OXIDATIVE AMMONOLYSIS OF 2,4,6-COLLIDINE

AT VANADIUM-TITANIUM OXIDE CATALYST

A. D. Kagarlitsky and L. A. Krichevsky

4-Cyanopyridine was synthesized from the readily obtainable 2,4,6-collidine by oxidative ammonolysis in the presence of vanadium-titanium oxide catalyst. Conditions under which the yield of the product amounted to 73% on the amount of the trimethylpyridine were found.

Keywords: 2,4,6-collidine, oxidative ammonolysis, vanadium-titanium oxide catalyst.

The nitriles produced during the oxidative ammonolysis of alkylpyridines [1] have been used as intermediates in the production of drugs – tuberculostatics [2, 3], vitamins [4], cardiotonic agents [5] – and also in the synthesis of heat-resistant polymeric materials [6].

2,4,6-Collidine (1) numbers among the readily obtainable compounds, but its oxidative ammonolysis has hardly been studied at all. In the single paper devoted to this question [7] it was shown that in the presence of vanadium oxide catalyst promoted with silver (V:Ag = 1:0.003 at.%) the main reaction products were 2-cyano-4,6-dimethylpyridine and 2,4-dicyano-6-methylpyridine with yields of 19.4 and 11.5% respectively, calculated on the reacted material.

We investigated the oxidative ammonolysis of compound 1 in the presence of vanadium-titanium oxide catalyst with V_2O_5 : $TiO_2 = 1:16$ (molar ratio). The basis for the choice of such a catalyst was the fact that, as previously established by one of us with colleagues, methyl groups at position 2 of the pyridine ring underwent dealkylation in this reaction, where the reaction mixture was rich in water [8], while those at position 4 were converted under analogous conditions into a cyano group [9]. Thus, it was proposed to attempt the transformation of compound 1 into isonicotinonitrile 2:

This conclusion was supported by experiment. The main product from oxidative ammonolysis of the collidine 1 under the selected conditions was cyanopyridine 2. The minor products of the reaction were 2-amido-4-methylpyridine 3 and 2-amido-4-cyanopyridine 4 and also the pyridine 5 and picolinic acid 6 (Table 1), formed as a result of hydrolysis of the 2-cyanopyridine.

Institute of Phytochemistry, Ministry of Education and Science of the Kazakhstan Republic, Karaganda 470032; e-mail: arglabin@phyto.karaganda.su. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 358-360, March, 2003. Original article submitted November 22, 2001.

TABLE 1. The Dependence of the Yield of the Products from Oxidative Ammonolysis of Collidine 1 on the Process Parameters (Delivery Rate of 2,4,6-Collidine 21.32 g/l_{cat}·h, Oxygen 17 mol/mol of 2,4,6-Collidine)

Experi- ment	T, °C	NH ₃ : 1 , mol/mol	H ₂ O: 1 , mol/mol	1*, %	Yield, %				
					2	3	4	5	6
1	300	8	10	92	2	2	1	_	1
2	320	8	10	82	8	4	_	4	2
3	340	8	10	54	26	4	_	8	4
4	360	8	10	28	48	2	_	20	_
5	380	8	10	20	51	_	_	24	_
6	300	8	20	48	2	28	8	2	8
7	320	8	20	44	18	16	4	10	_
8	340	8	20	36	40	5	5	14	2
9	360	8	20	20	52	_	_	24	_
10	380	8	20	14	56	_	_	28	_
11	300	6	30	30	48	_	_	5	14
12	320	6	30	20	60	_	_	16	1
13	340	6	30	10	70	_	_	20	_
14	360	6	30	6	72	_	_	22	_
15	380	6	30	3	76	_	_	21	_
16	400	6	30	1	74	_	3	20	

^{*} Unreacted collidine 1.

Under optimum conditions (380°C, molar ratio 1:oxygen:ammonia:water = 1:17:6:30) the yield of cyanopyridine 2 amounted to 76%. This makes it possible to use the oxidative ammonolysis of collidine 1 for the production of this compound, which is an intermediate in the synthesis of the antituberculosis product Izoniazid.

EXPERIMENTAL

The oxidative ammonolysis of collidine **1** was studied in the range of 300-400°C. The flow rate of the reaction mixture was 370-555 h⁻¹ by volume, and the molar ratio collidine **1**:oxygen:ammonia:water was 1:17:(2-10):(10-50). A flow-type stainless steel reactor, in which 43 cm³ of the catalyst was placed, was used for the experiments. The reaction products were isolated by column chromatography (a column of silica gel L100/160) and identified by elemental analysis and IR and NMR spectroscopy.

The amounts of the unreacted compound 1 and the reaction products were determined by GLC on a Chrom-5 chromatograph with a flame-ionization detector. Silicone elastomer SE-30, deposited on Chromaton NAW-HMDS at the rate of 5% was used as stationary phase (column temperature 130°C, length 2.5 m, internal diameter 3 mm). Benzonitrile was used as internal standard for quantitative analysis.

REFERENCES

- 1. B. V. Suvorov, *Oxidative Ammonolysis of Organic Compounds* [in Russian], Nauka, Alma-Ata(1971).
- 2. A. D. Kagarlitsky, and N. A. Likhacheva, in: *Heterogeneous Catalysis in the Chemistry of Heterocyclic Compounds* [in Russian], Zinatne, Riga (1981), p. 165.
- 3. C. V. Shabadi, B. A. Shelar, and A. R. Shelar, *Indian J. Chem.*, **B38**, 508 (1999).

- 4. B. V. Suvorov, A. D. Kagarlitsky, and N. V. Suslova, Zh. Prikl. Khim., 2588 (1972).
- 5. I. Matsumoto and J. Yoshizawa, Jpn. Patent 54071; *Chem. Abs.*, **79**, 105082 (1973).
- 6. B. A. Zhubanov, Z. G. Akkulova, M. S. Baibulova, and T. A. Afanas'eva, *Vysokomol. Soedin.*, **28(B)**, 225 (1986).
- 7. I. A. Milman, E. E. Dzilyuma, A. K. Strautinya, E. Kh. Korchagova, and V. A. Slavinskaya, *Izv. Akad. Nauk Latv. SSR. Ser. Khim.*, 353 (1978).
- 8. B. V. Suvorov, A. D. Kagarlitsky, and I. I. Kan, Zh. Prikl. Khim., 2063 (1974).
- 9. B. V. Suvorov, A. D. Kagarlitsky, and D. Kh. Sembaev, Vest. Akad. Nauk KazSSR, No. 1, 21 (1971).