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A urea decorated (3,24)-connected rht-type 

metal-organic framework exhibiting high gas 

uptake capability and catalytic activity†††† 

Xiao-Jun Wang,*a Jian Li,a Qiu-Yan Li,a Pei-Zhou Li,b Han Lu,a Qianying 
Lao,a Rui Ni,a Yanhui Shi,a and Yanli Zhao*b 

A (3,24)-connected rht-type metal organic framework (MOF 

Cu-UBTA) containing urea group was readily prepared by 

the solvothermal reaction between a hexacarboxylate ligand 

and Cu(NO3)2. Gas sorption investigations demonstrated its 

high porosity and high uptake capacities for CO2 and H2. 

Moreover, the MOF can act as an efficiently heterogeneous 

catalyst for Friedel-Craft alkylation of N-methyl pyrrole or 

indole with nitroalkenes. 

Metal-organic frameworks (MOFs) are well-defined porous and 

crystalline solids consisting of metal ions or metal-containing 

clusters connected to multidentate organic linkers via metal 

coordination bonds.1-7 Due to their hybrid inorganic-organic 

compositions, the structures and properties of MOFs can be 

easily tuned through judicious combination of metal centres and 

organic linkers toward specific applications,1-7 such as gas 

storage and separation,8-14 heterogeneous catalysis15-19 and 

sensing.20-23  

In comparison to the purely inorganic porous materials (for 

example activated porous carbons), the inherent modular nature 

of MOFs highly enables the rational design and preparation of 

these materials with pre-determined ordered structures and 

topologies via reticular synthesis.24-26 Recently, it has been 

evidenced that a (3,24)-connected rht-topology could serve as 

an ideal blueprint for the development of MOFs,27 in which a 

24-connected paddlewheel-based supermolecular building 

block (SBB) with rhombicuboctahedral geometry linked 

through trigonal (3-connected) nodes.28-45 These isoreticular 

MOFs are typically prepared by the solvothermal reaction 

between copper(II) ions and  an over-all C3-symmetrical 

hexacarboxylate acid linker composed of three coplanar 

isophthalates.46-48 Owing to the highly connected framework 

presented in these rht-MOFs, they possess several specific 

advantages, such as the robust framework with high surface 

area and high concentration of open-metal sites. Therefore, 

most of research attention regarding rht-MOFs has mainly been 

devoted into the gas storage and separation.27-45 However, only 

a few rare examples exploited their potential applications in the 

other areas except gas uptake has been reported so far.49,50 To 

our knowledge, Shi’s group reported the first example of 

luminescent rht-MOF Zn-TDPAT (TDPAT = 2,4,6-tris(3,5-

dicarboxyl phenylamino)-1,3,5-triazine), which serve as a dual 

functional sensor for quantitatively detecting the concentration 

of nitrobenzene and temperature.50  

One of possible reasons for limiting the applications of rht-

MOFs should be ascribed to the slow development of novel 

ligands with functional groups. Recently, we reported a porous 

rht-MOF Cu-ABTA in which acylamide group was used to 

replace one of triazole units in parent MOF NTU-105, 

suggesting that (3,24)-connected rht-topological MOFs could 

be constructed from a suitable unsymmetrical hexacarboxylate 

acid ligand.51 Along with this research line, herein, we designed 

and synthesized another unsymmetrical hexacarboxylate ligand 

H6-L having a urea group (Fig. 1), which can act as a 

hydrogen-bond-donating catalytic site52,53. Then, a copper(II) 

rht-type MOF  Cu-UBTA was successfully prepared with this 

new ligand. As expected, MOF Cu-UBTA exhibited high 

porosity with high uptake capacities for CO2 and H2. Moreover, 

it can efficiently catalyze Friedel-Craft alkylation of N-methyl 

pyrrole or indole with nitroalkenes.  

The unsymmetrical hexacarboxylate linker 5,5'-(4,4'-(5-(3-

(3,5-dicarboxyphenyl)ureido)-1,3-phenylene)bis(1H-1,2,3-

triazole-4,1-diyl))diisophthalic acid (H6-L)was synthesized as 

described in Scheme S1 (in ESI). Similar to the ligands 

constructed in our group,6,7,39,43,51 herein, we still used the click 

reaction and condensation reaction to design and synthesize the 

target ligand H6-L. Specifically, 3,5-diiodophenyl isocyanate 

was reacted with di-tert-butyl 5-aminoisophthalate to get the 

urea-functionalized precursor compound di-tert-butyl 5-(3-(3,5-

diiodophenyl)ureido)isophthalate (1), which was converted into  
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di-tert-butyl 5-(3-(3,5-diethynylphenyl)ureido)isophthalate (2) 

by Sonogashira reaction with (trimethylsilyl)acetylene and 

subsequent deprotection with tetra-n-butylammonium fluoride. 

Then, the click reaction of diethynyl 2 and di-tert-butyl 5-

azidoisophthalate gave the tert-butyl ester tBu6-L, which was 

deprotected with trifluoroacetic acid to get the ligand H6-L in a 

high yield.  

 
Fig. 1 Molecular structure of the ligand hexacarboxylate acid H6-L (left) and 

single crystal structure of (3,24)-connected rht-topological framework in MOF 

Cu-UBTA (right). 

A typical solvothermal reaction of H6-L with Cu(NO3)2 in 

N,N-dimethylformamide (DMF) at 75 °C for 3 days afforded 

MOF Cu-UBTA (Cu3(L)(H2O)3·10DMF·9H2O) as block 

green-blue crystals. Powder X-ray diffraction (PXRD) 

measurements confirmed the phase purity of its bulk sample. 

Single-crystal X-ray diffraction studies revealed that MOF Cu-

UBTA was crystallized in the tetragonal space group I4/m with 

unit-cell dimensions a = b = 31.4206 Å and c = 44.8239 Å 

(Table S1 in ESI). In the crystal structure of MOF Cu-UBTA, 

as anticipated, each 3-connected organic linker L connects with 

three 24-connected rhombicuboctahedral SBBs, thus generating 

a (3,24)-connected rht-topological framework (Fig. 1).  

 
Fig. 2 Nitrogen sorption isotherm for MOF Cu-UBTA at 77 K (STP = standard 

temperature and pressure; filled symbols, absorption; open symbols, desorption. 

Inset shows the BET specific surface area plot). 

The total accessible volume of MOF Cu-UBTA after the 

removal of the guest solvents and coordinated water molecules 

was estimated to be 76% using the PLATON/VOID routine.54 

The desolvated samples were prepared by exchanging the 

solvent in  the fresh MOF Cu-UBTA with dichloromethane, 

followed by evacuation under high vacuum at 60 and 120 °C, 

respectively. PXRD patterns of the activated samples exhibited 

a good agreement with the simulated one from its crystal data 

(Fig. S3 in ESI), indicating the retention of the framework 

during the activation process. To confirm the permanent 

porosity of MOF Cu-UBTA, nitrogen sorption at 77 K was 

performed as shown in Fig. 2. It was found that the N2 sorption 

isotherm exhibits a reversible pseudo-type I with a small step 

before the plateau appears, suggesting the presence of both 

micro- and mesopores within the framework. The Brunauer–

Emmett–Teller (BET) surface area was calculated to be 3134 

m2 g-1, which is very close to our reported MOF NTU-105 and 

comparable with some rht-MOFs (Table S2 in ESI). 

 
Fig. 3 Gas sorption isotherms of MOF Cu-UBTA for CO2 and N2 measured at 273 K, 

and H2 measured at 77 K.  

In order to evaluate the potential application of MOF Cu-

UBTA in gas storage and separation, we further investigated its 

gas uptake capacities towards CO2 and H2. As shown in Fig. 3, 

the CO2 sorption isotherm was measured at 273 K, revealing an 

uptake of 165 cm3 g-1 (32.4 wt%) at 1 bar. This value is still 

among the high CO2 uptake ability reported for MOFs,55,56 and 

even higher than some of its isoreticular rht-MOFs, such as rht-

MOF-945 (Table S2 in ESI). As for nitrogen, the N2 uptake of 

MOF Cu-UBTA was only 2.6 cm3 g-1 at 273 K and 1 bar, 

suggesting its high selectivity towards CO2 over N2. Besides, 

the H2 sorption isotherm of MOF Cu-UBTA demonstrates a H2 

uptake capacity as high as 281 cm3 g-1 (2.51wt%) at 77 K and 1 

bar (Fig. 3), which is greater than MOFs PCN-6X series under 

the same conditions (Table S2 in ESI). Then, the isosteric heat 

of adsorption (Qst) for H2 was calculated from the isotherms at 

77 and 87 K by using the Clausius-Clapeyron equation, 

providing that the Qst value for MOF Cu-UBTA decreased 

from 6.23 to 5.13 kJ mol-1 in the uptake range of 6-164 cm3 g-1. 

Similarly, the high performance of MOF Cu-UBTA for CO2 

and H2 sorption should also be attributed to the high density of 

open copper sites and coordination-free nitrogen-rich triazole 

moieties within the robust rht-framework.27-45  
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Since a functional urea group was introduced into MOF Cu-

UBTA via ligand pre-design, in order to validate its catalytic 

activity, we also employed a simple Friedel–Crafts alkylation 

of N-methylpyrrole and trans-β-nitrostyrene (2 :1 molar ratio) 

as a model reaction.53 As shown in Fig. 4, the reaction with 5% 

molar MOF Cu-UBTA as catalyst was performed in CH3CN at 

60 °C and monitored by 1H NMR spectroscopy. The desired 

product was obtained in 85% yield after 48 h. No significant 

increase was observed with further extension of reaction time. 

Whereas only a trace of product was found in the control 

experiment without catalyst, this indicates that MOF Cu-UBTA 

can effectively catalyze the Friedel–Crafts reaction. 

 

  
Fig. 4 Catalytic activities of MOF Cu-UBTA, NTU-105 and a control.  

Next, to understand the role of urea unit played in the 

catalytic reaction, we utilized the similar MOF NTU-105 

without urea to repeat this reaction under the same conditions. 

It was found that MOF NTU-105 exhibited a lower catalytic 

activity in relative to Cu-UBTA (Fig. 4). This confirms that the 

urea group in rht-MOF Cu-UBTA can also work as hydrogen-

bond-donating site to catalyze Friedel–Crafts reaction. On the 

other hand, the yield of product catalyzed by MOF NTU-105 is 

medium 48% after 48 h, which should be attributed the Lewis 

acidic open copper sites in the framework. Thus, we believe 

that the high catalytic activity of MOF Cu-UBTA should 

originate from the synergistic effect of open metal site and urea 

group within the framework.  

Meanwhile, the recyclability of MOF Cu-UBTA 

heterogeneous catalyst for the reaction was also investigated, 

which can be easily isolated from the reaction system by a 

simple centrifugation. It was reused for three times without 

obvious loss of the catalytic activity (81% for 2nd run, 75% for 

3rd run). PXRD patterns for recycled catalyst revealed that 

MOF Cu-UBTA maintained its crystalline structure and 

framework after catalysis (Fig. S3 in ESI). Besides, the low 

concentration (by mass%) of Cu2+ in reaction solution after 

catalysis and removal of MOF, was determined by inductively 

coupled plasma (ICP) analysis to be 0.5% 1st run, 1.1% 2nd run, 

and 1.8% 3rd run, respectively. These results confirmed the high 

stability of MOF Cu-UBTA in the catalytic reaction. Finally, 

we preliminarily extended the scope of the substrate including 

N-methyl indole and other nitroalkenes, giving the desired 

products with good to excellent yields (Table S3 in ESI).  

Conclusions 

In summary, we have successfully constructed a novel urea-

containing rht-type MOF Cu-UBTA via the rational ligand pre-

design. The rht-MOF demonstrated a large porosity as well as 

high CO2 and H2 uptake capacities. More importantly, the urea-

functionalized rht-MOF Cu-UBTA can act as a highly efficient 

heterogeneous catalyst for Friedel-Crafts reactions, due to the 

synergistic effect of urea groups and open metal sites within the 

robust framework. To the best of our knowledge, this is the first 

example of rht-type MOFs based catalyst. Furthermore, it is 

expected that more multi-functional rht-MOFs with novel 

properties will be constructed by the sophisticated ligand design 

with functional groups. Such research efforts are currently 

underway in our group.  
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TOC 

A urea decorated (3,24)-connected rht-type metal-organic framework exhibiting high gas 

uptake capability and catalytic activity 

Xiao-Jun Wang, Jian Li, Qiu-Yan Li, Pei-Zhou Li, Han Lu, Qianying Lao, Rui Ni, Yanhui Shi, and Yanli Zhao 

 

A urea decorated rht-MOF exhibited high gas uptake for CO2 and H2 as well as worked as a heterogeneous catalyst 

for Friedel-Craft reactions. 
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