

Carbohydrate Research 337 (2002) 2383-2391

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Synthesis of two isomeric pentasaccharides, the possible repeating unit of the β -glucan from the micro fungus *Epicoccum nigrum* Ehrenb. ex Schlecht

Ying Zeng, Wenhui Zhang, Jun Ning,* Fanzuo Kong*

Research Center for Eco-Environmental Sciences, Academia Sinica, PO Box 2871, Beijing 100085, China

Received 28 June 2002; accepted 28 August 2002

Abstract

Two isomeric pentasaccharides, β -D-Glcp- $(1 \rightarrow 3)$ - $[\beta$ -D-Glcp- $(1 \rightarrow 6)]$ - β -D-Glcp- $(1 \rightarrow 3)$ - $[\beta$ -D-Glcp- $(1 \rightarrow 6)]$ - β -D-glucopyranoside (12) with 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl trichloroacetimidate (6) followed by acetylation, debenzylidenation, and 6-O-selective glucosylation with 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl trichloroacetimidate (1), and then by deprotection. The pentasaccharide II was obtained from 3-O-selective coupling of 12 with 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,4-di-O-acetyl-3-O-allyl- α -D-glucopyranosyl trichloroacetimidate (10) followed by acetylation, debenzylidenation, and 6-O-selective glycosylation with 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tetra-O-benzoyl- β -D-glucopyranosyl trichloroacetimidate (10) followed by acetylation, debenzylidenation, and 6-O-selective glycosylation with 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tetra-O-benzoyl- β -D-glucopyranosyl trichloroacetimidate (11), and finally by deprotection. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Glucose oligosaccharides; Trichloroacetimidates; Regio- and stereoselective synthesis

1. Introduction

 β -(1 \rightarrow 3)-Linked glucans occur in a variety of biologically important natural products with antitumor activities, such as schizophyllan, scleroglucan and lentinan.¹ A highly side-chain/branched (1 \rightarrow 3;1 \rightarrow 6)- β -glucan, epiglucan, was obtained from the micro fungus *Epicoccum nigrum* Ehrenb. ex Schlecht. Structural analysis² of the epiglucan revealed that it has a β -(1 \rightarrow 3)-linked backbone with β -(1 \rightarrow 6)-linked branches at frequencies greater than the homologous scleroglucan and schizophyllan. Two pentasaccharide structures I and II were supposed to be the possible repeating unit of the epiglucan. As a part of our ongoing research on the structure–antitumor function relationship for glucan, we needed to prepare a series of β -(1 \rightarrow 3)-linked glucan with different β -(1 \rightarrow 6)-side chains. The structures I and II are interested in terms of their side chain position and length. We present herein an unambiguous synthesis of the two isomeric pentasaccharides.

2. Results and discussion

For the synthesis of the target pentasaccharides, some di- and trisaccharide intermediates were prepared

^{*} Corresponding authors. Tel.: 86-10-62936613; fax: 86-10-62923563

E-mail address: fzkong@mail.rcees.ac.cn (F. Kong).

first. Coupling of 2,3,4,6-tetra-O-benzoyl- α -D-glucopyranosyl trichloroacetimidate³ (1) with 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose (2) afforded the disaccharide 3 (Scheme 1). Selective removal of the 5,6-O-isopropylidene group gave crystalline 4, and subsequent selective 6-O-glycosylation⁴ of 4 with 1 gave the trisaccharide 5. Removal of the 1,2-O-isopropylidene groups of furanose 5 was accompanied by ring expansion. Subsequent acetylation with acetic anhydride in pyridine, selective 1-O-deacetylation with ammonia in 3:1 THF-MeOH, and trichloroacetimidation in dichloromethane with trichloroacetonitrile in the presence of potassium carbonate gave the 3,6-branched trisaccharide donor 6. The β -(1 \rightarrow 6)-linked disaccharide 10 was obtained as follows: Allylation of 2 at O-3, selective removal of the 5,6-O-isopropylidene group, followed by selective 6-O-glucosylation with 1 gave 9. Subsequent hydrolysis, acetylation, selective 1-Odeacetylation, and trichloroacetimidation furnished 10. Another β -(1 \rightarrow 3)-linked disaccharide donor 11 was prepared by hydrolysis of **3** in 80% HOAc under reflux, acetylation, selective 1-*O*-deacetylation, and trichloroacetimidation.

With the described di- and trisaccharide fragments in hand, the synthesis of the target pentasaccharides was readily achieved. In our previous work regarding the synthesis of glucoheptaose repeating unit of lentinan,⁵ we reported that with 4,6-benzylidenated glucose derivative as either the donor or the acceptor, coupling reactions predominantly gave β -linked products. Thus, coupling of 12 with the trisaccharide donor 6, followed by acetylation, selectively afforded β -(1 \rightarrow 3)-linked tetrasaccharide 13 (Scheme 2). The ¹H NMR spectrum of 13 showed 4 H-1 at δ 4.96, 4.86, 4.72, and 4.41 ppm, respectively, with $J_{1,2}$ 8.0 Hz, indicating only β -linkage. Sequential irradiation of the 4 H-1 found the related signals of 4 H-2 at δ 5.45, 5.41, 5.27, and 4.84 ppm, respectively, and collapsed the H-2 signals from a triplet to a doublet. This confirmed the 3-O-selective glucosylation, since 2-O-selective glucosylation would

Scheme 1. Reagents and conditions: (a) TMSOTf, CH_2Cl_2 , N_2 , -20 °C to rt, 4 h; (b) 90% HOAc, 40 °C, 20 h; (c) 80% HOAc, reflux, 4 h; (d) Ac_2O-pyridine (dry), rt, 10 h; (e) THF-CH₃OH, 1.5N NH₃, rt, 1-2 h; (f) CCl₃CN, DBU, CH₂Cl₂ (dry), 10 h; (g) AllBr, DMF, NaH, 0 °C to rt, 4 h.

Scheme 2. Reagents and conditions: (a) TMSOTf, CH_2Cl_2 , N_2 , -20 °C to rt, 4 h; (b) Ac_2O -pyridine (dry), rt, 10 h; (c) CH_3OH , CH_3COCI (0.3%, v/v), rt, 2 h; (d) NH_3 , CH_3OH ; (e) $PdCl_2$, CH_3OH , 4 h.

give H-2_a at $\delta < 4.2$ ppm. Debenzylidenation of 13 gave the tetrasaccharide 14, whose characterization was carried out through its acetylated derivative 15. Selec-

tive 6-*O*-glucosylation of the tetrasaccharide acceptor 14 with the donor 1 furnished the pentasaccharide 16, and finally, deacylation of 16 in ammonia-saturated

methanol gave the 4-methoxyphenyl pentaoside 17. The ¹³C NMR of **17** showed 5 anomeric carbons at δ 105.23, 105.23, 105.04, 105.04, and 103.36 ppm, indicating all of the linkages in 17 are β . Another pentasaccharide 23, corresponding to structure II was synthesized in a similar way. Thus, the β -(1 \rightarrow 6)-linked disaccharide donor 10 was selectively coupled with the acceptor 12, and subsequent acetylation gave the trisaccharide 18. The regioselective glycosylation was also confirmed by ¹H NMR spectroscopy. Sequential irradiation of the 3 H-1 at δ 5.01, 4.78, and 4.45 ppm identified the related signals of 3 H-2 at δ 5.66, 5.35, and 4.80 ppm, respectively. Debenzylidenation of 18, followed by selective glycosylation with the disaccharide donor 11, and then acetylation, afforded the pentasaccharide 21 in satisfactory yield. Removal of the allyl group with $PdCl_2$ in methanol⁶ gave 22, and deacylation of 22 in ammonia-saturated methanol furnished the target pentaoside 23. Again, the ¹³C NMR spectrum of 23 showed 5 anomeric carbons at δ 105.39, 105.35, 105.20, 104.75, and 103.32 ppm, indicating only β -linkages in 23.

The bioassay of 17 and 23 is in progress and the results will be reported in due course.

3. Experimental

General methods.-Optical rotations were determined at 25 °C with a Perkin-Elmer model 241-Mc automatic polarimeter. ¹H NMR, ¹³C NMR and ¹H-¹³C COSY spectra were recorded with Bruker ARX 400 spectrometers (400 MHz for ¹H, 100 MHz for ¹³C) at 25 °C for solutions in CDCl₃ or D_2O as indicated. Mass spectra were recorded with a VG PLAT-FORM mass spectrometer using the ESI mode. Thin-layer chromatography (TLC) was performed on silica gel HF_{254} with detection by charring with 30% (v/v) H₂SO₄ in MeOH or in some cases by a UV lamp. Column chromatography was conducted by elution of a column (16 \times 240 mm, 18 \times 300 mm, 35 \times 400 mm) of silica gel (100-200 mesh) with EtOAc-petroleum ether (bp 60-90 °C) as the eluent. Solutions were concentrated at < 60 °C under reduced pressure.

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -1,2:5,6-di-O-isopropylidene- α -D-glucofuranose (3). 2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl trichloroacetimidate 1 (3.0 g, 4.0 mmol) and 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose 2 (1.04 g, 4.0 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (20 mL). TMSOTf (30 μ L) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 3 h, during which time the temperature was gradually raised to ambient

temperature. Then the mixture was neutralized with Et₃N. Concentration of the reaction mixture, followed by purification on a silica gel column with 4:1 petroleum ether-EtOAc as the eluent, gave the product 3 (2.91 g, 87%) as a syrup: $[\alpha]_{D} + 25.0^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.02-7.34 (m, 20 H, 4 Bz*H*), 5.92 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 9.8$ Hz, H-4'), 5.85 (d, 1 H, J_{1,2} 3.0 Hz, H-1), 5.69 (dd, 1 H, $J_{3',4'} = J_{2',3'} = 9.8$ Hz, H-3'), 5.55 (dd, 1 H, $J_{1',2'}$ 8.0 Hz, $J_{2',3'}$ 9.6 Hz, H-2'), 4.95 (d, 1 H, $J_{1',2'}$ 8.0 Hz, H-1'), 4.68 (dd, 1 H, $J_{6',6'}^{a,b}$ 12.4 Hz, $J_{5',6'}^{a}$ 3.2 Hz, H-6'a), 4.51 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-2), 4.48 (dd, 1 H, $J_{6',6'}^{a,b}$ 12.4 Hz, $J_{5',6'}^{b}$ 3.2 Hz, H-6'b), 4.12–3.86 (m, 7 H), 1.45, 1.37, 1.31, 1.28 (4 s, 4 CH₃). Anal. Calcd for C46H46O15: C, 65.87; H, 5.49. Found: C, 65.61; H, 5.53.

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ - $[2,3,4,6-tetra-O-benzoyl-\beta-D-glucopyranosyl-(1 \rightarrow 6)]$ -1,2-O-isopropylidene- α -D-glucofuranose (5).—To a solution of 90% HOAc (20 mL) was added 3 (1.00 g, 1.20 mmol), and the mixture was stirred at 40 °C overnight, then concentrated to dryness. The residue was passed through a short silica gel column (1:1 petroleum ether-EtOAc) to give 4 (880 mg, 93%) as crystals (mp 144-146 °C). Compound 5 was prepared by coupling of 1 (750 mg, 1.0 mmol) with 4 (800 mg, 1.0 mmol) under the same conditions as described for the synthesis of 3 by coupling of 1 with 2. Concentration of the reaction mixture followed by purification on a silica gel column with 3:1 petroleum ether-EtOAc as the eluent gave the product 5 (980 mg, 71%) as a syrup: $[\alpha]_{D}$ + 42.3° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.02-7.34 (m, 40 H, 8 BzH), 5.91 (dd, 1 H, $J_{3,4}^{c} = J_{4,5}^{c} = 9.6$ Hz, H-4^c), 5.87 (d, 1 H, $J_{1,2}^{a}$ 3.0 Hz, H-1^a), 5.83 (dd, 1 H, $J_{4,5}^{b} = J_{3,4}^{b} = 9.6$ Hz, H-4^b), 5.63 (m, 2 H, H-3^b, H-3^c), 5.48 (dd, 1 H, $J_{1,2}^{c,c}$ 8.0 Hz, $J_{2,3}^{c,c}$ 9.6 Hz, H-2^c), 5.43 (dd, 1 H, $J_{1,2}^{b,b}$ 8.0 Hz, $J_{2,3}^{b,b}$ 9.6 Hz, H-2^b), 5.03 (d, 1 H, $J_{1,2}^{c,c}$ 8.0 Hz, H-1^c), 4.94 (d, 1 H, J₁^b, ^b 8.0 Hz, H-1^b), 4.68 (m, 2 H), 4.45 (d, 1 H, J₁^a, ^a 3.0 Hz, H-2^a), 4.48-3.86 (m, 9 H), 1.37, 1.28 (2 s, 2 CH₃). Anal. Calcd for C₇₇H₆₈O₂₄: C, 67.15; H, 4.94. Found: C, 67.38; H, 4.98.

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$]-2,4-di-O-acetyl- α -D-glucopyranosyl trichloroacetimidate (6).—A solution of **5** (950 mg, 0.69 mmol) in 80% HOAc (50 mL) was heated under reflux for 4 h, then concentrated to dryness. The residue was dissolved in pyridine (10 mL), and then Ac₂O (2 mL) was added. After stirring the mixture at rt for 12 h, TLC (2:1 petroleum ether–EtOAc) indicated that the reaction was complete. To the reaction mixture was added water (10 mL), and the mixture was stirred for 0.5 h, then washed with dil HCl, and extracted with CH₂Cl₂. The organic phase was dried over anhyd Na₂SO₄, then concentrated to dryness. The resultant crude product was dissolved in a 1 M solution of NH₃ in 3:1 THF-MeOH (20 mL), and the mixture was stirred at rt until TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. The solution was concentrated and the residue was purified by column chromatography with 2:1 petroleum ether-EtOAc as the eluent to give 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$]-2,4-di-O-acetyl- α , β -D-glucopyranose (560 mg, 57% for three steps) as a syrup. A mixture of the hemiacetal (560 mg, 0.40 mmol), CCl₃CN (1.0 mL, 5 mmol), and 1,8-diazabicyclo[5.4.0]undecene (DBU, 0.10 mL) in dry CH₂Cl₂ (20 mL) was stirred for 3 h and then concentrated. The residue was purified by flash chromatography (2:1 petroleum ether-EtOAc) to give 6 (510 mg, 82%) as a syrup: $[\alpha]_D$ + 79.2° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1 H, NH), 7.91-7.27 (m, 40 H, 8 BzH), 6.21 (d, 1 H, J_{1,2}^a 3.6 Hz, H-1^a), 5.92 (dd, 1 H, $J_{3,4}^{c} = J_{4,5}^{c} = 9.6$ Hz, H-4^c), 5.85 (dd, 1 H, $J_{4,5}^{b,b} = J_{3,4}^{b,b} = 9.6$ Hz, H-4^b), 5.64 (dd, 1 H, $J_{3,4}^{c,c} = J_{2,3}^{c,c} = 9.6$ Hz, H-3^c), 5.62 (dd, 1 H, $J_{3,4}^{b,b} =$ $J_{2,3}^{b} = 9.6$ Hz, H-3^b), 5.49 (dd, 1 H, $J_{1,2}^{c} \approx 8.0$ Hz, $J_{2,3}^{c,c}$ 9.6 Hz, H-2^c), 5.43 (dd, 1 H, $J_{1,2}^{b,b}$ 8.0 Hz, $J_{2,3}^{b,b}$ 9.6 Hz, H-2^b), 4.98 (d, 1 H, J_{1,2}^c 8.0 Hz, H-1^c), 4.96 (d, 1 H, $J_{1,2}^{a}$ 8.0 Hz, H-1^b), 4.86 (dd, 1 H, $J_{3,4}^{a}$ = $J_{5,4}^{a} = 9.6$ Hz, H-4^a), 4.65–4.40 (m, 4 H), 4.22–3.67 (m, 7 H), 1.94, 1.79 (2 s, 2 CH₃CO). Anal. Calcd for C₈₀H₆₈Cl₃NO₂₆: C, 61.36; H, 4.35. Found: C, 61.05; H, 4.32.

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -3-O-allyl-1,2-O-isopropylidene- α -D-glucofuranose (9). —To a solution of 2 (13 g, 50 mmol) in dry DMF (50 mL), AllBr (4.4 mL, 1.01 equiv) and NaH (4.0 g, 49%) were added under cooling with an ice bath. The mixture was stirred for 2 h at rt, then diluted with CH₂Cl₂ and washed 3-4 times with H₂O. The organic phase was dried over anhyd Na₂SO₄, then concentrated to dryness. The resultant crude product was dissolved in 90% HOAc (100 mL), and the mixture was stirred overnight at 40 °C and then concentrated. The residue was purified by flash chromatography (2:1 petroleum ether-EtOAc) to give 8 (9.5 g, 73% for two steps) as a syrup. The donor 1 (1.5 g, 2 mmol) and acceptor 8 (520 mg, 2 mmol) were coupled under the same conditions as described for the synthesis of 3 by coupling of 1 with 2. Concentration of the reaction mixture followed by purification on a silica gel column with 3:1 petroleum ether-EtOAc as the eluent gave the product **9** (1.25 g, 76%) as a syrup: $[\alpha]_{\rm D}$ + 35.1° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.05–7.34 (m, 20 H, 4 Bz*H*), 5.94 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 9.8$ Hz, H-4'), 5.88 (m, 1 H, -CH=), 5.84 (d, 1 H, J_{1.2} 3.0 Hz, H-1), 5.71 (dd, 1 H, $J_{3',4'} = J_{2',3'} = 9.8$ Hz, H-3'), 5.54 (dd, 1 H, J_{1',2'} 8.0 Hz, J_{2',3'} 9.6 Hz, H-2'), 5.28-5.14 (m, 2 H, CH_2 =), 4.94 (d, 1 H, $J_{1',2'}$ 8.0 Hz, H-1'), 4.67 (dd, 1 H, $J_{6^{a},6^{b}}$ 12.4 Hz, $J_{5',6^{a}}$ 3.2 Hz, H-6'a), 4.50 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-2), 4.48 (dd, 1 H, $J_{6^{a},6^{b}}$ 12.4 Hz, $J_{6',6'}$ 3.2 Hz, H-6'b), 4.12–3.86 (m, 7 H), 1.39, 1.28 (2 s, 2 CH₃). Anal. Calcd for C₄₆H₄₆O₁₅: C, 65.87; H, 5.49. Found: C, 65.71; H, 5.43.

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,4-di-O-acetyl-3-O-allyl- α -D-glucopyranosyl trichloroacetimidate (10).—A solution of 9 (1.20 g, 1.43 mmol) in 80% HOAc (50 mL) was heated under reflux for 4 h, then concentrated to dryness. The residue was dissolved in pyridine (10 mL), and then Ac₂O (1 mL) was added. After stirring the mixture at rt for 12 h, TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. The reaction mixture was diluted with water, and extracted with CH₂Cl, washed with 1N HCl, water, and satd aq NaHCO₃. The organic phase was dried over anhyd Na₂SO₄, then concentrated to dryness. The resultant crude product was dissolved in a 1 M solution of NH₃ in MeOH (20 mL), and the mixture was stirred at rt until TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. The solution was concentrated, and the residue was purified by column chromatography with 2:1 petroleum ether-EtOAc as the eluent to give 2,3,4,6tetra-O-benzoyl- β -D-glucopyranosyl - $(1 \rightarrow 6)$ - 2,4 - di - O acetyl- α , β -D-glucopyranose as a syrup (830 mg, 64%) for three steps). A mixture of the product, CCl₃CN (2.0 mL, 10 mmol), and DBU (0.20 mL, 1.50 mmol) in dry CH₂Cl₂ (20 mL) was stirred for 3 h and then concentrated. The residue was purified by flash chromatography (3:1 petroleum ether-EtOAc) to give 10 (840 mg, 87%) as a syrup: $[\alpha]_{D}$ + 45.4° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.63 (s, 1 H, NH), 8.06-7.29 (m, 20 H, 4 BzH), 6.31 (d, 1 H, J_{1,2} 3.2 Hz, H-1), 5.94 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 9.6$ Hz, H-4'), 5.85 (m, 1 H, -CH=), 5.70 (dd, 1 H, $J_{3',4'} = J_{2',3'} = 9.8$ Hz, H-3'), 5.54 (dd, 1 H, J_{1',2'} 8.0 Hz, J_{2',3'} 9.6 Hz, H-2'), 5.29–5.18 (m, 2 H, CH_2 =), 5.04 (d, 1 H, $J_{1',2'}$ 8.0 Hz, H-1'), 4.88 (dd, 1 H, $J_{3,4} = J_{5,4} = 9.8$ Hz, H-4), 4.86 (dd, 1 H, J₆^a, ^b₆ 10.4 Hz, J_{5',6'}^a 3.0 Hz, H-6'^a), 4.67 (dd, 1 H, $J_{6',6'}^{a,b}$ 10.4 Hz, $J_{5',6'}^{b}$ 3.2 Hz, H-6'^b), 4.50 (dd, 1 H, J_{1,2} 3.0 Hz, J_{2,3} 9.6 Hz, H-2), 4.24–3.86 (m, 7 H), 2.04, 1.81 (2 s, 2 CH₃CO). Anal. Calcd for C₄₉H₄₆Cl₃NO₁₇: C, 57.28; H, 4.48. Found: C, 57.41; H, 4.41.

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tri-O-acetyl- α -D-glucopyranosyl trichloroacetimidate (11).—A solution of **3** (900 mg, 1.07 mmol) in 80% HOAc (20 mL) was heated under reflux for 4 h, then concentrated to dryness. The residue was dissolved in pyridine (10 mL), and then Ac₂O (1 mL) was added. After stirring the mixture at rt for 12 h, TLC (2:1 petroleum ether–EtOAc) indicated that the reaction was complete. The reaction mixture was diluted with water (10 mL), then extracted with CH₂Cl₂ and washed with dil HCl. The organic phase was combined, dried, and concentrated. The resultant crude product was dissolved in a 1 M solution of NH₃ in MeOH (20 mL), and the mixture was stirred at rt until TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. The solution was concentrated, and the residue was purified on a silica gel column with 2:1 petroleum ether-EtOAc to give 2,3,4,6-tetra-O-benzoyl- β - D - glucopyranosyl - $(1 \rightarrow 3)$ - 2,4 - di - O - acetyl - α , β - Dglucopyranose as a syrup (675 mg, 71% for three steps). A mixture of the hemiacetal, CCl₃CN (1.5 mL, 7.5 mmol), and DBU (0.15 mL, 1.20 mmol) in dry CH₂Cl₂ (20 mL) was stirred for 3 h and then concentrated. The residue was purified by flash chromatography (2:1 petroleum ether-EtOAc) to give 11 (600 mg) as a syrup: $[\alpha]_D$ + 21.3° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.61 (s, 1 H, NH), 8.06–7.27 (m, 20 H, 4 BzH), 6.44 (d, 1 H, J_{1.2} 3.2 Hz, H-1), 5.95 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 9.6$ Hz, H-4'), 5.74 (dd, 1 H, $J_{3',4'} =$ $J_{2',3'} = 9.8$ Hz, H-3'), 5.46 (dd, 1 H, $J_{1',2'} = J_{2',3'} = 8.8$ Hz, H-2'), 5.19 (dd, 1 H, J_{3,4} = J_{4,5} = 9.8 Hz, H-4), 5.03 (d, 1 H, $J_{1',2'}$ 8.0 Hz, H-1'), 4.86 (dd, 1 H, $J_{6',6'}^{a,b}$ 10.4 Hz, J_{5',6'}^a 3.0 Hz, H-6'^a), 4.69 (dd, 1 H, J_{6',6'}^a 10.4 Hz, $J_{5',6'}$ 3.2 Hz, H-6'^b), 4.48 (dd, 1 H, $J_{1,2}$ 3.0 Hz, $J_{2,3}$ 9.6 Hz, H-2), 4.24-4.07 (m, 5 H), 2.08, 1.99, 1.81 (3 s, 3 CH₃CO). Anal. Calcd for C₄₈H₄₄Cl₃NO₁₈: C, 56.00; H, 4.08. Found: C, 55.83; H, 4.03.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-gluco $pyranosyl - (1 \rightarrow 3) - [2,3,4,6 - tetra - O - benzoyl - \beta - D - gluco$ $pyranosyl-(1 \rightarrow 6)]-2, 4-di-O-acetyl-\beta-D-glucopyranosyl (1 \rightarrow 3)$ -2-O-acetyl-4,6-O-benzylidene- β -D-glucopyranoside (13).—Compound 13 was prepared by coupling of 6 (800 mg, 0.51 mmol) with 12⁵ (190 mg, 0.51 mmol) under the same conditions as described for the synthesis of 3 by coupling of 1 with 2. Concentration of the reaction mixture, followed by purification on a silica gel column with 3:1 petroleum ether-EtOAc as the eluent, gave a tetrasaccharide (607 mg, 67%). The tetrasaccharide was quantitatively acetylated in pyridine (10 mL) with Ac_2O (2 mL), then concentrated to dryness. The residue was purified by flash chromatography (2:1 petroleum ether-EtOAc) to give 13 (592 mg, 95%) as a syrup: $[\alpha]_{D}$ + 45.1° (*c* 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.32 (m, 45 H, 9 PhH), 6.95– 6.82 (dd, 4 H, $-C_6H_4$ -), 5.88 (dd, 1 H, $J_{3,4}^{d} = J_{4,5}^{d} =$ 9.6 Hz, H-4^d), 5.86 (dd, 1 H, $J_{4,5}^{c} = J_{3,4}^{c} = 9.6$ Hz, H-4^c), 5.66 (dd, 1 H, $J_{3,4}^{d} = J_{4,5}^{d} = 9.6$ Hz, H-3^d), 5.65 (dd, 1 H, $J_{3,4}^{c} = J_{2,3}^{c} = 9.6$ Hz, H-3^c), 5.51 (s, 1 H, PhCH), 5.45 (dd, 1 H, J_{1,2}^d 8.0 Hz, J_{2,3}^d 9.6 Hz, H-2^d), 5.41 (dd, 1 H, J₁^c, ^c 8.0 Hz, J₂^c, ^c 9.6 Hz, H-2^c), 5.27 (dd, 1 H, *J*₁^a,^a 8.0 Hz, *J*₂^a,^a 9.6 Hz, H-2^a), 4.96 (d, 1 H, $J_{1,2}^{d}$ 8.0 Hz, H-1^d), 4.86 (d, 1 H, $J_{1,2}^{a}$ 8.0 Hz, H-1^a), 4.84 (dd, 1 H, $J_{1,2}^{b} = J_{2,3}^{b} = 9.2$ Hz, H-2^b), 4.79 (m, 2 H), 4.72 (d, 1 H, $J_{1,2}^{c c}$ 8.0 Hz, H-1^c), 4.68–4.48 (m, 4 H, 2 H- 6^{a} , 2 H- 6^{d}), 4.41 (d, 1 H, $J_{1,2}^{b}$ 8.0 Hz, H-1^b), 4.18–3.82 (m, 8 H), 3.81 (s, 3 H, CH₃O), 3.67– 3.63 (m, 2 H), 2.03, 1.94, 1.79 (3 s, 3 CH₃CO). Anal. Calcd for $C_{100}H_{90}O_{33}$: C, 66.01; H, 4.95. Found: C, 66.07; H, 4.91.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl- $(1 \rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$]-2,4-di-O-acetyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tri-O-acetyl- β -D-glucopyranoside (15). To a solution of 13 (900 mg, 0.50 mmol) in MeOH (50 mL) was added AcCl (0.3 mL). The solution was stoppered in a flask and stirred at rt for 1 h, at the end of which time TLC (1:1 petroleum ether-EtOAc) showed that the starting material had disappeared. The solution was neutralized with Et₃N, then concentrated to dryness. The residue was purified by flash chromatography (2:1 petroleum ether-EtOAc) to give 14 (750 mg, 83%) as a syrup. Compound 14 (50 mg, 0.29 mmol) was dissolved in pyridine (2 mL) and Ac₂O (0.1 mL) was added. After stirring the mixture at rt for 12 h, TLC (1:1 petroleum ether-EtOAc) showed that the reaction was complete. The residue was purified by flash chromatography (2:1 petroleum ether-EtOAc) to give 15 (45 mg, 90%) as a syrup: $[\alpha]_{D}$ + 39.1° (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.98–7.35 (m, 40 H, 8 PhH), 6.95-6.80 (dd, 4 H, -C₆H₄-), 5.86 (dd, 1 H, $J_{3,4}^{d} = J_{4,5}^{d} = 9.6$ Hz, H-4^d), 5.84 (dd, 1 H, $J_{4,5}^{c} =$ $J_{3,4}^{c,c} = 9.6$ Hz, H-4^c), 5.69 (dd, 1 H, $J_{3,4}^{d,d} = J_{2,3}^{d,d} = 9.6$ Hz, H-3^d), 5.67 (dd, 1 H, $J_{3,4}^{c} = J_{2,3}^{c} = 9.6$ Hz, H-3^c), 5.49 (dd, 1 H, J₁^d₂^d 8.0 Hz, J₂^d₃^d 9.6 Hz, H-2^d), 5.39 (dd, 1 H, $J_{1,2}^{c}$ 8.0 Hz, $J_{2,3}^{c}$ 9.6 Hz, H-2^c), 5.14 (d, 1 H, $J_{1,2}^{d}$ 8.0 Hz, H-1^d), 5.12 (dd, 1 H, $J_{1,2}^{a}$ 8.0 Hz, $J_{2,3}^{a}$ 9.6 Hz, H-2^a), 4.94 (dd, 1 H, $J_{4,5}^{b} = J_{3,4}^{b} = 9.6$ Hz, H-4^b), 4.86 (d, 1 H, J_{1,2}^{c,c} 8.0 Hz, H-1^c), 4.82 (d, 1 H, $J_{1,2}^{a}$ 8.0 Hz, H-1^a), 4.70 (m, 2 H, H-4^a, H-2^b), 4.68-4.48 (m, 4 H, 2 H-6^a, 2 H-6^d), 4.33 (d, 1 H, $J_1^{b}_2^{b}$ 8.4 Hz, H-1^b), 4.22-4.3.81 (m, 7 H), 3.81 (s, 3 H, CH₃O), 3.67-3.63 (m, 3 H), 2.03, 1.94, 1.79 (5 CH₃CO). Anal. Calcd for C₉₇H₉₀O₃₅: C, 64.17; H, 4.96. Found: C, 63.91; H, 4.92.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl- $(1 \rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- β -D-gluco $pyranosyl-(1 \rightarrow 6)$]-2,4-di-O-acetyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$]-2,4-di-O-acetyl- β -D-glucopyranoside (16).-The acceptor 14 (220 mg, 0.13 mmol) and donor 1 (100 mg, 0.13 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (20 mL). TMSOTf (15 μ L) was added dropwise at -20 °C with N_2 protection. The reaction mixture was stirred for 3 h. during which time the reaction mixture was gradually raised to ambient temperature. Then the mixture was neutralized with Et₃N. Concentration of the reaction mixture followed by purification on a silica gel column with 1:1 petroleum ether-EtOAc as the eluent gave the product. To the solution of the product in pyridine (20 mL), Ac₂O (1 mL, 10 mmol) was added dropwise, and the mixture was stirred overnight at rt. TLC (1.5:1 petroleum ether-EtOAc) indicated that the reaction was complete. The mixture was diluted with CH₂Cl₂, washed with 1N HCl, water, and then with satd aq NaHCO₃. The organic layers were combined, dried, and concentrated. Purification by column chromatography (2:1 petroleum ether-EtOAc) gave 16 (220 mg, 74% for two steps) as a syrup: $[\alpha]_{\rm D}$ + 43.1° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.08–7.32 (m, 60 H, 12 BzH), 6.81 (dd, 4 H, -C₆H₄-), 5.85 (dd, 1 H, J 9.6 Hz), 5.84 (dd, 1 H, J 9.6 Hz), 5.76 (dd, 1 H, J 9.6 Hz), 5.66–5.62 (m, 3 H), 5.49 (dd, 1 H, J 9.2 Hz), 5.47 (dd, 1 H, J 9.6 Hz), 5.37 (dd, 1 H, J 9.6 Hz), 4.96 (d, 1 H, J 8.0 Hz, βH-1), 4.91 (dd, 1 H, J 9.6 Hz), 4.89 (d, 1 H, J 8.0 Hz, βH-1), 4.82 (dd, 1 H, J 8.0 Hz, β H-1), 4.63–4.55 (m, 6 H), 4.52–4.47 (m, 4 H), 4.43 (d, 1 H, J 8.0 Hz, βH-1), 4.16–4.09 (m, 2 H), 3.97-3.94 (m, 1 H), 3.88-3.80 (m, 3 H), 3.76 (s, 3 H, CH₃O), 3.67–3.62 (m, 2 H), 3.57–3.51 (m, 2 H), 3.49–3.42 (m, 1 H), 2.04, 1.86, 1.86, 1.66 (4 CH₃CO); ¹³C NMR (100 MHz, CDCl₃): δ 169.53, 169.10, 168.76, 168.20 (4 CH₃CO), 166.02, 165.97, 165.93, 165.76, 165.64, 165.57, 165.17, 165.15, 165.09, 165.04, 164.98, 164.75 (12 C₆H₅CO), 155.84, 151.27, 133.61, 133.44, 133.40, 133.34, 133.31, 133.21, 133.18, 133.15, 133.08, 132.85, 118.07, 116.41, 101.14, 100.35, 100.35, 99.83, 99.47 (5 C-1), 73.85. 73.54, 73.01, 72.77, 72.77, 72.57, 72.35, 72.38, 72.15, 71.86, 71.86, 71.76, 71.45, 69.44, 69.40, 69.33, 68.85, 68.26, 67.67, 62.67, 55.53, 20.82, 20.75, 20.40. Anal. Calcd 20.96, for C₁₂₉H₁₁₄O₄₃: C, 65.87; H, 4.85. Found: C, 65.88; H, 4.82. Anal. Calcd for C₁₂₉H₁₁₄O₄₃: C, 65.87; H, 4.85. Found: C, 65.79; H, 4.87.

4-Methoxyphenyl β -D-glucopyranosyl- $(1 \rightarrow 3)$ - $[\beta$ -D $glucopyranosyl - (1 \rightarrow 6)] - \beta - D - glucopyranosyl - (1 \rightarrow 3) [\beta \text{-D-glucopyranosyl-}(1 \rightarrow 6)] - \beta \text{-D-glucopyranoside}$ (17). -Compound 16 (200 mg, 0.085 mmol) was added to an NH₃-satd MeOH solution (40 mL). After a week at rt, the reaction mixture was concentrated, and the residue was purified by chromatography on Sephadex LH-20 (column 2.0×30 cm, flow 5 mL/min, about 300 mL MeOH) to afford the product 17 (75 mg, 95%) as a white amorphous powder: $[\alpha]_{\rm D}$ + 24.2° (c 5.0, HOCH₃); ¹H NMR (400 MHz, D_2O): δ 6.80 (dd, 4 H, $-C_6H_4$), 4.93 (d, 1 H, J 7.6 Hz, H-1),), 4.74 (d, 1 H, J 7.6 Hz, H-1), 4.63 (d, 1 H, J 8.0 Hz, H-1), 4.41 (d, 1 H, J 7.6 Hz, H-1), 4.35 (d, 1 H, J 7.6 Hz, H-1), 4.09 (m, 2 H), 3.82–3.22 (m, 31 H); ¹³C NMR (100 MHz, D₂O): δ 157.33, 153.21, 120.92, 117.63, 105.23, 105.23, 105.04, 105.04, 103.36 (5 C-1), 87.45, 86.92 (2 C-3), 78.48, 78.32, 78.22, 78.17, 77.45, 77.02, 75.98, 75.85, 75.66, 75.50, 74.85, 72.16, 71.23, 70.76, 70.69, 70.55, 63.31, 63.31, 63.31, 58.42. Anal. Calcd for C37H58O27: C, 47.53; H, 6.21. Found: C, 47.68; H, 6.12.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl- $(1 \rightarrow 6)$ -2,4-di-O-acetyl-3-O-allyl- β -D-gluco $pyranosyl - (1 \rightarrow 3) - 2 - O - acetyl - 4, 6 - O - benzylidene - \beta - D$ glucopyranoside (18).—Compound 18 was prepared by coupling of 10 (800 mg, 0.78 mmol) with 12 (210 mg, 0.78 mmol) under the same conditions as described for the synthesis of 3 by coupling of 1 with 2. Concentration of the reaction mixture, followed by purification on a silica gel column with 3:1 petroleum ether-EtOAc as the eluent, gave the product. Acetylation in pyridine (10 mL) with Ac₂O (1 mL), and concentration, then purification of the residue by flash chromatography (2:1 petroleum ether-EtOAc) gave 18 (950 mg, 67% for two steps) as a syrup: $[\alpha]_{\rm D}$ + 17.0° (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.32 (m, 25 H, 5 PhH), 6.95–6.82 (dd, 4 H, -C₆H₄-), 5.88 (dd, 1 H, $J_{4'',5''} = J_{3'',4''} = 9.6$ Hz, H-4"), 5.70–5.68 (m, 2 H, -CH=, H-3"), 5.66 (dd, 1 H, $J_{2",3"} = J_{1",2"} =$ 9.6 Hz, H-2"), 5.46 (s, 1 H, pHCH), 5.35 (dd, 1 H, $J_{2,3} = J_{1,2} = 9.6$ Hz, H-2), 5.16–5.07 (m, 2 H, =CH₂), 5.01 (d, 1 H, $J_{1'',2''}$ 8.0 Hz, H-1"), 4.87 (dd, 1 H, $J_{3',4'}$ 8.0 Hz, J_{4'.5'} 9.6 Hz, H-4'), 4.80 (dd, 1 H, J_{1.2} 8.0 Hz, J_{2.3} 9.6 Hz, H-2'), 4.78 (d, 1 H, J _{1.2} 8.0 Hz, H-1), 4.62 (m, 1 H, H-6"a), 4.54 (m, 1 H, H-6"b), 4.45 (d, 1 H, $J_{1',2'}$ 8.0 Hz, H-1'), 4.24–4.16 (m, 2 H), 3.97–3.82 (m, 4 H), 3.81 (s, 3 H, CH₃O), 3.73-3.56 (m, 3 H), 3.49-3.44 (m, 3 H), 1.96, 1.80, 1.75 (3 s, 3 CH₃CO). Anal. Calcd for C₆₉H₆₈O₂₄: C, 64.69; H, 5.31. Found: C, 64.71; H, 5.28.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl- $(1 \rightarrow 6)$ -2,4-di-O-acetyl-3-O-allyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tri-O-acetyl- β -D-glucopyranoside (20).-Compound 19 (220 mg, 84%) was prepared by debenzylidenation of 18 (280 mg, 0.22 mmol) under the same conditions as described for the preparation of 14 with AcCl in MeOH. For the convenience of identification, 19 (50 mg) was acetylated with Ac_2O in pyridine to give **20** (45 mg, 92%) as a syrup: $[\alpha]_{D}$ $+27.6^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.06–7.29 (m, 20 H, 4 BzH), 6.92–6.83 (dd, 4 H, $-C_6H_4$ -), 5.92 (dd, 1 H, $J_{3'',4''} = J_{4'',5''} = 9.6$ Hz, H-4''), 5.80 (m, 1 H, –CH=), 5.70 (t, 1 H, $J_{3'',4''} = J_{2'',3''} = 9.8$ Hz, H-3"), 5.50 (dd, 1 H, J_{1",2"} 8.0 Hz, J_{2",3"} 9.6 Hz, H-2"), 5.27–5.16 (m, 2 H, CH₂=), 5.08 (d, 1 H, $J_{1",2"}$ 8.0 Hz, H-1"), 5.01 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4), 4.88 (dd, 1 H, $J_{1,2} = J_{2,3} = 9.8$ Hz, H-2), 4.83 (d, 1 H, J_{1,2} 8.0 Hz, H-1), 4.81 (m, 2 H, H-4', H-2'), 4.72 (dd, 1 H, $J_{6',6'}^{a,b}$ 10.4 Hz, $J_{5',6'}$ 3.0 Hz, H-6'a), 4.64 (dd, 1 H, $J_{6^{'},6^{'}}^{\rm a,\,b}$ 10.4 Hz, $J_{5^{'},6^{'}}$ 3.2 Hz, H-6'^b), 4.47 (d, 1 H, $J_{1,2}$ 8.0 Hz, H-1'), 4.14-3.88 (m, 5 H), 3.82 (s, 3 H, CH₃O), 3.78–3.42 (m, 6 H), 2.09, 2.07, 2.04, 1.92, 1.81 (5 s, 5 CH₃CO). Anal. Calcd for C₆₆H₆₈O₂₆: C, 62.07; H, 5.33. Found: C, 62.32; H, 5.37.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,4-di-O-acetyl-3-O-allyl- β -D-gluco $pyranosyl-(1 \rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tri-O-acetyl- β -D-glucopyran $osyl-(1 \rightarrow 6)$]-2,4-di-O-acetyl- β -D-glucopyranoside (21). -Compound 19 (180 mg, 0.15 mmol) and donor 11 (150 mg, 0.15 mmol) were dried together under high vacuum for 4 h, then dissolved in anhyd CH₂Cl₂ (20 mL). TMSOTf (60 μ L) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 3 h, during which time the reaction mixture was gradually raised to ambient temperature. Then the mixture was neutralized with Et₃N. Concentration of the reaction mixture, followed by purification on a silica gel column with 1:1 petroleum ether-EtOAc as the eluent, gave the product. To a solution of the product in pyridine (10 mL), Ac₂O (0.1 mL, 1 mmol) was added dropwise, and the mixture was stirred overnight at rt. TLC (1.5:1 petroleum ether-EtOAc) indicated that the reaction was complete. The mixture was diluted with CH₂Cl₂, washed with 1N HCl, water, and satd aq NaHCO₃. The organic layers were combined, dried, and concentrated. Purification by column chromatography (1:1 petroleum ether-EtOAc) gave 21 (220 mg, 69% for two steps) as a foamy solid: $[\alpha]_{\rm D}$ + 32.5° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.90–7.32 (m, 40 H, 8 BzH), 6.95-6.82 (dd, 4 H, $-C_6H_4$ -), 5.92(dd, 1 H, J 9.6 Hz), 5.89 (dd, 1 H, J 9.6 Hz), 5.72-5.60 (m, 3 H), 5.50 (dd, 1 H, J 9.6 Hz), 5.47 (dd, 1 H, J 9.6 Hz), 5.15-4.90 (m, 7 H), 4.73 (d, 1 H, J 8.0 Hz, βH-1), 4.71 (d, 1 H, J 8.0 Hz, βH-1), 4.68–4.59 (m, 3 H), 4.56-4.43 (m, 3 H), 4.42 (d, 1 H, J 8.0 Hz, βH-1), 4.34 (d, 1 H, J 8.0 Hz, βH-1), 4.26–4.05 (m, 6 H), 4.01–3.87 (m, 3 H), 3.85–3.71 (m, 4 H), 3.67 (m, 1 H), 3.60–3.54 (m, 2 H), 3.49-3.44 (m, 2 H), 3.42 (m, 1 H), 2.10, 2.05, 2.04, 1.96, 1.94, 1.80, 1.60 (7 s, 7 CH₃CO). Anal. Calcd for C₁₁₀H₁₀₈O₄₂: C, 62.86; H, 5.14. Found: C, 63.01; H, 5.10.

4-Methoxyphenyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl- $(1 \rightarrow 6)$ -2,4-di-O-acetyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2,4,6-tri-O-acetyl- β -D-glucopyranosyl-(1 \rightarrow 6)]-2,4-di-O-acetyl- β -D-glucopyranoside (22).—To a solution of 21 (220 mg) in MeOH (10 mL) was added PdCl₂ (15 mg). After stirred for 3 h at rt, TLC (3:2 petroleum ether–EtOAc) indicated that the reaction was complete. The mixture was filtered, the solution was concentrated to dryness, and the resultant residue was purified by flash chromatography (2:1 petroleum ether-EtOAc) to give 22 (180 mg, 84%) as a syrup: $[\alpha]_{\rm D}$ + 46.1° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.90–7.32 (m, 40 H, 8 BzH), 6.95–6.82 (dd, 4 H, –C₆H₄–), 5.92 (dd 1 H, J 9.6 Hz), 5.89 (dd, 1 H, J 9.6 Hz), 5.72–5.60 (m, 3 H), 5.50 (dd, 1 H, J 9.6 Hz), 5.47 (dd, 1 H, J 9.6 Hz), 5.15-4.90 (m, 7 H), 4.73 (d, 1 H, J 8.0 Hz, βH-1), 4.71 (d, 1 H, J 8.0 Hz, βH-1), 4.68–4.59 (m, 3 H), 4.56–4.43 (m, 3 H), 4.42 (d, 1 H, J 8.0 Hz, βH-1), 4.34 (d, 1 H, J 8.0 Hz, βH-1), 4.26–4.05 (m, 3 H), 4.01–3.87 (m, 3 H), 3.85–3.71 (m, 2 H), 3.67 (m, 1 H), 3.60–3.54 (m, 2 H), 3.49–3.44 (m, 2 H), 3.42 (m, 1 H), 2.10, 2.05, 2.04, 1.96, 1.94, 1.80, 1.60 (7 s, 7 CH₃CO); ¹³C NMR (100 MHz, CDCl₃): δ 171.65, 170.36, 169.49, 169.49, 169.20, 168.67, 168.05 (7 CH₃CO), 165.99, 165.99, 165.93, 165.66, 165.34, 165.14, 165.14, 164.83 (8 C₆H₅CO), 155.21, 151.32, 133.61, 133.44, 133.40, 133.34, 133.31, 133.21, 133.18, 133.15, 133.08, 132.85, 117.74, 114.67, 101.04, 100.60, 100.49, 100.22, 99.60 (5 C-1), 78.56, 78.39, 73.99, 73.49, 73.21, 72.85, 72.63, 72.36, 72.12, 71.90, 71.52, 71.23, 69.52, 69.34, 68.52, 67.10, 67.68, 67.43, 20.96, 20.75, 20.68, 20.54, 20.52, 20.46, 20.37. Anal. Calcd for C₁₀₇H₁₀₄O₄₂: C, 62.33; H, 5.05. Found: C, 62.15; H, 4.99.

4-Methoxyphenvl β -D-glucopyranosyl- $(1 \rightarrow 6)$ - β -Dglucopyranosyl- $(1 \rightarrow 3)$ - $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)$ - β -D-glucopyranosyl- $(1 \rightarrow 6)$]- β -D-glucopyranoside (23).— Compound 22 (180 mg, 1.07 mmol) was added to a satd solution of NH₃ in MeOH (40 mL). After a week at rt, the reaction mixture was concentrated, and the residue was purified by chromatography on a Sephadex LH-20 (column 2.0×30 cm, flow 5 mL/min, about 300 mL MeOH) to afford the pentasaccharidic 23 (76 mg, 93%) as a white amorphous powder: $[\alpha]_{\rm D}$ + 47.5° (c 3.3, CH₃OH); ¹H NMR (400 MHz, HOCH₃): δ 6.92-6.83 (dd, 4 H, -C₆H₄-), 4.97 (d, 1 H, J 8.0 Hz, H-1), 4.65 (d, 1 H, J 7.8 Hz, H-1), 4.60 (d, 1 H, J 7.6 Hz, H-1), 4.41 (d, 1 H, J 7.6 Hz, H-1), 4.40 (d, 1 H, J 8.0 Hz, H-1), 4.10 (m, 2 H), 3.83–3.22 (m, 31 H); ¹³C NMR (100 MHz, D_2O): δ 157.19, 154.23, 121.01, 117.71, 105.39, 105.35, 105.20, 104.75, 103.32 (5 C-1), 87.54, 87.54 (2 C-3), 78.53, 78.37, 78.20, 78.15, 78.06, 77.98, 77.60, 77.39, 76.01, 75.88, 75.71, 75.23, 74.85, 72.21, 72.15, 72.09, 71.27, 70.76, 70.65, 63.34, 63.34, 63.25, 58.52. Anal. Calcd for C₃₇H₅₈O₂₇: C, 47.53; H, 6.21. Found: C, 47.72; H, 6.16.

Acknowledgements

This work was supported by The Chinese Academy of Sciences (KZCX3-J-08) and by The National Natural Science Foundation of China (Projects 39970864 and 30070815).

References

(a) Sasaki, T.; Takasuka, N. *Carbohydr. Res.* **1976**, 47, 99–110;
 (b) Kitamura, S.; Hori, T.; Kurita, K.; Takeo, K.; Hara, C.; Itoh, W.; Tabata, K.; Elgsaeter, A.; Stokke, B. T. *Carbohydr. Res.* **1994**, 263, 111–120;
 (c) Chihara, G.; Maeda, Y.; Hamuro, J.; Sasaki, T.; Fukuoka, F. *Nature* **1969**, 222, 687–690.

- Schmid, F.; Stone, B. A.; McDougall, B. M.; Basic, A.; Martin, K. L.; Brownlee, R. T. C.; Chai, E.; Seviour, R. J.
- *Carbohydr. Res.* 2001, 331, 163–171.
 Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21–125.

- (a) Zhu, Y.; Kong, F. Synlett 2000, 663–667;
 (b) Zhu, Y.; Kong, F. Carbohydr. Res. 2001, 332, 1–21.
 Yang, G.; Kong, F. Synlett 2000, 1423–1426.
 Ogawa, T.; Yamamoto, H. Carbohydr. Res. 1985, 137, 79–87.