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Poly(2-ethyl-2-oxazoline) chain transfer agents are employed in photoinitiated RAFTPISA, providing 
access to biocompatible core-shell polymeric nanostructures with various morphologies.
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Straightforward access to biocompatible poly(2-oxazoline)-coated 
nanomaterials by polymerization-induced self-assembly  

Dao Le,‡ab Friederike Wagner,‡ab Masanari Takamiya,a I-Lun Hsiao,ac Gabriela Gil Alvaradejo,ab Uwe 
Strähle,a Carsten Weiss,a Guillaume Delaittre ab* 

 

We report the synthesis of poly(2-ethyl-2-oxazoline)-based (PEtOx) 

nanoobjects by polymerization-induced self-assembly (PISA). First, 

well-defined PEtOx macromolecular chain transfer agents were 

synthesized by cationic ring-opening polymerization and click 

chemistry. The photoinitiated PISA of 2-hydroxypropyl 

methacrylate mediated by these PEtOx produced nanoobjects 

spanning the full range of core-shell morphologies. The 

nanoparticles exhibited high biocompatibility and stealth property 

in vitro or in vivo, as well as thermoresponsive behavior. 

 Poly(2-alkyl/aryl-2-oxazoline)s (PAOx), synthesized by ring-

opening cationic polymerization (CROP), are valuable polymers 

for the biomedical field thanks to their biocompatibility, stealth 

behavior, and their chemical and physical versatility.1–4 

Coinciding with the recently renewed interest in PAOx, the first 

poly(2-ethyl-2-oxazoline) (PEtOx) conjugate already entered 

Phase II clinical trials for treatment of Parkinson´s disease.5 

Several studies focused on the synthesis of functional PAOx to 

achieve functional hydrogels,6–8 surface coatings,9 and polymer-

peptide/protein/drug conjugates.10,11 Besides, the interest in 

PAOx-based complex structures is also raising.12 PEtOx brush-

arm star and comb-shaped polymers incorporating nitroxide 

radicals and perfluorinated segments, respectively, are being 

reported for magnetic resonance imaging.13,14 Patterned PEtOx 

bottle-brush copolymer brushes on diamond were reported for 

biosensor design.15 Notably, PAOx-based core-shell 

nanoparticles (NPs) are promising nanocarriers for 

biomedicine.16 Until now, these have been exclusively prepared 

by classic self-assembly of pre-synthesized amphiphilic block 

copolymer (ABCP).  

 Polymerization-induced self-assembly (PISA), developed in 

the last decade, has become an important approach for the 

fabrication of ABCP NPs with elaborate and precise 

macromolecular architecture, colloidal morphology, and 

functionality.17–23 In a nutshell, PISA is based on two events: (i) 

chain extension of a solvophilic macromolecular precursor with 

a monomer forming a solvophobic block and (ii) synchronous 

self-assembly of the so-formed amphiphilic block copolymer 

leading to core-shell NPs. As opposed to the classic 

nanoprecipitation–solvent exchange/evaporation method, PISA 

can be performed at high polymer concentration (up to 50 vs. 

1–2 wt%) and gives in situ access to morphologies as diverse as 

plain spheres, rods/fibers, and hollow vesicles. Reversible-

deactivation radical polymerization, mostly reversible addition-

fragmentation transfer (RAFT) polymerization, is the major 

underlying polymerization mechanism for PISA, occurring under 

either dispersion or emulsion polymerization conditions with 

styrene, (meth)acrylate, or (meth)acrylamide monomers. Other 

polymerization mechanisms are slowly making an appearance 

in the PISA realm, such as ring-opening metathesis 

polymerization,24–27 in order to expand the chemistry and 

functionality of NPs.28 However, because of the interest in 

greener solvent and of the general requirement for polar 

solvents to produce biocompatible nanoparticles (i.e., alcohols 

and water), employment of ionic polymerization is still 

limited.29 Therefore, many interesting biocompatible polymers 

such as PAOx have not yet been included in PISA nanoobjects.  

 In this study, we describe the first combination of CROP and 

RAFTPISA to obtain PAOx-based nanoobjects spanning a wide 

range of morphologies. First, dithiobenzoate-functionalized 

PAOx were prepared by CROP of a 2-oxazoline monomer in 

aprotic solvent, followed by capping to introduce the chain 

transfer agent (CTA) moiety necessary for RAFT polymerization. 

The functional PAOx were then used as macromolecular CTA 

(macroCTA) in photoinitiated aqueous RAFTPISA 

(photoRAFTPISA). The influence of several parameters on the 

morphologies was investigated, i.e., mode of synthesis of the 
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macroCTAs, chain length ratio between the solvophilic and 

solvophobic blocks, and concentration. Besides, we 

demonstrate that the obtained NPs are biocompatible in vitro 

and in vivo, and hence are suitable for potential bioapplications.  

In particular, PEtOx was used in this study for its great 

hydrophilicity and its potential as alternative to the established 

polyethylene glycol (PEG).30 PEtOx was synthesized by CROP 

using methyl tosylate as initiator. As shown in Scheme 1, the 

CTA end group could be incorporated either by direct capping 

with a deprotonated carboxylic acid-functionalized CTA (Route 

A)31,32 or by a two-step sequence consisting of a nucleophilic 

substitution with sodium azide and a subsequent copper-

catalyzed azide–alkyne cycloaddition (CuAAC) (Route B). Both 

routes showed similar kinetic features and fulfilled elementary 

criteria for a controlled/living polymerization, i.e., linear 

increase of pseudo-first order plot, linear increase of number-

average molar mass with conversion, and clear shift of size-

exclusion chromatography (SEC) traces (Figure S2). However, 

the nature of the capping reaction impacted the dispersity of 

the PEtOx (Đ): Đ values were systematically slightly higher when 

capping with the carboxyl CTA, as compared with NaN3, 

concomitant with the presence of a significant shoulder at 

higher molar masses on the SEC traces (Figure S2C). In Route B, 

reaction conditions to introduce the CTA moiety by CuAAC 

(time, solvent) also influenced the shape of the molar mass 

distribution (MMD), and Đ (Figure S7). Performing CuAAC for 4 

hours in dichloromethane (DCM) led to the smallest broadening 

of the MMD. This shouldering phenomenon may be – at least to 

some extent – due to partial decomposition of the CTA moiety 

to a thiol, which can be readily oxidized to disulfides and 

produce high molar mass coupled species (Figure S5, B and C).33 

Indeed, CuAAC of PEtOx-N3 with propargyl alcohol in similar 

conditions led to a significant reduction of MMD broadening 

(Figure S8). Overall, Route B required one more step but 

provided well-defined polymers with Ɖ ≤ 1.2 (Figure S9). For 

each route, two batches of PEtOx-CTAs were synthesized for 

PISA experiments, with Mn of approx. 5500 and 9500 g mol–1. 

The characteristics of these polymers are listed in Table S1. 1H 

NMR and SEC coupled to electrospray ionization mass 

spectrometry (SEC–ESI-MS) data ascertained high RAFT 

functionality in all polymers (Figures S3, S4, S10, S11, and S12). 

Chain extension experiments with benzyl methacrylate in 

solution confirmed the previous trends: While macroCTAs from 

Route A underwent only partial chain extension (Figure S13), 

Route B led to clean block copolymers (Figures S14 and S15). 

Nevertheless, as a living character is not mandatory to obtain 

nanoparticles by PISA,34 we further employed all four 

macroCTAs.  

 2-Hydroxypropyl methacrylate (HPMA) was used as core-

forming monomer in water. Since PEtOx exhibits a lower critical 

solution temperature in water at approx. 60 °C,35 

photopolymerization at 25 °C was applied to maintain good 

solubility and ability for steric stabilization. Firstly, PISA 

experiments with the short PEtOx-CTA M1 were performed 

with varying targeted degrees of polymerization of HPMA 

(DPHPMA) and total solids content (Table S3). All PISA 

experiments were conducted for 3 h and led to full HPMA 

conversion, as verified by 1H NMR spectroscopy (Figure S16). As 

observed by TEM, only pure spherical NPs were obtained in the 

DPHPMA = 30–100 range at 5 wt% solids (Figure S18, left). At 10 

wt%, a mixture of spheres and nanofibers was obtained for 

DPHPMA = 50 (Figure S18, right). Higher DPHPMA or solids 

concentration led to precipitation. Similar results were achieved 

for the CuAAC-based PEtOx-CTA M3 with mainly plain spherical 

morphology but also large, possibly multicompartmented 

particles (Table S5 and Figure S22). While both short PEtOx-

CTAs seemed to provide insufficient stabilization and led to 

aggregation at high DPHPMA and high concentration, PISA with 

longer analogs allowed the formation of nanoobjects spanning 

the full range of morphology. Pure spheres, worm-like 

nanofibers, vesicles as well as morphology mixture were 

obtained with M2 (Table S4 and Figure S20). Higher-order 

morphologies evolved with increasing DPHPMA and solids 

contents. However, a significant raise in dispersity was also 

observed, which is most probably due to non-reinitiating PEtOx-

CTA rather than to a loss of control. Indeed, SEC traces of PISA 

samples showed important amounts of low-molecular-mass 

species consistent with non-functionalized PEtOx and 

unreacted POx-CTA (Figure S19). By using the better-defined 

PEtOx-CTA M4, strongly improved MMDs were obtained with a 

total consumption of POx-CTA (Figure S23). Concomitantly, PISA 

NPs displayed well-defined morphologies, as well as further 

more intricate shapes such as donut- and jellyfish-like (Figure 

1). At low solids content (5 wt%) and with DPHPMA up to 200, only 

spheres or donuts were observed, as for higher solids content 

with DPHPMA ≤ 100. However, a range of nanoobjects from 

spheres to vesicles was achieved when targeting higher DPHPMA. 

Particularly, conditions for the preparation of pure phases were 

established, even for jellyfish-like objects, an intermediate 

stage of the nanofiber-to-vesicle morphological transformation. 

 
Scheme 1. Synthetic routes towards PEtOx-stabilized NPs by merging CROP and photoRAFTPISA. SPTP = Sodium phenyl-2,4,6-
trimethylbenzoylphosphinate. 
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PISA with higher-molar-mass PEtOx-CTAs therefore gave better 

results in terms of colloidal stability and morphology control. 

There is however no clear influence of the degree of livingness 

of the macromolecular CTAs on the morphological control.  
 In analogy to systems reported by Armes and co-workers,36 

phase transition of the final dispersions could be triggered by 

changing temperature. At high concentration, the vesicle-to-

nanofiber-to-sphere transitions were reversible, irrespective of 

the initial state, e.g., nanofibers and vesicles for M4-b-

PHPMA125 and M4-b-PHPMA175 at 25 °C, respectively (Figure 

2A). Such order-order transitions in a narrow temperature 

range are due to not only the weakly hydrophobic nature of the 

core-forming PHPMA block37 but also the temperature-

dependent solubility of PEtOx. However, at low concentration, 

e.g., 0.1 wt%, the transitions became irreversible (Figure 2B) 

because the fusion of spheres or fibers is less likely under these 

conditions. For instance, vesicles of M4-b-PHPMA125 obtained 

by heating a concentrated solution at 40 °C and carefully diluted 

at the same temperature irreversibly led to nanofibers, then 

spheres by gradual cooling.  

 Since PEtOx is considered as an attractive alternative to PEG 

for in vivo applications, we sought to preliminary assess the 

biocompatibility and blood circulation behavior of the present 

PEtOx-coated NPs. For imaging purposes, fluorescent NPs were 

thus produced by simply adding a small amount of fluorescein 

methacrylate (FMA) or rhodamine 4-vinylbenzyl ester (RVB) 

comonomer to a PISA recipe (Scheme S2). Spherical NPs with 

intensity-average hydrodynamic diameters of 40 and 60 nm 

were obtained (Table S7 and Figure S27) and expected maxima 

absorption and emission for fluorescein and rhodamine B 

(Figure S28).   

 To assess the biocompatibility and ability of FMA-labeled 

PEtOx NPs to evade clearance by the reticuloendothelial system 

(RES), murine macrophages (RAW 264.7), human umbilical vein 

endothelial cells (HUVEC), and human epithelial lung cancer 

cells (A549) were incubated for 24 h, using fluorescein-labeled 

carboxylated polystyrene (PS-COOH) NPs as reference 

material.38 RVB-labeled NPs were administered to zebrafish 

embryos and their biocompatibility, biodistribution, and 

clearance were examined for 24 h post-injection (hpi). As 

controls, PS-COOH NPs as well as rhodamine-labeled dextran 

were used in parallel. Both in vitro and in vivo studies are 

reported in more detail in the Supporting Information. 

 Briefly, as expected for NPs covered with stealth polymers, 

PEtOx NPs show none-to-very low uptake in all cell types and 

did not reduce cell viability up to 100 μg mL–1 (Figures S31–S33). 

In the zebrafish embryos, no noticeable morphological or 

behavioral change was detected after intravenous injection of 

a 1 mg mL–1 dispersion of RVB-labeled NPs (Figure 3). In 

contrast to dextran, which was rapidly cleared and only slightly 

accumulated in endothelial cells in the caudal vein (CV) after 24 

h (C, F, C´, and F´), RVB-PEtOx NPs mainly circulated in the 

bloodstream (B, E and B´, E´). For comparison, PS-COOH NPs 

were not detected in the circulation but were, as expected, 

entrapped in the RES (macrophages and endothelial cells) in the 

CV (D, and D´). However, contrary to the more simplistic in vitro 

experiments employing murine macrophages, a small fraction 

of RVB-PEtOx NPs could be detected in macrophages in vivo (E, 

and E´). In summary, our PEtOx NPs are biocompatible and 

display enhanced retention in the blood circulation. 

Furthermore, to accurately monitor clearance by the RES, the 

 
Figure 2. Temperature-induced morphological transformation of (A) original 
nanofibers (M4-b-PHPMA125, 20 wt% at 25 °C) and vesicles (M4-b-PHPMA175, 
15 wt% at 25 °C) in as-synthesized dispersions, and (B) vesicles (M4-b-
PHPMA125, 0.1 wt% at 40 °C) at low concentration. Representative solutions 
and TEM images in (A) from the original nanofiber sample. 

 

 

Figure 1. (Top) Phase diagram for RAFTPISA of HPMA using PEtOx-CTA M4 as 
macroRAFT agent and (bottom) TEM images of representative samples 

(empty symbols from above). Larger TEM images are provided as Figure S25. 
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zebrafish model seems to be better suited than conventional 

cell culture studies.  

 In the present communication, we described for the first 

time the synthesis of biocompatible PAOx-based diblock 

copolymer NPs by PISA. Control of morphology was achieved by 

varying the lengths of each block as well as the reaction mixture 

concentration. Dispersion based on pure phases of spheres, 

fibers, or vesicles were obtained. The nanoobjects display a 

thermosensitive behavior, enabling morphological 

transformation, which could be an asset for the preparation of 

bioactive materials. Importantly, the present PEtOx-based 

nanoparticles are non-toxic and exhibit prolonged circulation in 

the bloodstream. The versatility of PISA combined with the high 

potential of polyoxazolines in drug delivery and bioscaffolding 

promises a rapid access to corresponding functional 

(nano)materials.  
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