Syntheses, characterization and crystal structures of two structurally similar Schiff bases isonicotinic acid [1-(3-methoxy-2-hydroxyphenyl)methylidene]hydrazide and isonicotinic acid [1-(4-dimethylaminophenyl) methylidene]hydrazide monohydrate

De-Suo Yang⁽¹⁾*

Received September 6, 2006; accepted October 4, 2006 Published Online March 3, 2007

The Schiff base compounds, isonicotinic acid [1-(3-methoxy-2-hydroxyphenyl) methylidene]hydrazide ($C_{14}H_{13}N_3O_3$, 1) and isonicotinic acid [1-(4-dimethylaminophenyl) methylidene]hydrazide monohydrate ($C_{15}H_{16}N_4O \cdot H_2O$, 2) have been synthesized by the condensation of equimolar 3-methoxysalicylaldehyde or 4-dimethylaminobenzaldehyde with isonicotinic acid hydrazide in MeOH or EtOH. The compounds were characterized by elemental analysis, IR, ¹HNMR spectra, and single crystal X-ray diffractions. Compound 1 crystallizes in the monoclinic space group P-1 with unit cell dimensions a = 7.662(1) Å, b = 16.249(2), c = 10.874(2) Å, $\beta = 110.426(3)^{\circ}$, V = 1268.7(3) Å³, Z = 4, $R_1 = 0.0644$, and $wR_2 = 0.1283$. Compound 2 crystallizes in the orthorhombic space group $P2_12_12_1$ with unit cell dimensions a = 7.388(1) Å, b = 11.812(1) Å, c = 17.197(2) Å, V = 1500.7(2) Å³, Z = 4, $R_1 = 0.0585$, and $wR_2 = 0.1143$. X-ray structure determinations revealed that the molecules of both compounds display trans configurations with respect to the C=N double bonds. In the crystal structure of 1, molecules are linked through N-H \cdots N intermolecular hydrogen bonds, forming layers parallel to the *bc* plane, while in the crystal structure of 2, molecules are linked through N-H \cdots O, O-H \cdots O, and $O-H \cdot \cdot \cdot N$ intermolecular hydrogen bonds, forming a network.

KEY WORDS: Schiff base; synthesis; crystal structure; hydrogen bonds.

Introduction

Considerable attention has been paid to the chemistry of aroylhydrazones and their complexes.^{1–3} These compounds may serve as potential chelating agents and possess biological activities.^{4–6} Schiff bases have been believed to exercise their beneficial therapeutic properties in mammalian cells by inhibiting ribonucleotide reductase in the synthesis of DNA precursors.⁷ In this paper, the author reports the syntheses, characterization, and crystal structures of a pair of structurally

⁽¹⁾ Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China.

^{*} To whom correspondence should be addressed; e-mail: desuoyang@yahoo.com.cn.

similar Schiff base compounds derived from the condensation of 3-methoxysalicylaldehyde or 4-dimethylaminobenzaldehyde with isonicotinic acid hydrazide in MeOH or in 95% EtOH.

Experimental

Materials and measurements

All chemicals (reagent grade) were commercially available and used without further purification. C, H, and N elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer. The IR spectra were measured with a FT-IR 170-SX (Nicolet) spectrophotometer. The ¹HNMR spectra were recorded on Bruker AVANCE 500 MHz spectrometer with tetramethylsilane as the internal reference.

Synthesis of isonicotinic acid [1-(3-methoxy-2-hydroxyphenyl)methylidene]hydrazide (1)

3-Methoxysalicylaldehyde (152.2)mg, 1.0 mmol) and isonicotinic acid hydrazide (137.1 mg, 1.0 mmol) were dissolved in a MeOH solution (50 cm^3). The mixture was refluxed for about 1 h and cooled to room temperature to give a clear yellow solution. After keeping the solution in air for 8 days, yellow block-shaped crystals of the compound, suitable for X-ray single crystal structural determination, formed at the bottom of the vessel. The crystals were isolated, washed three times with cold MeOH and dried in a vacuum desiccator containing anhydrous CaCl₂. Yiled 225.7 mg (83.2%). Analysis calculated for C₁₄H₁₃N₃O₃: C, 61.99; H, 4.83; N, 15.49%; found: C, 61.83; H, 4.93; N, 15.54%. Selected IR data (KBr, cm⁻¹): 3573 (w), 3429 (w), 3066 (w), 2934 (w), 2859 (w), 1654 (s), 1635 (s), 1279 (s), 753 (s). ¹HNMR data (CD₃COCD₃, ppm): $\delta = 3.88 \text{ (s, 3H)}, 6.90 \text{ (t, 1H)}, 7.06 \text{ (t, 2H)}, 7.88$ (d, 2H), 8.65 (d, 2H), 8.82 (s, 1H), 11.21 (s, 1H), 11.46 (s, 1H).

Synthesis of isonicotinic acid [1-(4dimethylaminophenyl)methylidene]hydrazide monohydrate (2)

Compound 2 was prepared by a similar procedure as described for 1, with 3-methoxysalicylaldehyde replaced by 4dimethylaminobenzaldehyde (149.2)mg, 1.0 mmol), and with MeOH replaced by 95% EtOH. Yellow block-shaped crystals of 2 were formed after evaporating the solvent for 5 days. The crystals were isolated, washed three times with cold EtOH and dried in a vacuum desiccator containing anhydrous CaCl₂. Yiled 196.8 mg (87.2%). Analysis calculated for C₁₅H₁₈N₄O₂: C, 62.92; H, 6.34; N, 19.57%; found: C, 62.71; H, 6.27; N, 19.72%. Selected IR data (KBr, cm⁻¹): 3612 (m), 3327 (w), 3067 (w), 2933 (w), 2861 (w), 1655 (s), 1632 (s), 755 (s). ¹HNMR data (CD₃COCD₃, ppm): $\delta = 3.10$ (s, 6H), 6.78 (d, 2H), 7.61 (d, 2H), 7.82 (d, 2H), 8.34 (s, 1H), 8.74 (d, 2H), 10.88 (s, 1H).

Crystallography

X-ray diffraction intensities were collected using a Bruker SMART Apex 1000 CCD area detector equipped with graphite-monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å) at 298(2) K. Absorption corrections were applied by SAD-ABS program.⁸ The structures were solved by direct methods and refined on F^2 by full-matrix least-squares methods using the SHELXTL version 5.1.9 All non-hydrogen atoms were refined anisotropically. Atom H2 in 1 and atoms H2A, H2B and H2C in 2 were located in difference Fourier maps and refined isotropically, with the $U_{\rm iso}({\rm H})$ value fixed at 0.08 Å² and the N–H distances restrained to 0.90(1) Å, O-H distances restrained to 0.85(1) Å, and $H \cdot \cdot \cdot H$ restrained to 1.37(2) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms. The details of the crystallographic data are summarized in Table 1. Selected bond lengths

Compound	1	2	
CCDC	615072	620235	
Molecular formula	$C_{14}H_{12}N_2O_2$	$C_{15}H_{18}N_4O_2$	
Molecular weight	271.27	286.33	
Crystal system	Monoclinic	Orthorhombic	
Space group	P-1	$P2_{1}2_{1}2_{1}$	
Temperature (K)	298(2)	298(2)	
a (Å)	7.662(1)	7.388(1)	
$b(\mathbf{A})$	16.249(2)	11.812(1)	
c (Å)	10.874(2)	17.197(2)	
β(°)	110.426(3)	90.00	
$V(Å^3)$	1268.7(3)	1500.7(2)	
Z	4	4	
$D_{\text{calc}} (\text{g cm}^{-3})$	1.420	1.267	
Crystal dimensions (mm); colour	$0.20 \times 0.18 \times 0.13$; yellow	$0.22 \times 0.17 \times 0.13$; yellow	
Absorption coefficient (mm^{-1})	0.103	0.087	
Radiation (λ)	MoKα (0.71073 Å)	ΜοΚα (0.71073 Å)	
T_{\min}/T_{\max}	0.980/0.987	0.981/0.989	
Reflections measured	10745	12320	
Range/indices (h, k, l)	-9, 9; -21, 21; -13, 13	-9, 9; -14, 14; -21, 21	
θ limit (°)	2.36-27.50	2.09-26.50	
Total no. of unique data	2877 ($R_{\text{int}} = 0.0629$)	$1805 (R_{\text{int}} = 0.0657)$	
No. of observed data, $I > 2\sigma(I)$	1615	1302	
No. of variables	186	204	
No. of restraints	1	4	
Goodness of fit on F^2	1.019	1.099	
$R_1, wR_2 [I \ge 2\sigma(I)]^a$	0.0644, 0.1283	0.0585, 0.1143	
R_1, wR_2 (all data) ^{<i>a</i>}	0.1265, 0.1532	0.0889, 0.1256	

 Table 1. Crystal Data and Refinement Parameters for the Compounds 1 and 2

 ${}^{a}R_{1} = \Sigma ||Fo| - |Fc|| / \Sigma |F_{o}|, wR_{2} = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (Fo^{2})^{2}]^{1/2}.$

and angles are summarized in Table 2. Hydrogen bonding interactions are listed in Table 3.

Table 2. Bond Distances (Å) and Angles (°) for the Compounds 1 and 2

	1		
Bond distances			
N1-N2	1.372(3)	N1-C8	1.280(3)
N2-C9	1.356(3)	O3–C9	1.212(3)
Bond angles			
C3-O2-C7	117.4(2)	C8-N1-N2	118.0(2)
C9-N2-N1	117.5(2)	O3-C9-N2	123.7(2)
N2-C9-C10	114.9(2)		
	2		
Bond distances			
O1-C11	1.227(4)	N2-C11	1.336(4)
N2-N3	1.389(4)	N3-C10	1.286(4)
Bond angles			
O1-C11-N2	124.6(3)	C10-N3-N2	114.4(3)
C11-N2-N3	119.4(3)		

Results and discussion

The compounds were obtained in excellent yields as air stable yellow block-shaped crystals

Table 3. Distances (Å) and Angles (°) Involving Hydrogen Bonding of the Compounds 1 and 2

D–H · · · A	D(D–H) (Å)	$\begin{array}{c} D(H\cdot\cdot\cdot A)\\ (\mathring{A})\end{array}$	$\begin{array}{c} D(D\cdot\cdot A)\\ (\mathring{A})\end{array}$	Angle (D-H $\cdot \cdot \cdot A$ (°)
1				
$N2-H2 \cdot \cdot \cdot N3^{\#1}$	0.897(10)	2.173(12)	3.060(3)	170(3)
$O1-H1 \cdot \cdot \cdot N1$	0.82	1.87	2.588(3)	146
2				
$N2\text{-}H2A\cdot\cdot\cdot O2^{\#2}$	0.897(10)	1.867(13)	2.754(4)	169(3)
$\text{O2-H2C} \cdot \cdot \cdot \text{O1}^{\#3}$	0.842(10)	1.99(2)	2.738(4)	147(4)
$\text{O2-H2B} \cdot \cdot \cdot \text{N1}^{\# 4}$	0.849(10)	1.996(12)	2.839(5)	172(4)

Note. Symmetry transformations used to generate the equivalent atoms: #1 x, 1/2 - y, 1/2 + z; #2 1 - x, -1/2 + y, 1/2 - z; #3 - 1 + x, 1 + y, z; #4 3/2 - x, 1 - y, 1/2 + z.

Fig. 1. Molecular structure of the compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii; numbering according to Table 2.

from the MeOH or 95% EtOH solution. They gave satisfactory elemental analyses corresponding to the formulae $C_{14}H_{13}N_3O_3$ for 1 and $C_{15}H_{18}N_4O_2$ for 2. The crystals of the compounds are soluble in MeOH, EtOH and MeCN, but insoluble in water and Et₂O.

Crystal structure description

Figures 1 and 2 give perspective views of the compounds with the atomic labeling systems. All the bond lengths in the compounds are within normal ranges,¹⁰ and comparable to those of the similar compounds.^{4–6} The C8=N1 bond length of 1.280(3) Å in **1** and the C10=N3 bond length

of 1.286(4) Å in **2** confirm them as double bonds. The C9–N2 bond (1.356(3) Å) and the N1–N2 bond (1.372(3) Å) in **1** and the C11–N2 bond (1.336(4) Å) and the N2–N3 bond (1.389(4) Å) in **2** are relatively short, suggesting some degree of delocalization in each of the acetohydrazide systems. The dihedral angle between the pyridine ring and the benzene ring is $15.6(2)^{\circ}$ in **1**, which is much less than that of $48.0(3)^{\circ}$ in **2**, which might due to the formation of the intramolecular O1–H1 · · · N1 hydrogen bonding in **1**. The same pattern can be observed in the similar compounds cited.

In the crystal structure of 1, molecules are linked through $N-H \cdot \cdot \cdot N$ intermolecular

Fig. 2. Molecular structure of the compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii; numbering according to Table 2.

Fig. 3. Molecular packing of the compound, viewed along the *a* axis. Intermolecular hydrogen bonds are shown as dashed lines.

hydrogen bonds, forming layers parallel to the bc plane, as shown by Fig. 3. In the crystal structure of **2**, molecules are linked through N-H···O,

O–H···O, and O–H···N intermolecular hydrogen bonds, forming a network, as shown by Fig. 4.

Fig. 4. Molecular packing of the compound, viewed along the *b* axis. Intermolecular hydrogen bonds are shown as dashed lines.

Supplementary material CCDC-615072 and 620235 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at http://www.ccdccam. ac.uk/const/retrieving.html or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223–336033 or e-mail: deposit@ccdc.cam.ac.uk.

Acknowledgments

Financial support from the Baoji University of Arts and Sciences research funds is gratefully acknowledged.

References

1. Bu, X.H.; Gao, Y.X.; Chen, W.; Liu, H.; Zhang, R.H. J. Rare. Earths. 2001, 19, 70–73.

- Liao, Z.-X.; Ma, X.-Y.; Shi, Z.-X.; Chen, Y.-Z. Pol. J. Chem. 2000, 8, 1191–1194.
- Tai, X.-S.; Yin, X.-H.; Tan, M.-Y.; Li, Y.-Z. Acta Crystallogr. 2003, E59, o681–o682.
- 4. Yang, D.-S.; Guo, J.-B. Acta Crystallogr. 2006, E62, 04414–04415.
- 5. Yang, D.-S. Acta Crystallogr. 2006, E62, o3755–o3756.
- 6. Yang, D.-S. Acta Crystallogr. 2006, E62, o3792o3793.
- Nagarajan, M.; Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. J. Med. Chem. 2003, 46, 5712– 5724.
- Sheldrick, G.M. SADABS. Program for Empirical Absorption-Correction of Area Detector, University of Göttingen: Germany, 1996.
- 9. Sheldrick, G.M. SHELXTL V5.1 Software Reference Manual, Bruker AXS, Inc.: Madison, Wisconsin, USA.
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. J. Chem. Soc. Perkin Trans. 1987, 2, S1– 19.