 ml) or cyclohex-
anone (52 ml) were successively added with stirring to
500 g of SAL containing 16 g (0.5 mol) of mercaptide
sulfur. The resultant mixture was stirred at room tem-
perature for 6 and 2 h, respectively, and, then, extracted
with chloroform (3 x 50 ml). The extracts were washed
with a 10% HCI solution, water (1 : 1 by volume), and
dried with MgSO,. Chloroform was evaporated, and
the residue was distilled in vacuum. The yield of 3 was
54.7 g (76%), bp 80°C (4 mmHg), d;  1.051, nj
1.5085, MR, 40.94 (calculated 40.41). IR, v, cm™:
1738 (C=0). 'H NMR, 9, ppm: 1.65-1.85 m (2H,
C’H¢, C*H%), 1.96-2.20 m (2H, C3H¢, C*H¢), 2.09 s
(3H, SCHj;), 2.15-2.40 m (3H, C*H, C°H,), 2.50 dd
(1H, C"H®S, J,, 12.9 Hz, J;,, , 8.4 Hz), 2.90 dd (1H,
C'HSS, Jye, 12.9 Hz, I}, , 3.7 Hz). BC NMR, §, ppm:
16.26 (CH,S), 20.42 (C*H,), 28.99 (C°H,), 34.16
(CH,S), 38.10 (C°H,), 49.00 (C*H), 219.28 (C=0).
Found, %: C 58.30, H 8.35, S 23.66. Calculated for
C,H,,0S, %: C 58.29, H 8.38, S 23.23.

The yield of 4 was 56.1 g (71%), bp 91-93°C
(4 mmHg), d;’ 1.056, ny 1.5090, MRy, 44.75 (calcu-
lated, 45.03). IR, v, cm™': 1708 (C=0). 'H NMR, §,
ppm: 1.30 m (1H, C*H%), 1.60 m (2H, C*H¢, C°H9),
1.80 m (1H, C’H¢), 1.95-2.05 m (1H, C*H¢), 2.12 s
(3H, CH,S), 2.15-2.40 m (4H, C'H*S, C3H¢, C°H,);
2.40-2.60 m (1H, C2H%), 2.95 dd (1H, C'"H?S, J,,,, 13.2
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Hz, J;, , 4.8 Hz). ’C NMR, §, ppm: 16.02 (CH;S),
24.59 (C*H,), 27.56 (C°H,), 33.02 (C°H,), 33.68
(CH,S), 41.61 (C°H,), 50.17 (C°H), 211.09 (C=0).
Found, %: C 60.90, H 8.85, S 19.76. Calculated for
CsH,,08, %: C 60.72, H 8.91, S 20.26.

Synthesis of 2,5-bis(methylthiomethyl)cyclopen-
tan-1-one (5) and 2,6-bis(methylthiomethyl)cyclo-
hexan-1-one (6). Equimolar amounts of formaldehyde
(46 ml of a 30% solution) and 0.25 mol of cyclopen-
tanone (22.5 ml) or cyclohexanone (26 ml) were suc-
cessively added with stirring to 500 g of SAL contain-
ing 16 g (0.5 g-at) of mercaptide sulfur. The resultant
mixtures were stirred at 50°C for 1 and 0.5 h, respec-
tively, cooled, and extracted with chloroform (3 X
50 ml). The extracts were washed with a 10% HCIl solu-
tion, water (1 : 1 by volume), and dried with MgSQO,.
Chloroform was evaporated, and the residue of 5(19)
was chromatographed on a column packed with SiO, (a
1 : 4 ethyl acetate—petroleum ether solvent blend
(40-70°C)). The yield of 5 was 0.49 g (49%). IR, v,
cm!: 1726 (C=0). 'H NMR, 6, ppm: 2.10 s, 2.08 s
(6H, 2CH,S), 2.20-2.34 m (4H, C°*H,, C*H,), 2.60 m
(4H, C*H, C°H, C'"H*S, C'"H*S), 2.73 dd (2H, C'H"S,
Cl"HaS, Jgem 12.1, J]va,z = Jl”ll,S 4.2 HZ) 13C NMR, 6,
ppm: cis-1somer, 17.74 (2CH;S), 27.08 (C3H,, C*H,),
37.88 (2CH,S), 56.59 (C°H, C°H); 222.49 (C=0);
trans-isomer, 17.63 (2CH,S), 27.14 (C*H,, C*H,),
37.41 (2CH,S), 56.68 (C’H, C°H), 222.50 (C=0).
Found, %: C 52.77, H 7.75, S 31.66. Calculated for
CoH,c0S,, %: C 52.90, H 7.89, S 31.38.

The yield of 6 was 50.7 g (93%), d;" 1.095, np
1.5425, MRy, 62.81 (calculated, 62.33). IR, v, cm™:
1714 (C=0). 'H NMR, 9§, ppm: cis-isomer, 1.39 dq
(2H, C*H*, CH, Jgem = J30. 40 = J34.24 13.2 Hz, T3, 4,
4.0 Hz), 1.78 dtt (1H, C*H, J e, 13.8 Hz, Iy, 3, = J4,. 54
13.2 Hz, J4y 3, = J4 5. 3.7 Hz), 1.94 dtt (1H, C*H¢ J,,
13.8 Hz, Jy, 3, = J4e. 5. 4.0 Hz, Iy, 3, = J4e 5. 3.0 Hz),
2.12's (6H, 2CH5;S), 2.37-2.45 m (2H, C°H¢, C°*H®),
2.37 dd (2H, C"H*S, C'H*S, Jgn 13.2 Hz, 1, 5, =
Jie.6a 7.8 Hz), 2.57 dddd (2H, C*H¢, C°HY, Iy, 1, =
J6a, 1"s 7.8 HZ? J2a, l'a = J6a, 1"a 5.0 HZ’ J2a, 3a = J6a, Sa 13.2
Hz, 1y, 3. = Jou 5. 3-5 Hz), 2.95 dd (2H, C'H“S, C"H"S,
Jeem 13.2 Hz, Jy, 5 = 1y 6 5.0 Hz); trans-isomer, 1.62
br.s (2H, C*H,), 1.70-1.80 m (2H, C’H¢, C*H%), 2.09 s
(6H, CH5;S), 2.50-2.60 m (4H, C'H*S, C"H*S, C*H¢,
C°H); 2.70 dq (2H, C*H, C*H, J,5, = Jp. 10 = J5 16
6.0 Hz, J, 5, 1.5 Hz), 2.89 dd (2H, C"H“S, C"'H"S, I,
128 Hz, J;, =114, 6.0 Hz). BCNMR, §, ppm: cis-iso-
mer, 16.22 (2CH,S); 24.82 (C*H,); 33.57 (CH,,
C°H,); 34.37 (2CH,S); 50.70 (C°H, C°H); 211.01
(C=0); trans-isomer, 15.58 (2CH,S), 19.92 (C*H,),
31.70 (2CH,S), 34.02 (C*H,, C°H,), 48.09 (C°H,
CH), 212.34 (C=0). Found, %: C 54.25, H 8.28,
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S 29.60. Calculated for C;yH,30S,, %: C 55.00, H 8.31,
S 29.37.

Synthesis of y-hydroxysulfides (7-9). A solution
of 0.01 mol of ketosulfide 3, 4, or 6 in 15 ml of ethanol
was added gradually to a mixture of 0.38 g (0.01 mol)
of NaBH,, 26.7 ml of ethanol, 13.3 ml of water, and
0.2 ml of 10% NaOH solution heated to 50°C. The
resultant mixture was stirred at 50°C for 3 h, cooled,
diluted with 100 ml of water, and extracted with chlo-
roform (3 X 50 ml). The extract was dried with MgSO,,
and chloroform was evaporated.

2-(Methylthiomethyl)cyclopentan-1-ol (7). The
yield 1.37 g (94%), d;° 1.044, ny 1.5170, MRy, 42.38
(calc.41.92). 1R, v,cm™: 3392 (OH). "H NMR, §, ppm:
trans-isomer, 1.15-1.35 m (1H, C3H9), 2.15 s (3H,
CH,S), 2.20-2.70 br.s (2H, OH, C?H), 2.53 dd (1H,
C'HCS, Jpm 12.9 Hz, J;,, 7.9 Hz), 2.62 dd (IH,
C'H?S, Iy 129 Hz, 11, , 5.7 Hz), 3.95 q (1H, C'H, J
6.2 Hz), cis-isomer, 2.15 s (3H, CH;S), 2.20-2.70 br.s
(2H, OH, C?H), 2.55-2.72 m (2H, C'H*S, C'"H®S);
4.30 dd (1H, C'H, J 6.2 Hz, J 4.8 Hz); trans- and cis-
isomers, 1.50-2.00 m (5H + 6H, C*H¢ + C*H,, C*H,,
C°H,). The '3C NMR spectrum, 8, ppm: frans-isomer,
1570 (CH,S), 21.49 (C*H,), 30.12 (C°H,), 34.14
(C°H,), 38.41 (CH,S), 46.35 (C?H), 79.08 (C'H); cis-
isomer, 15.95 (CH,S), 22.21 (C*H,), 29.31 (C*H,),
3431 (C°H,), 34.51 (CH,S), 44.53 (C2H), 73.74
(C'H). Found, %: C 57.45, H9.48, S 21.01. Calculated
for C,H,,08, %: C 57.49, H 9.65, S 21.92.

2-(Methylthiomethyl)cyclohexan-1-0l (8). The
yield of 8 was 1.57 g (98%), d; 1.040, ny 1.5171,
MRy, 46.63 (calc. 46.54). IR, v, cm™': 3384 (OH). 'H
NMR, 8, ppm: trans-isomer, 1.05 dq (1H, C*H, J .,
125 Hz, I, 4,33 Hz), 2.15 s (3H, CH,S), 2.52 dd (1H,
C'HCS, Iy 13.0Hz, I, , 6.7 Hz), 2.78 dd (1H, C'H'S,
Jgem 13.0 Hz, J,, , 5.6 Hz), 3.40 dt (1H, C'HY, J, ¢, =
1., =98 Hz, J, ¢, 4,4 Hz); cis-isomer, 2.08 s (3H,
CH;S), 2.48 dd (1H, C'HS, J o, 12.8 Hz, Ty, , 6.5 Hz),
2.62.dd (1H, C'H®S, J ., 12.8 Hz, J;,, , 8.0 Hz), 4.08
br.s (1H, C'H); trans- and cis-isomers, 1.20—-1.35 m,
1.40-.60 m, 1.60-1.75 m, 1.75-2.00 m (9H + 10H,
CH, C’H* + CH,, C*H,, C°H,, C’H,, OH). *C
NMR, 0, ppm: trans-isomer, 16.45 (CH,S), 24.76
(CSH,), 25.58 (C*H,), 35.54 (C°H,), 37.27 (C°H,),
38.63 (CH,S), 44.15 (C?H), 74.85 (C'H); cis-isomer,
16.18 (CH,S), 25.20 (C°H,), 26.62 (C*H,), 30.81
(C*H,), 33.08 (CH,S), 38.63 (C°H,), 40.71 (C’H),
68.19 (C'H). Found, %: C 59.20, H 10.10, S 19.91.
Calculated for CgH,c0S, %: C 59.95, H 10.06, S 20.01.

2,6-Bis(methylthiomethyl)cyclohexan-1-0ol  (9).
The yield of 9 was 2.14 g (97%), dy 1.105, nj
2008
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1.5492, MRy, 63.46 (calc. 63.85). IR, v, cm™': 3424
(OH). 'H NMR, 0, ppm: trans, trans-isomer, 1.10 dq
(2H, C°*H*, CH, J3, 4, 3.4 Hz, Joer, = J30.00 =J30.2
13.0 Hz), 2.10 s (6H, 2CH,S), 2.48 dd (2H, C'H*S,
C'H"S, Jyery 13.0Hz,J}, =T}, 6 7.1 Hz), 2.62 dd (2H,
C'H®S, C1 H°S, Joem 13.0Hz, J,, ;=114 ¢ 7.9 Hz), 3.24
t (1H, C'H, J 9.6 Hz), 4.12 br.s (1H, OH); trans,cis-iso-
mer, 2.18 s (6H, 2CH5S), 2.50 dd (2H, C'H*S, CI'H*S,
Joem 13.0Hz,J,,, =1+, 6.8 Hz), 2.80 dd (2H, C'H"S,
C'H"S, Jyey 13.0Hz,J}, =11, 5.1 Hz), 3.80 dd (1H,
C'H, J, 4. 3.4 Hz, J, ,, 6.4 Hz), 4.12 br.s (1H, OH);
trans,trans- and trans,cis-isomers, 1.25-1.40 m, 1.40—
1.50 m, 1.50-1.65 m, 1.65-2.00 m (6H + 8H, C°H* +
CH,, C°H¢ + C°H,, C*H,, C*H, C°®H). *C NMR, 9,
ppm: trans,trans-isomer, 16.10 (2CH,S), 25.95 (C*H,,
C°H,), 30.71 (C*H,), 37.84 (2CH,S), 41.60 (C’*H,
C®H), 68.99 (C'H); trans,cis-isomer, 16.43 (2CH;S),
25.04 (C*H,), 25.47 (C°H,, C°H,), 38.45 (2CH,S),
43.99 (C’H, C®H), 77.96 (C'H); cis,cis-isomer, 15.97
(2CH,S), 19.94 (C°*H,, C°H,), 34.40 (C*H,), 37.06
(2CH,S), 39.19 (C?H, C°H), 73.57 (C'H). Found, %: C
55.80,H9.15, S 29.47. Calculated for C,yH,,0S,, %: C
54.50, H9.15, S 29.10.

Synthesis of y-ketosulfones (10—12). A mixture of
4.7 and 9.4 ml (0.046 and 0.092 mol, respectively) of
33% hydrogen peroxide and five drops of concentrated
sulfuric acid were successively added with stirring to a
cooled (ice bath) solution of 0.02 mol of ketosulfide 3,
4, or 6 in 10 ml of acetic acid. The resultant mixture was
stirred at room temperature for 9 h and allowed to stand
overnight, then diluted with water (50 ml), and
extracted with chloroform (2 x 45 ml). The extract was
successively washed with NaHCO; and NaCl solutions
and water (1 : 1 by volume) and dried with MgSO,.
Chloroform was evaporated, and the residue was
recrystallized from ethanol.

2-(Methylsulfonylmethyl)cyclopentan-1-one (10).
The yield of 10 was 2.93 g (83%), mp 60-62°C. IR, v,

: 1740 (C=0), 1292, 1136 (SO,). 'H NMR, &,
ppm 1.70 dq (1H, C°H%, Jyep, = T3, 5, = T3, 4, 11.4 Hz,
J3, 4. 6.1 Hz), 1.83-1.92 m (1H, C*H7), 2.08-2.20 m
(2H, C°H¢, C*HY), 2.33-2.50 m (1H, C2H%), 2.50-
2.75 m (2H, C°H,), 2.90 dd (1H, C'H¢, J ., 14.0 Hz,
J16.29.0Hz), 2.97 s (CH;50,), 3.57 dd (ng C'H4,J
14.0Hz, I, » 3.0 Hz). C NMR, §, ppm: 20.46 (C“Hg
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29.94 (C?H,), 36.56 (C°H,), 41.87 (CH,SO,), 43.73
(C?H), 54.63 (CH,SO,), 216.89 (C=0). Found, %: C
47.80, H 6.40, S 18.21. Calculated for C;H,,05S, %: C
47.71, H 6.86, S 18.19.

2-(Methylsulfonylmethyl)cyclohexan-1-one (11).
The yield of 11 was 3.69 g (97%), mp 50-51°C. IR, v,

m: 1712 (C=0), 1304, 1132 (SO,). 'H NMR, §,
ppm 1.51 dq (1H, C*H4, J3, 4, 3.8 Hz, J,, 12.8 Hz),
1.60-1.90 m (3H, C*H*, C°H,), 1.95-2.00 m (1H,
C“He) 2.10-2.20 m (1H, C°H¢), 2.35-2.55 m (2H,
C®H,), 2.75 dd (1H, C'H?, J ., 14.4 Hz, ], 2 5.6 Hz),
2.95 s (3H, CH;S0,), 3. 1(% dddd (1H, C?He, b 16
52Hz]J, ,5.6Hz1, ;,12.8 Hz,J, 5, 5.9 Hz), 3. 85dd
(1H, ClH“ om 144 Hz, 1, , 5.6 Hz). 3C NMR, &,
ppm: 25.16 ((gl4H2) 27.81 (C°H,), 35.05 (C3H,), 41.94
(C°H,), 42.49 (C’H), 4551 (CH,;S0,), 54.34
(CH,S0,), 209.15 (C=0). Found, %: C 50.70, H 7.39,
S 16.21. Calculated for CgH,,05S, %: C 50.51 H 7.41,
S 16.85.

2,6-bis(Methylsulfonylmethyl)cyclohexan-1-one

(12). The yield of 12 was 4.86 g (86%), mp 146—148°C.
IR, v, cm™!: 1712 (C=0), 1300, 1136 (SO,). '"H NMR,
d, ppm: cis-isomer, 1.50 m 2H, C*H¢, C°H%), 1.95 m
(2H, C*H,, J,, 10.5 Hz), 2.50 m (2H, C°H¢, C’H"),
2.80 dd (2H, C'H®, C"H¢, Jy,, 144 Hz, J;,, , 5.1 Hz),
2.98 s (6H, 2CH;S0,), 3.30 dddd (2H, C*H¢, C°H¢,
J2 1464 Hz, J, 1, 5.1 Hz, J, 3, 12.0 Hz, J, 3, 6.0 Hz),
3.85 dd (2H,C"H¢, C'"H¢, Jgem 14.4 Hz, J,, , 6.4 Hz).
13C NMR, §, ppm: cis-isomer, 24.82 (C*H,), 35.64
(C°H,, C5H2) 42.36 (C°H, C°H), 45.64 (CH;S0,), 53.99
(CH,S0,), 207.30 (C=0). Found, %: C 42.80, H 6.67,
S 22.80. Calculated for C,,H;305sS,, %: C 42.54, H
6.42,S 22.71.

RESULTS AND DISCUSSION

The mono methylthiomethylated cyclic ketones
2-(methylthiomethyl)cyclopentan-1-one ~ (3)  and
2-(methylthiomethyl)cyclohexan-1-one (4) or the bis
methylthiomethylated substituted ketones
2,5-bis(methylthiomethyl)cyclopentan-1-one (5) and
2,6-bis(methylthiomethyl)cyclohexan-1-one (6) were
obtained with 76, 71, 49, and 93% yields, respectively,
via the alkylthiomethylation of cyclopentanone 1 and
cyclohexanone 2 with equimolar amounts or two molar
equivalents of formaldehyde and SAL sodium meth-
ylmercaptide.

0]
\S - S - 2CH0,2CH;SNa_ 2CH3SNa % _CH,0, CHySNa_ CH3SNa f ~ g+ ~ Aé/\
)n

5,6

where n = 1 for 1, 3, and 5 and n =2 for 2, 4, and 6.
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CH;SNa conversion, rel. %
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d
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b
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T, h

Dependence of the sodium methanethiolate conversion on
the time of alkylthiomethylation of (a, b, d) cyclopentanone
and (c, e) cyclohexanone at (a, b, ¢) the equimolar reactant
ratio, 20°C; (b) in the presence of sodium hydroxide (1 mol
per mole of S,..); and (d, e) at a ketone : CH,O : S, molar
ratioof 1:2:2,50°C.

The ATM reactivity of cyclohexanone is higher than
that of cyclopentanone (figure); however, the yield of
2-(methylthiomethyl)cyclohexan-1-one 4 (71%) is
below that of 2-(methylthiomethyl)cyclopentan-1-one
3 (76%), a difference that is due to the subsequent
transformation of 4 to 2,6-bis(methylthiomethyl)cyclo-
hexan-1-one 6. The introduction of the CH;SCH, group
into the molecule of 4 occurs at room temperature and
the equimolar ratio of the reactants, whereas the reac-
tion with 3 proceeds at 50°C and a twofold excess of the

OH O

NaBH,,
R _~ GHs0H-H,0 R
S -~

7-9

n

3,4,6
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methylthiomethylated mixture. The reactivity of 4 is
higher than that of 3: the yield of 2,6-bis(methylthiom-
ethyl)cyclohexan-1-one 6 is 1.9 times that of
2,5-bis(methylthiomethyl)cyclopentan-1-one 5.

The yield of mono(methylthiomethyl) substituted
cyclohexanone 4 decreases (from 71 to 65%) with an
increase in the reaction time of more than 2 h owing to
its transformation to 2,6-bis(methylthiomethyl)cyclo-
hexan-1-one 6.

The yield of mono- and bis(methylthiomethyl) sub-
stituted cyclohexanones 4 and 6 significantly depends
on the reagents ratio. For example, the use of a 1.7-fold
excess of ketone and formaldehyde (over the stoichio-
metric amounts) decreases the yields of compounds 4
and 6 to 51 and 35%, respectively.

The alkylthiomethylation of cyclopentanone is
accelerated by a sodium hydroxide admixture (1 mole
per mole of S,,.,) (figure); however, the yield of desired
product 3 decreases from 71 to 61% because of the side
process of the formation of 2-(cyclopentylidene)cyclo-
pentan-1-one identified by GC-MS analysis. The mass
spectrum of the compound was identical to that pub-
lished in [8].

The structure of y-ketosulfides 3—6 was established
on the basis of spectral data. The IR spectra of 3—6
exhibit carbonyl absorption bands at 1708-1738 cm™'.
The '*C NMR spectra of 3—-6 contain methyl (3 15.58—
17.74 ppm) and methylene (6 31.70-37.88 ppm) signals
of methylthiomethyl carbon atoms along with the sig-
nals from the carbon atoms of the cycle. The 'H NMR
spectra contain a singlet of thiomethyl protons (6 2.09—
2.17 ppm). Bis(methylthiomethyl) substituted ketones
S and 6 are represented by a mixture of the cis- and
trans-isomers in ratios of 2 : 1 and 4 : 1, respectively.

The reduction of the carbonyl group of y-ketosul-
fides 3, 4, and 6 with sodium borohydride (50°C, 3 h)
results in the formation of y-hydroxysulfides 7-9 with
yields of 94, 98, and 97%, respectively.

(0]
2H,0,,
_~ cH,cooH R -
S 7 S\\
h
10-12

3,7,10-n=1,R=H;4,8,11-n=2,R=H;
6,9 -n=2,R=CH,SCH;; 12 - n =2, R = CH,SO,CH;.

The IR spectra of y-hydroxysulfides 7-9 exhibit
hydroxyl absorption bands at 3384-3424 cm.. The 'H
and *C NMR spectra contain proton (8 3.24-4.30 ppm)
and carbon (8 68.19-79.08 ppm) signals, respectively,
of the methine group with an attached hydroxyl group.
v-Hydroxysulfides 7 and 8 are represented by mixtures
of their trans- and cis-isomers (1.3 : 1 and 1.5 : 1,
respectively); 9 is a mixture of the trans,trans-,
trans,cis-, and cis,cis-isomers (7 : 4 : 1).

The oxidation of y-ketosulfides 3, 4, and 6 with two
and four equivalents of hydrogen peroxide (20°C, 9 h),
respectively, results in the formation of y-ketosulfones
10-12 with yields of 83, 97, and 86%, respectively.

The IR spectra of y-ketosulfones 10-12 exhibit
intense absorption bands due to the carbonyl (1712-
1740 cm™) and sulfonyl (1132-1136, 1292-1304 cm™)
groups. In the 3C NMR spectra, the signals of methyl
(0 41.87-45.51 ppm) and methylene (& 53.99—
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54.63 ppm) carbon atoms bearing the sulfonyl group
are downfield shifted relative to those of the same car-
bon atoms in ketosulfides.

2-(Methylthiomethyl)cyclohexan-1-one 4 thus pre-
pared was tested as a corrosion inhibitor for Steel 20
(a grade of structural steel) using model hydrogen sul-
fide-containing mineralized media. It was shown that
the addition of 100 mg/1 of y-ketosulfide 4 to the corro-
sive medium increases the degree of protection against
general corrosion to 90.8%.

In summary, the use of the sulfide—alkaline liquor
from the Orenburg gas-processing plant as a source of
sodium methylmercaptide in the ATM of cyclopen-
tanone and cyclohexanone makes it possible to prepare
the mono- and bis(methylthiomethyl) substituted
ketones and to reduce them to y-hydroxysulfides or to
oxidize to y-ketosulfones. The results of this work
extend the range of practically useful compounds syn-
thesized from natural mercaptans. The obtained keto-
sulfides can be used as corrosion inhibitors, extracting
agents for noble metals [9], and intermediaries in
organic synthesis [10, 11].
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