Downloaded by Cape Breton University on 27/04/2013 19:14:51.
Published on 20 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CC37155C

ChemComm

COMMUNICATION

RSCPublishing

View Article Online
View Journal | View Issue

Hydrometallation-asymmetric conjugate addition:

Cite this: Chem. Commun., 2013,
49, 4211

application to complex molecule synthesist+

Rebecca M. Maksymowicz, Philippe M. C. Roth, Amber L. Thompson§ and

Received 1st October 2012,

*
Accepted 19th November 2012 Stephen P. Fletcher

DOI: 10.1039/c2cc37155¢

www.rsc.org/chemcomm

Copper catalysis allows alkyl zirconium species, generated in situ
from alkenes, to undergo conjugate addition reactions. A hydro-
metallation-catalytic asymmetric 1,4-addition was used to synthe-
size either enantiomer of a natural product in one step from
commercially available materials. Hydrometallation-addition
sequences applied to steroids containing a cross-conjugated
dienone or 1,6-acceptor give highly functionalized products.

The copper-catalyzed asymmetric 1,4-addition of unstabilized
alkyl nucleophiles such as Grignard reagents, dialkylzincs and
alkyl aluminiums has emerged as a powerful method for
forming C-C bonds."™* We recently reported that alkenes can
be used as equivalents of premade alkylmetal species in
catalytic asymmetric reactions via a process where an alkene
undergoes hydrometallation, and the resulting organometallic
species is used as a nucleophile in conjugate additions
(eqn (1)).” Using the
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Schwartz reagent® as the hydrometallating agent, the resulting
alkyl zirconium species” undergo copper-catalyzed enantio-
selective 1,4-addition at room temperature.’ Here, we explore
the application of this approach in the context of complex
molecule synthesis.

We selected 1 as a simple target, for proof of concept that
natural products could be synthesized using hydrometallation-
asymmetric conjugate addition (HM-ACA). 1 is an aromatic
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compound isolated from the New Zealand liverwort Balantiopsis
rosea.® Using the conditions shown in Scheme 1, natural (—)-1
was synthesized in one step (53% yield, 95% ee) using catalyst
(S,S,5)-A at 0 °C. These conditions gave slightly better results
than experiments carried out at room temperature (37%, 90% ee).
The unnatural enantiomer of the natural product ((+)-1) was
synthesized (one step, 45% yield, 94% ee) using the other
enantiomer (R,R,R, not shown) of the catalyst complex.f The
CD spectrum of (—)-1,1 is consistent with the natural material®
and the absolute configuration shown.’

We decided to examine the method on more challenging
substrates - commercially available steroids that contain
additional functional groups, which could potentially interfere
with conjugate addition processes (Fig. 1). 1,4-Androstadiene-
3,17-dione (2) is a cross-conjugated dienone capable of 1,4-
addition reactions, 1,2-additions to the dienone and ketone
moieties, as well as other possibilities, such as rearrangement.
Canrenone 3, contains a lactone, and is capable of 1,2-, 1,4-,
and 1,6-addition reactions. The products of hydrometallation-
addition to 2 and 3 would be functionalized steroids, which are
valuable compounds, for example cholesteryl benzoate was the first
compound found to form chiral nematic liquid crystals,’® and
fulvestrant (Faslodex)"" is an established breast cancer drug."* ™

Hydrometallation-addition of 1-hexene to 2, catalyzed by
copper complex (S,5,5)-A at room temperature, was found to
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Scheme 1 One step synthesis of natural (—)-1 and its enantiomer (+)-1.
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Fig. 1 Selected steroid derivatives.

proceed in a 1,4-fashion to give a crude ~3.5:1 ratiof of
diastereoisomers in favour of the 1-a-isomer 4, which was
isolated in 50% yield by flash column chromatography
(Scheme 2). The 1-B-isomer could also be isolated in 16% yield.
Hydrometallation-addition of functionalized alkenes to 2 illustrates
that reactive functional groups such as bromides and benzyl
chlorides are tolerated (see compounds 5 and 6).

In the case of canrenone 3, hydrozirconation of 1-hexene,
followed by (S,S,S)-A catalyzed addition, favoured| the o-1,6-
addition product 7, which was isolated in 59% yield. A minor,
B-isomer, 1,6-addition product could also be isolated in
21% yield.

We examined the possibility of adding functionalized
alkenes to canrenone, and found that, while the yields are
lower, alkenes and styrenes bearing reactive groups are surpris-
ingly well tolerated. These reactions give steroids containing
groups that should be useful handles for further derivatization -
primary alkyl bromides (8), benzyl chlorides (9), and boronic
esters (10). In the case of benzyl chloride 9 single crystal X-ray
diffraction studies** confirmed the stereochemistry of the
product (Fig. 2).

The addition of hard organometallic nucleophiles to steroids
in 1,4-additions to cross conjugated enones™>'® and 1,6-addition
processes,'>* has previously been reported, but as far as we
are aware, the functional group compatibility of reported
procedures is much more limited than demonstrated
here."''>">73 In comparison to relevant procedures, the hydro-
metallation - addition approach is operationally simple,
convenient, and tolerates important functional groups - factors
that may make these procedures useful®*>® in the synthesis of
medically important derivatives. We are also unaware of any
reported procedures that use alkenes as the equivalents to sp®
hybridized nucleophiles in conjugate addition reactions to
steroids.

In conclusion, we have used alkenes as equivalents to
premade alkyl-metal species in conjugate addition reactions.

4212 | Chem. Commun., 2013, 49, 4211-4213

View Article Online

Scheme 2 1,4- and 1,6-addition reactions to steroids. Conditions: alkene

(2.5 eq.), CpoZrHCl (2 eq.), CH,Cl5;(S,S,5)-A (10 mol%), steroid (1 eq.), Et,0, room
temperature. @ Crude diastereomeric ratio determined by "H NMR spectroscopy.
b Isolated yields.

We applied a hydrometallation-asymmetric conjugate addition
sequence in the highly enantioselective one-step synthesis of a
natural product. In the case of unsaturated steroids we
examined a hydrometallation-addition sequence and found
that copper catalyzed conjugate addition reactions readily
occur, and functional groups are tolerated.
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Fig. 2 X-ray crystal structure of 9; atomic displacement parameters are drawn at
50% probability and hydrogen atoms are omitted for clarity.
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Notes and references

9 Use of the (R,R,R)-enantiomer of complex A in the addition of
1-hexene to 2 showed a matched/mismatched effect. Here, the crude
ratio of isomers was ~5 : 1 in favour of the o-isomer 4. We also very
briefly examined the hydrometallation-addition of 1-hexene to 2
promoted by the achiral copper sources (CuOTf),-PhH and CuBr-
Me,S,>*?” - each gave o : B ratios >8 : 1, but in the case of (CuOTf),:-
PhH numberous minor byproducts were observed, and in the case of
CuBr-Me,S the reaction stopped after <25% conversion.

| Use of (R,R,R)-A in the addition of 1-hexene to canrenone altered the
diastereoselectivity to favour the B-isomer, so that the o : f ratio was
about ~1: 2, as determined by "H NMR spectroscopy on the crude
reaction mixture.

** Single crystal X-ray diffraction data were collected at 150 K with an
Oxford Diffraction SuperNova diffractometer and processed with
CrysAlisPro as per the ESL} The structure was solved with SuperFlip*®
and refined with CRYSTALS***® including the Flack x parameter®"*>
which refined to —0.011(11) (unrestrained). CCDC 904095.
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